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Effect of Image Intensifier Tube Equivalent Background Illumination
on Range Performance of Passive Night Sight
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Instruments Research & Development Establishment, Dehra Dun-248 008

ABSTRACT

Effect of increase in equivalent background illumination (EBI) with temperature of second
generation (18 mm) proximity focused image intensifier tube on the range performance of a
passive night sight has been studied using the image intensifier minimum resolvable contrast
model. It has been shown that for ambient temperatures of 40 oC and above, the range performance
of sight goes down drastically under low-illumination level due to increase in the EBI.
Deterioration in range performance is negligible when ambient illumination is relatively high as
in case of clear-starlit condition.
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1 . INTRODUCTION

Performance of a passive night sight primarily
depends on the optical parameters of the image
intensifier tube, viz, photocathode sensitivity, luminance
gain, MTF, signal-to-noise ratio (S/N) and the equivalent
background illumination (EBI). The last parameter,
viz., EBI is a measure of photocathode dark current
and is normally specified as illumination on the
photocathode in microlux of illumination of 2856 K
light that is necessary to generate image intensifier
(II) tube dark current. The EBI increases rapidly
with temperature and can become a significant
source of noise when the II tube is at elevated
temperature. Tube manufacturers normally specify
EBI at temperature of 21 oC. It has been reported1

that for trialkali photocathodes, dark current almost
doubles with every increase of 5 oC temperature.
More recently, it has been stated in a review article
by Bender2 that EBI for second gen tubes rises

almost exponentially with temperature and doubles
with 3 oC rise in temperature.  Experimentally, the
effect of temperature on EBI has been studied by
Bhasin3, et al. and their results confirm these findings.

In tropical countries, ambient temperature even
during summer nights in desert can be as high as
40 oC. Higher ambient temperature up to 45 oC
may also be encountered for II tube-based sights
fitted inside the turret of a battle tank, where the
inside environment is hot. Relatively large EBI
makes the target image hazy as seen on the
phosphorus of the tube and makes target acquisition
task difficult. It is, therefore, of considerable interest
to study the effect of ambient temperature on the
range performance of passive night sights.

In the present study, the image intensifier minimum
resolvable contrast (IIMRC) model4,5, developed
by the Night Vision and Electronic Sensor Directorate
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(NVESD) of the US Army, has been used to
study the effect of ambient temperature on the
range performance of a passive weapon sight
under different illumination conditions as also
for different target/background spectral reflectance
characteristics.

2 . IMAGE INTENSIFIER MINIMUM
RESOLVABLE CONTRAST MODEL

Considering the spectral illumination and the
spectral reflectance of scene elements, the modulation
contrast (M) can be expressed as
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b
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where E
t 
and E

b 
are spectrally averaged luminance

of the target and the background, respectively. For
simplicity if one uses spectrally averaged quantities
then
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where B
sk 

is the scene illumination due to night sky,
and R

t
 and R

b
 are the target and background reflectance

respectively.

Modulation contrast (M) is attenuated in the
intervening path from target to sensor due to scattering
of light from night-sky illumination into the line of
sight and effective modulation presented at sensor
aperture may be denoted by M

e
.

The relationship between scene illumination
and photocathode illumination ignoring atmospheric
attenuation is:
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where B
fp 

is the cathode face plate illumination,
τ
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is the objective lens transmission, f-no is the

objective f-number, and R
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=(R
t
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The NVESD theory is formulated in terms of
electron flux from photocathode. The EBI, however,
is normally specified in terms of equivalent photocathode
illumination and it adds to an average value of B

fp
.

Net result is reduction in modulation contrast and
the reduction factor can be expressed as
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where B
fpt  

and  B
fpb  

are the cathode face plate
illumination due to target and background, respectively.
Sensor minimum resolvable contrast (MRC) at all
spatial frequencies, hence, increases by factor of
[M

red
] -1.

2.1 Minimum Resolvable Contrast

The MRC describes the system in terms of MRC
as function of spatial frequency in cycles/mrad where
the spatial frequency pertains to standard USAF 3-
bar chart. It considers the illumination, scene, atmosphere,
optics and II tube characteristics as also the contrast
transfer function (CTF) of the eye.

2.2 Range Prediction

A target of critical dimension H (m) at a range
R (km) subtends an angle H/R (mrad) at sensor
aperture. For effective modulation (M

e
) at the sensor,

the MRC gives the highest spatial frequency (f
c
)

which can just be resolved by the sensor. Number of
resolvable cycles across the target is N=(H/R) x f

c
.

Number of cycles N-fifty across target for
50 per cent probability of detection, recognition
and identification can be chosen and have been
taken to be 2, 4 and 8 cycles, respectively in the
subsequent analysis.

3 . DESIGN PARAMETERS OF PASSIVE
NIGHT SIGHT

3.1 Image Intensifier Tube

Passive night sight chosen to study the effect
of II tube temperature on acquisition range
performance incorporates an improved version of
18 mm proximity focused second gen tube from a
European source with optical characteristics as
shown in Table 1.

Value of EBI at 25 oC has been taken to be
0.125 µ lx which doubles with every 5 oC rise in
temperature, the EBI at 40 oC being 1.0 µ lx. These
values have been used in the subsequent analysis
which is considered to be representative of tube
performance with S-25 photocathode.
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3.2 Optical System

For the night sight under consideration, the
objective lens has an effective focal length of
130 mm at f/1.5. Average OG transmission has
been taken to be 0.80. Design values for on-axis
MTF has been used in the following analysis. This
may result in theoretically predicted ranges which
may be higher than those which will be achieved
for the night sight in actual field conditions. This
is not of much concern as the issue being addressed
pertains to effect of EBI on MRC and range. At
30 lp/mm, the objective MTF is 60 per cent as
against tube MTF of 17 per cent, hence system
resolution is essentially limited by tube MTF.
Eyepiece EFL is 23.6 mm resulting in magnification
of 5.5X. Average transmission of eyepiece has
been taken to be 0.85.

4 . RESULTS AND DISCUSSION

For EBI to cause any significant reduction of
contrast, certain general inferences may be drawn
from Eqns (3) and (4). For instance for night-sky
illumination of 10-4 lx, if total scene reflectance
R

av 
= 0.2, then for f/1.5 optics with 0.8 transmission

is reduced by factor of 0.64 for EBI of 1.0 µlx.
Effect of EBI will be less pronounced if scene
elements have higher reflectance or if higher speed
optics with better transmission is used. The EBI

will have negligible effect on contrast reduction
and consequently on range performance if ambient
illumination is much higher as in the case of clear-
starlight illumination.

Certain specific cases have been studied  using
MRC model. In all the cases, target dimension
has been taken to be standard NATO size of
2.3 m x 2.3 m.

Case I

Illumination : Overcast sky-light
(1.2 x 10-4 lx)

Target type : Green paint

Background type : Small twigs/leaves

Limiting resolution (cycles/mrad) for which
MRC = 1.0 and recognition range as a function of
ambient temperature have been shown in Table 2
and also in Figs 1 and 2.

It is seen that for temperature rise from 25 oC
to 40 oC, the range is reduced by a factor of 0.77
and for 45 oC it is reduced to almost half.

Temperature

 
( C) 

Limiting resolution

 
(cycles/mrad) 

Recognition range

 
(m) 

25 1.265 350 

30 1.23 330 

35 1.167 310 

40 1.058 270 

45 0.890 190 

 
Parameters Optical characteristics 

Photocathode sensitivity 700 µA/lm 

Photocathode radiant sensitivity 
at 830 nm  

50 mA/W 

Luminance gain at 50 µlx 50,000 lm/lm 

Maximum screen luminance  7 cd/m2 

Resolution 57 lp/mm (min) 

Modulation transfer function   

2.5 lp/mm 90 % 

7.5 lp/mm 70 % 

15 lp/mm 45 % 

25 lp/mm 25 % 

30 lp/mm 17 % 

Signal-to-noise ratio at 108 µlux 20 

EBI 0.25 µlux 
Screen phosphor  P 22 

 
Table 1. Optical characteristics of  18 mm proximity focused

image intensifier tube
Table 2. Limiting resolution and recognition range as function

of temperature
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Figure 1. Limiting resolution as function of ambient
temperature.
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5 . CONCLUSIONS

It has been shown that the temperature dependence
of EBI has significant effect on range performance
of passive nightsights for illumination levels in the
range of 10-4 lux for second gen tubes with S-25
photocathode.

ACKNOWLEDGEMENT

Authors are grateful to Mr J.A.R. Krishna
Moorty, Director, IRDE, Dehra Dun, for granting
permission to publish this work.

REFERENCES

1. Biberman, L.M. & Nudelman, S. Photoelectronic
imaging devices, Vol. I. Plenum Press, New
York-London, 1971. pp. 155-56.

2. Bender, E.J. Electro-optical imaging: System
performance and modelling, edited by L.M.
Biberman. SPIE Press, Bellingham, Washington,
2000. pp. 5-25.

3. Bhasin,  I.J.; Goyal, N.K. & Jain, V.K. Electrooptical
evaluation techniques of image intensifier
tubes-Part I. Def. Sci. J., 2004, 54(2), 199-208.

4. Vollmerhausen, R. Modelling the performance
of imaging sensors. In Electro-optical imaging:
System performance and modelling, edited  by
L.M. Biberman. SPIE Press, Bellingham, Washington,
2000. pp. 12-1–12-49.

5. Performance modelling software. Ontar Corp,
129 University Road, Brookline, MA  02146-
4352, USA.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

25 30 35 40 45

TEMPERATURE (oC)

R
E

C
O

G
N

IT
IO

N
 R

A
N

G
E

 (
km

)

Figure 2. Recognition range as function of ambient
temperature.

Case II

Illumination : Overcast skylight

Target type : Desert camouflage net

Background type : Dirt road

Recognition range is found to drop from 350 m
to 250 m as temperature changes from 25 oC to
45 oC, i.e., 29 per cent drop in range. In this case,
the average scene reflectance is significantly higher
than that in Case I. In both the cases, if clear-
starlight illumination is considered, the effect of
EBI even at an elevated temperature is negligible
on the acquisition range performance. It is further
added that the detection, recognition and identification
ranges are in the same ratio i.e., 2:4:8, as the
N-fifty criteria selected for these tasks.
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