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ABSTRACT

This paper reports a sample-efficient Bayesian optimization approach for tuning the locomotion parameters of
an in-house developed twelve degrees of freedom alligator-inspired amphibious robot. An optimization framework
is used wherein the objective is to maximize the mean robot speed obtained via physical experiments performed
on terrains with varying friction and inclinations and in the aquatic environment for swimming locomotion. We
obtained an improvement in the mean robot speed by a factor of up to 6.38 using the developed approach over

randomly generated locomotion parameters in 15 iterations.
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NOMENCLATURE

A, Amplitude for head, torso, tail joints (1 and 2)

A, Amplitude for hip joint

A Amplitude for knee joint

Ao : Phase lag between body joint actuators

E Error angle between the robot orientation vector and
goal

Y, - Body offset parameter

Y, Leg offset parameter

H Objective function

K, : Acquisition function

K, : Stochastic behavior of the objective function

K, : Maximum objective evaluation

K : Number of seed points in the cost function

N Number of active joints in the body

P Gait parameter of robot pe R’ | p=[4,, 4, T

o The angle between goal and robot centroid

R : Radius of acceptance

S The average speed of the robot in cm/s

T The time-period in the gait cycle

T, Time to travel from start to goal location

0 : Control action 9 e R' ‘9:[93,911,9& T ,i=123,4.

0, : Commanded angle for i body joint actuator,
i=1to4.

0, : Commanded angle for the i" hip joint actuator,
i=1to4.

O Commanded angle for i knee joint actuator,
i=1to4.

0 : Robot orientation vector
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X State space vector x e R*| x= [xd,xt,vz,fc(,,l,icﬂ’z]T

X, Position coordinated of red color marker (x, € R?)
X, Position coordinated of green color marker (x, € R*)
X, The centroid of the robot (x, € R?)

X, Goal point x, € R’

X Start point X, € R?

1. INTRODUCTION

Amphibious robotics has immense potential in various
civil and defense applications such as resource exploration,
disaster management, and reconnaissance. As a result, it has
been attracting researchers’ attention in recent years'*. Among
the different types of amphibious robots, those inspired by
limbed amphibians have emerged as a promising avenue for
research due to their relatively higher efficiency in terrestrial
locomotion than their limbless counterparts. They can also
swim by utilizing body undulation, making them an attractive
source of inspiration for amphibious robot design®. Terrestrial
locomotion in limbed amphibians is achieved by combining
body undulation and leg oscillation-based gaits such as trot and
creep. This results in an improved balance in the sagittal plane
and higher energy efficiency®”’.

Moreover, these creatures can tune their body undulations
to a larger amplitude for terrestrial locomotion to enhance
stability while the smaller amplitude and higher frequency
for faster and energy-efficient swimming. However, tuning
the locomotion parameters, including the frequencies and
amplitudes of leg oscillations and body undulations, remains
a critical challenge for designing amphibious robots inspired
by limbed amphibians. The challenge encountered in tuning
locomotion parameters is often due to the need for expensive
physical experiments and the presence of sensor noise, which
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Figure 1. (a) Schematic of an alligator moving without undulations, (b) Alli-bot mimicking the motion without undulations,
(¢) Schematic of an alligator moving with undulations, and (d) Alli-bot mimicking the undulatory motions.

increases the complexity of the problem®?. This paper presents
a Bayesian optimisation-based, near globally optimal, noise-
tolerant, and sample-efficient approach for tuning the gait
parameters of both leg oscillation and body undulation to
maximize the average speed of an in-house developed alligator-
inspired amphibious robot. The developed technique offers an
effective solution to the problem of locomotion parameter tuning
in amphibious robotics, making it a significant contribution to
the field.

Figure 1 depicts an alligator performing terrestrial
locomotion using a combination of leg oscillation, body
undulation, and a corresponding robotic implementation. The
robot’s locomotion depends upon the choice of the combination
of parameters like joint amplitudes, frequencies, phase lags,
and offset. It is challenging to develop a high-fidelity dynamics
model of the robot’s locomotion that can effectively capture
the influence of friction and terrain geometry. Thus, a purely
simulation-based approach for locomotion parameter tuning
yields results fraught with the reality gap'’. The most reliable
way to tune the locomotion parameters is via performing
physical experimental trials. However, conducting many
experimental trials, especially using non-optimal parameters,
may lead to a rapid wear-and-tear of the robotic platform and
is thus expensive and tedious. Also, the experimental fitness
evaluation is plagued with noise and uncertainty due to the use
of sensors.

In this paper, we aim to reduce the number of experimental
trials needed for estimating locomotion parameters using
Bayesian optimisation. It offers a gradient-free approach for
global optimisation of functions with stochastic and expensive
function evaluations!!. Using Bayesian optimisation, we
arrived at the optimal set of gait parameters by performing
minimal experiments.

We first parameterised the robot gaits in terms of
amplitudes and frequencies of leg oscillations and body
undulations. After this, we developed an approximate robot
simulation model, which we used for estimating the settings
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like acquisition function, stochastic behavior of the objective
function, maximum number of objective evaluations, and
Bayesian optimisation routine seed points. Finally, we
employed Bayesian optimisation using the settings determined
from the simulations to optimize the locomotion parameters
from the physical experiments.

In the past, we reported applying Bayesian optimisation
for the terrestrial locomotion parameter optimisation for an
in-house developed quadruped alligator-inspired robot'?. In
this paper, we extend the earlier approach to include aquatic
locomotion.

2. LITERATURE REVIEW

Examples of robots inspired by mammalian locomotion
are cheetah-cub®, BigDog', LittleDog'®, and MIT Cheetah
216, On the other hand, examples of amphibious robots include
Salamander robot!'’, Amphi-Hex 12, flexible flipper leg-based
robot'®, Alli-bot", and an alligator-inspired modular robot®.
Both static and dynamic stability?! and active and passive
walking have been extensively researched? in the case of
legged robots. Some legged robot designs, such as TITAN
X113, ANYmal*, and the SCOUT? are not bio-inspired.

In locomotion control, Kurazume?*?" developed a
feedforward and feedback dynamic trot gait control system
for Titan-VIII. Gehring et al. created dynamic gaits for a
quadrupedal robot dealing with random perturbations to travel
optimally at a certain speed?. Maleki et al. presented a control
and gait design with an active spine for energy efficiency®.
Horvat et al. developed a reflex-based controller for a
salamander-like robot walking on an uneven terrain®®. Liang
et al. show a set of control algorithms based on SLIP (Spring
Loaded Inverted Pendulum) to regulate the forward and lateral
running speed, hopping height, and body attitude®'.

Alligator exhibits different types of gaits, of which
trot is the high walking gait and is used for drier and hard
terrains with a duty factor of 0.73 to 0.83 and a speed range
of 0.16+0.01 m/s*2. They have uncanny reptilian locomotion,
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Figure 2. (a) 3D model of the robot, and (b) Fabricated prototype of the robot.

which is considered as a next step in the evolution of vertebrate
locomotion**. Their tail accounts for nearly 28 % of body
weight, so hind limbs support an increased percentage
of weight when a quadruped is working against a drag®.
Alligators employ sharp amplitude variations, identified as a
major thrust generator, from head to tail with a mean amplitude
varying between 0.07 and 0.10 times the body length?. Tails
of the mammalians play an essential role in dynamic stability,
maneuverability, and speed®. To the best of our knowledge,
the roboticists have not investigated the effect of the tail on the
speed of a legged bio-inspired robot.

In the case of aquatic locomotion, serpentine and
Anguilliform gaits are mainly studied for limbless robots
inspired by eel or lamprey and utilise active body undulation®*
7. Swimming in robots with both active limbs and spine has
been studied in Salamander Robotics II, wherein limbs are
actively used for terrestrial locomotion while an active spine
causing body undulation is used for aquatic locomotion’.

In the area of gait optimisation, reinforcement learning has
been applied by various researchers like Saggar et al.’, Erden
and Leblebiciouglu®, and Li et al.*’. Rofer used evolutionary
algorithms to optimize the gait parameters for a quadruped in
the Sony Four-Legged Robot League*'. Chernova and Veloso
used an evolutionary approach based on genetic algorithms to
optimize the gait of the Aibo robot*. Weingarten et al. used
the Nelder-Mead algorithm to optimize the gait speed for a
hexapod®. Kohl and Stone compared different optimisation
algorithms, namely hill climbing, Amoeba (Nelder-Mead
algorithm), geneticalgorithmsandpolicy gradientreinforcement
learning, to improve the forward speed of quadruped robots
in an offline setting®. Santos et al. explored the idea of gait
transitions in a quadruped robot based on the robot speed and
behavioral context of the robot®. Koco et al. employed the
Genetic Algorithm to optimize a multiobjective function to
tune the foot trajectories parameters in open loop control for
achieving optimal energy and fast robot locomotion*.

Gehringetal. developed an optimisation-based approach to
control the agile motion of a quadrupedal robot by automatically
fine-tuning the controller parameters by repeatedly executing
slight variations of the same motion task*’. Digumarti, et al.
developed an approach for optimizing the robot’s morphology
and tuning the control parameters for trotting and bounding
gait simultaneously while achieving a certain speed*®. RunBin
et al. reported a time-pose control method for a trotting gait on
two terrains: flat and inclined in real-time®.

Calandra et al. applied Bayesian optimisation for learning
biped gaits and compared the same with other optimisation
techniques''.

We have combined the online and offline procedures
described in Fig. 2 for Alli-bot. At first, we run the Bayesian
optimisation algorithm over numerical simulation to tune the
algorithm’s hyperparameters (K , K, and K,) and to determine
the minimum number of iterations required (K ). Next, we run
the Bayesian optimisation algorithm over the physical robot
using the tuned hyperparameter values to get the optimal gait
parameters (4,, A, and 7).

The main contributions of this paper include: (1) the
development of a parameterized simulation model for Alli-Bot,
(2) a Bayesian optimisation approach to determine optimal
gait parameters for Alli-Bot on the simulator, (3) a physical
experimental platform for validating the determined optimal
parameters on different terrains.

3. DESIGN, FABRICATION,AND SIMULATION OF
THE ALLIGATOR-INSPIRED PLATFORM
Alli-bot is an alligator-inspired robot having 12 degrees

of freedom (DOF). It combines limb oscillations and body

undulations for terrestrial locomotion, while the body
undulations alone for aquatic locomotion (see Fig. 2). Each of
its limbs has two revolute joints, namely hip, and knee, and
four revolute joints, namely neck, torso, tail 1, and tail 2 on the
body. The hip joint is proximal, while the knee joint is distal
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on each leg of the Alli-bot. While walking, the entire body of
the Alli-bot is supported by its limbs. The body of the robot is
divided into 5 parts connected by four servo motors; head joint
connects the head and torso’s 1st half, the torso joint connects
the two halves of the torso and the tail joint 2 connects the third
link with the posterior half of the torso and lastly the tail joint 1
which connects the two tail sections. We fabricated all the links
using laser cutting, and more details of the same can be found
in*’. We used 12 HK 15328D servomotors with a maximum
torque capacity of 12 kg-cm for actuating the robot joints.

We developed a simulation model of our Alli-bot in
CoppeliaSim (formerly known as V-REP)* (see Fig. 3). Firstly,
the CAD model of Alli-bot was imported in CoppeliaSim,
and then the geometry was extracted using cuboidal meshes.
Now we matched the weight, maximum torque, and speed of
each servomotor in the simulator environment with those of
real values. In the simulation, we kept the friction coefficient
between the ground and robot contact point 1.0 to provide
maximum force in the forward direction during locomotion.
Collision detection was enabled to detect and thereby avoid
self-collisions. To avoid self-collision, we also kept the
maximum amplitude range for the knee and body to be 35 and
40 degrees. OpenDynamics engine was used in CoppeliaSim*°
for the dynamics of the developed model.

Two types of forces due to the surrounding water were
modeled for underwater simulation. Firstly, the buoyancy
due to each link was determined using F, = =plg,
where pfis the density of water, Vf is the volume of water,
and g the acceleration due to gravity. Secondly, the drag
due to the robot movement in water was determined using
F,.=F +FE, where, I, = c,v, is the linear drag and F/, is
the added mass, with ¢, being the drag coefficient matrices.
The values of the coefficients were manually tuned to match

Goal

the simulation approximately to the behaviour of the physical
robot. As the objective of this paper is to finally tune the
locomotion of the physical robot using Bayesian optimisation,
more sophisticated approach to perform system identification
was not pursued and would be explored in future work.

4. GAIT DESIGN

Parameterized cycloidal trot gait functions are developed
with amplitude and time- period as parameters, to emulate the
alligator’s motion on the robot. A cycloidal function is used
to obtain a smooth movement of the robot along with body
undulation. The cycloidal joint functions designed for the robot
are presented as follows:

The hip and body joint motions are governed by Eqn. (1)
— Eqn. (3):
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0. - 6 2
Hl,Z_
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Figure 3. Simulation model of Alli-bot developed in CoppeliaSim,.
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Figure 4. Variation of hip-joint angle with time.
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and ¢ is the running time of the current experiment, 7 is the
joint oscillation period, 4,, is the hip amplitude, and v, is the
offset.

The knee joint motions are governed by Eqn. (4) - (7):

0 OSt<§
-4y, g_t<%
O, =14 Ag %£t<%
A.(1-5) %sm%
0 %£t<T (4)
—Ay 0£t<§
-4,(1-a,) ZSK%
0, =10 S
—A. B, 3TTSt 111_2T
— Ay 111—2T£t<T )
Ay 0£t<§
A, (1-a,) g_t<i—§
O, =40 %St<3TT
AP, %sr %
A, %St<T .
0.6 T T

0 OSt<Z
4
T 5T
A.a —<t<—
K 4 12
5T 3T
0, =<-4 —<t<—
K K 12 4
3T 117
—-A.(1- —<t<—
(1= 5,) 1 D
0 ££t<T
12 (7)
6(1—%) 1271'(t—£)
where, % = T —Esm( T ) and
6(c—>L) 27—y
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A, isthe k?lee amplitude, and NA@ is the total phase lag between
head and tail. NV is the number of active joints in the robot’s body,
which is 4 in our case. An undulation with NA@=1.0 corresponds
to an undulation in which the body makes a complete wave (see
Fig. 4 and Fig. 5).

5. EXPERIMENTAL SETUP

A line-of-sight (LOS) guidance law is employed in
the experimental setup, where the error angle between the
specified goal and robot is calculated using the overhead
camera, which acquires the images of the color labels (see
Fig. 6). LOS-based guidance helps in tracking the waypoints®'.
A grid-based calibration was performed to determine the
distance represented by one pixel at different points in the
camera’s field-of-view to prevent perspective error in the
overhead camera measurement.

The acquired images are processed to detect three color
markers using a colour-based thresholding scheme; two of
the labels are situated on the front body and the rear body to
determine the orientation, and one is to detect the goal location.
While orientation detection using the overhead camera and
color markers is effective for terrestrial gait on a 2D surface, it
presents several challenges for detecting 3D motion in aquatic
environments. More advanced motion detection technologies
such as SONAR can be utilized for underwater localization to
overcome the challenges as mentioned earlier. However, it is
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Figure 5. Variation of body joints angles with time.
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Figure 6. Calculation of error angle in the laboratory frame-of-reference.
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Figure 7. Experimental setup.

worth noting that the same overhead camera technique has been
employed for underwater localisation with certain assumptions
in place. Firstly, it has been assumed that the robot moves in
a single plane while underwater. Additionally, it has been
assumed that the robot remains close to the water surface to
minimize any distortions caused by refraction. However, in the
future, experiments with SONAR-based localization system
may also be performed to capture 3D motions.

The host PC is used to calculate the error angle, and
ZigBee is used to communicate the error angle to the robot. We
implemented a PD controller for closed-loop control, and the
computed error angle is used to calculate the offset parameters
v, and vy, for body and legs of the gait Eqn. (1), (2) and (3),
respectively as follows:

Vs =Kpe+K,é ®)
7, =Ky e+ Ky é ©)
e=p—0 (10)

where, @ is the robot orientation vector, which is
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_ X, ,—X Xg2 ™ X,
g = tan~| Fez " Ye2 p=tan™'| 22 "2
calculated by x,, —x, | and Xg1 ™ Xe)

T
xal+xbl xa2+xb2 . .
, X = - = —=—— | is the centroid of the robot,

2 2

x, and x, are determined using the overhead camera,
K,, K, K, and K, are controller gains that are tuned

manually.

Computed offsets are then used in the gait function
Equations (1), (2), and (3) to generate the command for the
twelve servomotors. The above scheme (see Fig. 7) is used for
commanding and moving the robot between a specified starting
and goal location, separated by a distance of 1 m on the floor.
We use a circle of acceptance of a radius 20 cm around the goal
location. The ZigBee used has an indoor/urban range of up to
60 meters (200ft). The hand-tuned values of K, and K, vary
between [0.8, 0.9] and K, and K, vary between [0.1, 0.25]
for the set of parameters used in the experiments reported in
this paper.
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6. GAITPARAMETER TUNING USING BAYESIAN

OPTIMISATION

With the parameterization described above, the problem
of optimizing the gait speed becomes a parameter optimisation
problem in multi-dimensional space. Various algorithms exist
to solve the problem, but the selected approach must possess
the following characteristics. The algorithm should satisfy
several requirements. Firstly, it should be gradient-free since
the dynamical parameters of the system are not entirely known.
Additionally, it should have a fast convergence rate and be
capable of finding the global optimum irrespective of the initial
seed point. Finally, it should account for the stochastic nature
of the objective function.

Physical experiments are expensive in terms of time
and wear-tear of the robot. Also, the robot’s motion often
involves uncertainties due to the sensing noise. To optimize
the locomotion parameters for maximizing the robot speed,
we need a model that accounts for stochasticity and can be
estimated from a minimum number of physical experiments.
We used Gaussian Process Regression (GPR) to develop a
surrogate model for the robot motion to meet the requirements
above®. In BO, the GPR is initialized with random points from
the parametric space, and then a new point is acquired and
evaluated from the parametric space to improve the GPR. The
process above is continued, and we arrive at a near-optimal
point in the parametric space. We defined the objective function
for optimisation as follows:

h(p;xa,xg):]R3—>]R1 (11)
where, / is the objective function which returns the maximum
speed by the robot to go from the initial location x to a specified

goal location X, with p as the gait parameter. The following
equation can specify the dynamics of the robot’s motion:

x=f(x,u) (12)
where, [ is the dynamical model of the robot,
x=[x,,x,,X,, )'Cc’z]r is the state vector [x,, xc’z]r is the
coordinate and [X,; )'Cc,z]T is the velocity of the robot centroid
expressed in the laboratory frame of reference. The term u
represents the control functional defined as:

0 =u(e; p) (13)
where, the error angle e is determined using a line-of-sight
guidance law e = (0—5 which is explained in the previous
section, X, =[x0,1 XO,ZJT and X, =[xg,1 xg,ZJT are the
robot centroid’s initial and goal locations, respectively. The
parameter p is a 3-tuple p=[4, A, T " and the control

T
signal is defined as 12-tuple 0= I:egi QH,- QK,] where, HH_

are the hip joint angles, &, are the knee joint angles, and G,
are the body joint angles.

x, x|
The objective function is defined as =~ T T,
is the traveling time required for the robot to go from x_ to x .
The traveling time 7 is computed by solving the following

Eqn.:

T dx = Ti. f(x,u)dt

Xo

(14)

A closed-form solution for Eqn. 12 cannot be determined,
and hence we have used experimental evaluation on physical
and simulated platforms to evaluate T,. We can now define the
optimiSEtion problem as:

p = arg;mn h(p;x,,x,) (15)

To solve the above problem we use Bayesian Optimisation
BO(h(p;x,,x,);K) where, K is the hyperparameter of
the Bayesian optimisation function, namely bayesopt in the
Statistics and Machine Learning toolbox of Matlab™. Here,
the objective function works on minimizing negative speed,
which is equivalent to maximizing speed. The hyperparameters
of bayesopt include the acquisition function K, stochastic
behavior of the objective function K, which appears in Matlab
as ‘Is Objective Deterministic’, the maximum number of
objective evaluations K, and K seed points. We have used
the acquisition function expected-improvement plus (El-plus).

Tesch, et al. show that EI converges faster than other
acquisition functions®. The Matlab™ function bayesopt offers
the facility for having a tradeoff between exploration and
exploitation. EI-plus in bayesopt has the propensity to explore,
and also it escapes a local objective function minimum by
avoiding overexploiting an area. Also, we set the objective
function as stochastic by selecting the option K as false to
account for the actuation uncertainties and the sensor noise.
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Figure 8. An overview of the approach used for locomotion
parameter tuning of Alli-bot.
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Further, an initial population is required to be able to make an
initial model, so we selected the value of K as 3. An overview
of the optimisation approach has been depicted in Fig. 8.

We performed simulations to determine the maximum
number of objective evaluations K,. To determine the suitable
value of K, we performed a binary search. For that, we ran
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=50 and K =5.

the BO over the simulations with K values 10, 20, 30, 40, and
50 (see Fig. 11 and Fig. 12). We found that K, values of 10
and 20 yielded a significant reduction in the objective values
compared to the other intervals. We then searched K, using
the same approach in the range 10 to 20. Based on the search
mentioned above, we selected K, =15 for the experiments.
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Figure 10. Details of terrains on which gait tuning was performed: a) flat terrain with low friction surface, b) flat terrain with high
friction, c¢) rough terrain with 5° slope, d) rough terrain with -5° slope, and e) swimming in water.
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Figure 11. Optimisation results for K, =15 and K =3 for physical experiments: (a) flat terrain with low friction surface, (b) flat terrain
with high friction, (c¢) rough terrain with 5° slope, (d) rough terrain with -5° slope, and (¢) swimming in water.

From the simulations, we observed that 30, 40, and 50 values previously from the simulations are used for running BO over
for K, tend to give nearly an improvement of 18 mm/s (see the physical experiments. Using BO, the other parameter
Fig. 9). values are determined, and then the physical experiment was

Using the hyperparameter values, thus determined run to obtain the average speed. For each parameter value, we
K, = EI-Plus, K, = false, K, =15, and K =3, we obtained performed three experiments and determined the mean robot
optimized parameters from the simulation, which are 4, = 23°, speed to capture the stochasticity caused due to sensor noise and
A,=28°, and 7=3.1s. Further, the hyperparameters determined actuator uncertainty. The average speed, thus determined, was
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Table 1. Results of parameter tuning for different terrains

Speed (cm/s) Speed (cm/s) obtained Factor of

Terrain Slope obtained from hand- after tuning from Optimized gait parameters .
. NN improvement

tuned parameters Bayesian optimisation
Flat terrain with low friction ~ 0° 0.90 1.74 [4,=22°,4,=30°, T=5.65] 1.93
Flat terrain with high friction 0° 6.27 11.27 [4,=29°, 4,=22°, T=3.06s] 1.79
Upward slope +5° 1.78 6.85 [4,=30° 4,=15° 7=3.07s] 3.85
Downward slope -5° 10.13 19.49 [4,=29°, 4,=27°, T=3.55s] 1.85
Swimming in water - 241 15.43 [4,=29°, T=3.92s] 6.38

used in BO as the objective function value, and then the other
parameter values were computed. The process was repeated
for 15 iterations for different terrain and also for swimming.
We obtained the optimized parameters for flat terrain with a
smooth surface [4,=22°,4,=30°, T=5.6s]. The corresponding
robot average speed was found to be 1.74 cm/s.

The robot speed obtained for random parameter values was
0.9 cm/s. We thus found an improvement by a factor of 1.93.
For flat terrain with a rough surface, the corresponding average
speed was found to be 11.25 cm/sec. The robot speed obtained
for random parameter values was 6.27 cm/s. We obtained
the optimized parameters for flat terrain with rough surface
[4,= 29° A,= 22°, T=3.06s]. Speed improvement is about
76 % for +5° slope terrain by a factor of 3.85 i.e. from 1.786
cm/s to 6.85 cm/s. We obtained the optimized parameters
[4,=30°,4,=15° T=3.07s]. For—5"slope terrainimprovement
is about in speed is about 1.85 times, i.e., 10.13 cm/s to 19.49
cm/s. We obtained the optimized parameters [4, = 29°, 4, =
27°, T=3.55s]. For swimming improvement in speed is about
6.38 times i.e., from 2.415 cm/sec to 15.43 cm/sec.

We obtained the optimized parameters [4,=29°, T=3.92s].
Figure 10 shows the details of various terrains on which the
physical experiments were performed and the gait parameters
were tuned. Figure 11 depicts the optimisation results obtained
from the physical experiments. The optimisation results
obtained for various terrains are summarised in Table 1.

7. CONCLUSIONS

This paper reports the design, fabrication, and locomotion
control of a 12-DOF alligator-inspired amphibious robot called
Alli-bot. We developed a CoppeliaSim-based simulation model
for Alli-bot. We also designed parameterized cycloidal gait for
leg oscillation and body undulation for the smooth motion of
the robot. The parameters of the designed gait pattern were
determined using Bayesian optimisation. We determined the
hyperparameters of Bayesian optimisation using simulations
and then used the same for optimizing gait parameters from
physical experiments. The improvement factor in the robot’s
speed has ranged from 1.79 for flat terrain with friction to 6.38
for swimming. In the future, we aim to incorporate specific
energy consumption into the objective function and thereby
optimize the same.
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