
Received 04 August 2006, revised 22 June 2007

Defence Science Journal, Vol. 57, No. 6, November 2007, pp. 853-864
 2007, DESIDOC

853

1 . INTRODUCTION

Battlefields are simulated so as to serve as a
tool for training, analysis, tactical decision-making,
doctrine proving, and evaluating weapon systems.
Object-oriented methodologies and concepts1,2 are
generally used to model and develop such complex
simulations since these provide quality maintainable
software products. However, these are unable to
effectively model the tactics of entities involved in
complex battlefield systems, which require better
problem decomposition, more powerful abstraction
mechanism and better representation of organisational
hierarchy. Intelligent software agents3-7 represent
an abstraction mechanism that encapsulates behaviour
activation, provides rich interactions and has self-
invocation capability. Such an abstraction mechanism
has the potential to model tactical decision-making

behaviour of battlefield entities because such problems
map easily into agent-based concepts. Another advantage
of using agent technology for tactical modelling is
that these encourage separation of simulation logic
(designed using object-oriented methodology) from
the tactics representation. This separation of concern
maximises the opportunity for reuse and the ability
of simulations to absorb new entity models with
minimal effort.

For modelling the battlefield entities using intelligent
agent technology, the problem is formulated in terms
of multiple, interacting, autonomous agents that
have a particular objective (or explicit goals or
desires) to achieve and preprogrammed with a set
of plans. Plans are designed to achieve a particular
goal under particular circumstances. Plans are executed
when their invocation matches the defined conditions

Modelling and Simulation of Tactical Team Behaviour

Sanjay Bisht, Aparna Malhotra, and S.B. Taneja
Institute for Systems Studies and Analyses, Delhi-110 054

ABSTRACT

Realistic military simulations are needed for analysis, planning, and training. Intelligent
agent technology is a valuable software concept with the potential of being widely used in
military simulation applications. They provide a powerful abstraction mechanism required for
designing simulations of complex and dynamic battlefields. Their ability to model the tactical
decision-making behaviour of simulated battlefield entities gives them an edge over other
techniques. During battlefield simulation, these entities generally represent individualistic
behaviour, taking operational order from higher control and executing relevant plans. However,
since a complex battlefield scenario typically involves thousands of entities, their coordinated
team behaviour should also be considered to make the simulation more realistic. This paper
demonstrates the use of intelligent agent-based team behaviour modelling concepts in simulating
the armoured tanks in a tactical masking scenario.

 Keywords: Wargames, battlefield simulation, intelligent agents, team-oriented modelling, military
training military simulation, modelling and simulation, decision making

854

DEF SCI J, VOL. 57, NO. 6, NOVEMBER 2007

provided that their context is appropriate. Plans
are reasoned about using a complex reasoning engine.
The agent must also have the intention to achieve
these goals under varying circumstances. An intention
represents the commitment of the agent to achieve
a particular goal by progressing along a particular
path that leads to the goal. Plans are used in combination
with a particular goal to form an intention. The
battlefield entity (represented by an) will make
decisions according to its current beliefs (or perception)
of the state of the battlefield. This reasoning behaviour
has been borrowed from the theoretical belief-
desire-intention (BDI) model of artificial intelligence
in which agents have a view of the world (beliefs),
certain goals they wish to achieve (desires), and
they form plans (intentions) to act on these using
their accumulated experience.

The tactical and reactive behaviour of battlefield
entities such as tanks8 has been modelled using
JACKTM Intelligent Agent framework8. The paper
gives details of how the BDI agent architecture has
been extended to model tank, damager and detector
agents using JACKTM Intelligent Agent as the
implementation paradigm. The paper also discusses
the issues and challenges of tactical behaviour modelling
in the context of wargame simulation and strength
of intelligent agent technology to overcome these.

In the above-mentioned study, the command
and control organisational hierarchy, which plays a
dominant role in any battlefield and its simulation
has been ignored. In a typical complex battlefield
scenario involving various arms like infantry, armour,
artillery, mechanised forces, etc, there are thousands
of entities following strict command and control.
Apart from displaying individualistic behaviour (i.e.,
taking operational order from higher control and
executing relevant plans), the entities also display
coordinated team behaviour in certain situations (e.g.
masking, recce and outflanking, etc.). In such situations,
the actions of these individual entities are affected
by their interaction with their peers and the state
of the environment. While simulating this behaviour,
often a top-level view is sufficient and we may not
need the level of fidelity that results when each and
every entity composing a team is simulated individually.
For example, it may be sufficient to know that a

regiment has moved and suffered a certain percentage
of casualties instead of knowing the status of all the
constituent troops and tanks. To avoid addressing
the individual entities independently, their coordinated
team behaviour9 must be considered.

Team behaviour can be displayed by grouping
the entities as teams using a number of different
organisational structures. In such a structure, the
supervisory units in the command hierarchy will
delegate roles and responsibilities to groups of
subordinate units. These units (sub-teams) can contain
other teams as well. This results in a powerful
organisational structure capable of modelling hierarchical
as well as non-hierarchical battlefield interactions.
A group of entities (team) is assigned some common
goals and a broad specification of tasks (joint plans)
to be carried out to achieve the mission. The tasks
are broken down into sub-tasks and responsibilities
are delegated to each entity (team-member) according
to its capability. Thus, the actions performed by the
entity that is part of a team are not determined only
by its own individual state, but also by the joint
state of the team. These actions are performed by
executing the applicable and relevant plans.

In battlefield simulations and wargames, such
coordinated team behaviour can be modelled using
team-oriented modelling which is an extension of
intelligent agents. In authors’ previous work8 they
used agents to represent individual tanks. As an extension,
they had modelled troops of tanks as teams of agents
and implemented their coordinated team behaviour.
They had applied these concepts on an armour masking
scenario using JACK Teams, which is a powerful
team-oriented programming tool. JACK Teams10,11 is
an extension to an existing Java-based multi-agent
framework, JACKTM Intelligent Agents12-16 that supports
the well-established BDI agent architecture17,18. This
paper focuses on the modelling and implementation
details of the team agents.

2 . EXTENDING AGENT CONCEPTS FOR
TEAM-ORIENTED BEHAVIOUR

The meaning of teamwork is cooperative effort
by the members of a team to achieve a common
goal. Hence, team-oriented tactical modelling involves
the formation of teams of battlefield entities and

855

BISHT, et al.: MODELLING AND SIMULATION OF TACTICAL TEAM BEHAVIOUR

their coordination to achieve common goals. This
current situation and goal is seen from the abstract
point of view of the team as a whole19. The BDI
agents have beliefs, desires (goals) and intentions
(plans). Extending this concept further, the team
will have joint beliefs, joint goals and joint plans,
which lead individuals or sub-teams in the team to
intend to do their share (role) of the team activity.
Hence, the individual team members will have
individual beliefs, goals, plans, intentions, and mutual
beliefs about the battlefield environment and
about each other's actions. This may necessitate
communication with other members of the team also.

Team-oriented concepts are implemented through
an agent-based team reasoning entity that encapsulates
coordinated team behaviour. In this model, although
team members act in coordination by being given
goals according to the specification, they are
individually responsible for determining how to
satisfy those goals. Hence, a complex task is decomposed
into smaller manageable tasks.

In team-oriented modelling, all the agent concepts
still hold, only tasks are associated with roles.
Role is a very important concept that constraints
an individual or a sub-team to undertake certain
activities in service of the joint intention. The team
declaration specifies which roles the team itself
may perform for other teams and which roles it
offers to other sub-teams to perform. Different
team members will perform different roles to fulfil
the joint intention, or the teamplan (which dictates
the steps directing each sub-team to achieve specific
goals). After formation, team members are referred
within a plan by their role and associated to specific
agents. This aids in specifying coordinated team
behaviour in terms of individual agent collaborations.
The specification includes: what the team is capable
of doing (i.e., what roles it can fulfil); which roles
it offers to other team members (agents) to fill;
which components are needed to form a particular
type of team; when/whether the team is willing to
take on a particular role within another team; and
the coordinated behaviour among the team members.

These concepts of teams requiring roles and
team performing roles provide a framework where

group behaviours and individual behaviours can be
clearly separated. Group behaviour is specified in
terms of the roles that are required to achieve the
desired behaviour. This behaviour is specified
independent of the actual teams performing the
roles. However, the team has access to its sub-teams
through the role container so it is able to perform
reasoning based on the actual team membership,
when necessary. The team specification determines
what each member does, and it also handles failure
of members to achieve their goals. Team members
act in coordination by being given goals according
to the specification, and they are themselves responsible
for determining how to specify those goals.

3 . APPLICATION: SIMULATION OF
ARMOUR MASKING SCENARIO

Team work is an essential requisite for success
in any organisational activity. In any battle, it is
essential that all the participating arms, groups,
and units must be integrated into closely knit teams
and must fight in coordination. For this purpose,
a detailed knowledge of the organisation, capabilities,
limitations and tactics of each other is an essential
prerequisite. The required coordination can be achieved
in battlefield simulations by modelling the team
behaviour. As a step forward in this direction, the
ease of applying team concepts in tactical simulations
is demonstrated by modelling an armour-masking
scenario. Inset 2 in Appendix 1 refers to a brief
introduction of tactical terms involved. Before detailing
the team-oriented modelling of this scenario, a textual
narrative of the tactics involved is presented below.

In this application, a scenario in which a combat
group (CG) of combat command (CC) has been
assigned the task of capturing an objective. (Fig.1).
Combat group starts from forward assembly area
and sends a Recce troop (one section). This troop
detects some enemy and informs the combat group
commander. Combat group then sends two troops
for masking operation so that main armour may
move swiftly to the objective. Simultaneously, the
masking team keeps on engaging enemy in enemy
zone until the main armour moves out of enemy
range. This masking team thereafter re-joins the
main armour and moves on towards the objective.

856

DEF SCI J, VOL. 57, NO. 6, NOVEMBER 2007

To model and simulate this scenario using team-
oriented concepts, first of all the key abstractions
have to be identified. This will enable to clearly
structure the team and define roles and responsibilities
of the team members. From the textual narrative
stated above, one can directly identify the team
controller as the combat group commander, whose
top-level goal is to move towards the assigned
objective without any enemy interference. It is
obvious that three sub-teams will be involved, namely:
recce team, masking team, and main armour team,
each performing its respective role by executing
the appropriate plans. For example, recce team
will handle recee events by having plans for detecting
enemy location and informing team controller. Similarly,
masking team will have plans for engaging the
enemy so as to distract him. The masking team will

join the main armour, when the enemy detection
range between enemy and main armour is beyond
reach or when the enemy has suffered more causality
than desired threshold limit. The roles, responding
events, and the corresponding plans for this scenario
is given in Table 1.

Since team behaviour is modelled as an extension
of agent concepts, two types of agents in this
armour-masking scenario have been identified: the
tank agents and the team agents that have all the
capabilities of agents and also encapsulate team
behaviour. The tank agents have been discussed in
detail2. There, the authors had extended the agent
class of JACKTM Intelligent Agents framework for
representing the tactical and reactive behaviour of
tanks which are low-level battlefield entities. Only

ENEMY

OBJECTIVE

MAIN ARMOUR

MASKING FORCE
(ENGAGES & DISTRACTS ENEMY)

RECEE TROOP, ONE SECTION
(DETECTS ENEMY PRESENCE)

TANK TROOP

RECEE TROOP

RECEE DETECTS
ENEMY PRESENCE

Figure 1. Masking scenario displaying agent-oriented team behaviour of a combat group.

857

BISHT, et al.: MODELLING AND SIMULATION OF TACTICAL TEAM BEHAVIOUR

a single tank's tactical behaviour like movement
along a route, obstacle avoidance, patrol, firing,
etc, had been modelled. The authors have extended
that work in this paper by modelling a team controller
(representing the combat group) and three sub-teams.
Block schematic is given in Fig. 2. In the listings
given as Appendix 1, the authors have focussed
on the events and plans relevant only to the team
controller and recee team. Only at some places,
the statements relevant to mask and armour sub-
teams have been included, for the sake of completeness.
Listing 1 (Appendix 1) gives the code of how the
team controller extends the team class. It is written
in the controller's team file (controller.team):

In this code segment, team members are declared
using the construct ‘#requires role’ which specifies

the role requirements rather than explicit sub-team
type requirements. The team controller requires a
recee_role, mask_role and an armour_role. Once
defined, the team members are referred to by their
roles, which are associated with each sub-team
during formation of a team. Each of the team
member acts in coordination to achieve team goal,
although they are individually responsible for determining
how to satisfy those goals. This way, the functional
requirements for the team members are expressed
rather than restricting to particular team types.

Since, teams are defined in a way similar to
agents in JACK, a team class is an extension of
agent class taking on the additional responsibility
for managing the coordination of each team member’s
activity. The team controller is also called the role

TEAM CONTROLLER

SUB-TEAM
MASK

EVENT
REECE EVENT

PLAN
REECE
PLAN

HAS

PERFORMS PERFORMS PERFORMS

RESPOND TO

HANDLES HANDLES

ROLE TENDERER

REQUIRES ROLE

RESPOND TO RESPOND TO

SUB-TEAM
RECEE

SUB-TEAM
ARMOUR

ARMOUR
ROLE

MASKING
ROLE

EVENT
MASK EVENT

EVENT
ARMOUR EVENT

PLAN
MASK PLAN

PLAN
ARMOUR

PLAN

HANDLES

ROLE
PERFORMERS

RECEE
ROLE

Figure 2. Block schematic of the team modelling of the armour masking scenario.

Table 1. Teams and their roles, events and plans

Main team Sub-team (Role performer) Roles Responding events Plans (event handlers)

Team controller
recee_team
mask_team
armour_team

RECEE_ ROLE
MASK_ ROLE
ARMOUR_ROLE

recee_event
mask_event
armour_event

recee_plan
mask_plan
armour_plan

858

DEF SCI J, VOL. 57, NO. 6, NOVEMBER 2007

tenderer. It is composed of sub-teams that perform
roles on its behalf. Role is a behaviour that the role
tenderer may request the role performer to achieve.
It represents behaviour of a team member (sub-
team) participating in a particular tactical operation.
As an example, consider a troop of tanks. Depending
on the battlefield situation, that troop may perform
the role of recee, masking, engagement or marching.
When a troop performs a given role, it presents a
particular view to its battlefield environment at
that instance. The other entities that are interacting
with it expect certain behaviour at that time, depending
on the role that it plays at that time. For example,
an instance of the troop in the role of masking
would have a different set of capabilities than if
that troop was playing the role of main armour
heading for assigned objective. This concept of
role performer is already part of UML1, with reference
to classes. In this example similar UML concepts
have been applied to team modelling and represented
diagrammatically in Fig. 3.

Continuing with our programming example, the
key element of a team definition is the declaration
of which roles the sub-teams can perform. In JACK,
‘#performs role’ statement is used for this and is
defined in the corresponding team file, as given in the
code segment (listing 2, Appendix 1) of the recee
team file (recee.team). Similarly, MASK_ROLE and
ARMOUR_ROLE are defined in their respective
team files as shown in listing 3 (Appendix 1).

The actual implementation of the role is specified
in terms of events handled and posted by the entity
that fulfils such a role within the team. The role
construct is used for this purpose and the code
segment in the corresponding role file (recee.role)
is given in listing 4, Appendix 1. As also mentioned
by G. Booch1, et al., role is an interface definition,
which declares what an entity that claims to implement
a role must be capable of doing. This role definition
has two parts. Firstly a 'downward' interface that
declares the events an entity must handle to take
on a role, and secondly an 'upward' interface that
declares the events the team needs to handle when
having a team member of the role.

The joint intention of the team is specified
using the TeamPlan construct, which is implemented
in the controllers plan file (controller.plan), as given
in listing 5 (Appendix 1). The @team_achieve
statement is used to activate a sub-team by sending
an event to the sub-team. The team that sends the
@team_achieve then waits until the sub-team has
processed the event. It is obvious that the movement
of main armour and the masking operation have to
be executed in parallel. This is depicted in the
activity diagram in Fig. 4. The @parallel construct
of JACK teams enables this, as can be seen in the
above code segment, which gets executed when
the main armour team is out of range from the
enemy's firing range and the masking team can
now join the main armour. The @parallel allows

COMBAT GROUP
(TEAM

CONTROLLER)
MASKING TEAM

ARMOUR TEAM

RECEE TEAM

ROLE: MASKING

ROLE: MAIN ARMOUR

ROLE: RECEE 0..2

6..9

3..5

DETECTOR DAMAGER TANK

 TYPE OF

 COMPOSED OF

<< >> STEREOTYPE

M..N CARDINALITY

<<AGENT>>

Figure 3. Key abstractions in the masking scenario.

859

BISHT, et al.: MODELLING AND SIMULATION OF TACTICAL TEAM BEHAVIOUR

concurrent sub-tasking of a set of statements within
reasoning methods. The @parallel statement suspends
execution of the calling plan while all enclosed
statements are executed in parallel. The first parameter
of the @parallel statement is the mode, which is
ParallelFSM.ALL in this case. This means the
@parallel statement will succeed after all the branches
have succeeded, but fail immediately if any branch
fails.

The teamplan of the recee team is given in the
corresponding plan file (recee.plan), as shown in
listing 6 (Appendix 1). Similarly, teamplan for mask
team and armour team are defined in their respective
plan files. The main method that initiates the team
formation is given in listing 7 (Appendix 1). In this
psudo-code, the formation of the controller team
is achieved by attaching sub-teams capable of performing
roles required by the team. This program also
involves tank, detector, and damager agents8.

4 . CONCLUSIONS

In this paper, an attempt has been made to
model team behaviour of tactical scenarios using
JACK teams. Having an agent-oriented mind-set
while modelling tactical scenarios enables one to
map the key abstractions and entities involved into
teams of agents, which is separate from simulation-
specific code, hence encouraging separation of
concerns and re-use. Further, the work breakdown in
the military hierarchy is mapped directly into roles
of team members. Hence, this allows for hierarchical
decomposition of tasks. This approach allows the
team-tactics of military operations to be captured
and simulated with minimal effort, in contrast to the
previous laborious construction of complex, scenario
specific scripts involving multiple interdependencies
between the entities. It encourages clear and concise
description of coordinated activities and allows the
abstraction of what needs to be done from how it
is done, i.e., the responsibilities of the team can
be written down without consideration of how the
roles would be fulfilled and implemented by the
team members.

This example illustrates how easily the textual
narrative of a tactical scenario can be mapped and
modelled using UML. It is also noted that roles

and responsibilities are already well-established
concepts in object-oriented analysis and design,
and these have been linked up with team-oriented
concepts. It shows how rapidly even relatively
simple team programs become complex. For example,
to implement this scenario, the authors had 4 agent
files, 3 capability files, 6 team files, 4 role files,
37 plan files and 25 event files. However the
resultant code was highly modular and maintainable,
which would not have been possible otherwise.

This simple example has demonstrated that
any complicated tactical scenario involving team
behaviour can be modelled using the team concepts
as discussed above.

5 . LIMITATIONS AND FUTURE SCOPE
OF WORK

5.1 Limitations

• Team modelling is a powerful scheme for specifying
and implementing coordinated distributed behaviour.
In this example, application, a limited but well-
defined modelling capability has been obtained
that can be implemented relatively easily. However,
this model is applicable only to certain types
of collaborations, which have rigid and well-
defined team structures enabling a team to
have predefined roles. This reduces the flexibility
of the team. This work can be extended by
dealing with dynamic team formation.

• Another shortcoming of this approach is that
the action taken by the entities and the teams
are based only on their current situations. The
entities must be able to reorganise themselves
into different teams or change their roles based
on the changing tactical situations. This would
also lead to dynamic changes in the intentions
of the entities and teams. One can enhance
UML constructs to cater for such dynamic
situational changes and also explore the possibility
of allowing different types of teams to collaborate.

5.2 Future Scope of Work

• Another desirable agent-team characteristic,
missing in this approach is trust. Trust plays
a fundamental role in such systems in which

860

DEF SCI J, VOL. 57, NO. 6, NOVEMBER 2007

tasks are delegated. The concept of trust may
be generalised and considered as a level of
confidence in one's predictions of another agent's
future behaviour. There exists vast potential
for incorporating this important aspect of team
behaviour into future tactical models.

TEAM CONTROLLER RECEE

TEAM
MASKING

TEAM
MAIN ARMOUR

TEAM

INITIALIZE
CONTROLLER

SPECIFY ROLES

ASSIGN
RECEE ROLE

TASK FOR
DETECTION

DETECTED?

NO

YES

JOIN MAIN ARMOUR
TEAM

GET ENEMY
LOCATION FROM

RECEE TEAM

MOVE TO MASKING
LOCATION

MOVE TO GOAL

JOIN MAIN
ARMOUR TEAM

GIVE ENEMY
LOCATION TO

MASKING TEAM

ENGAGE ENEMY

ASSIGN
MASKING ROLE

ASSIGN
ARMOUR ROLE

Figure 4. Activity diagram.

ACKNOWLEDGEMENT

The authors thank Shri S.S. Prasad, Ex-
Director, Insti tute for Systems Studies and
Analyses, Delhi, for his constant encouragement
and guidance.

861

BISHT, et al.: MODELLING AND SIMULATION OF TACTICAL TEAM BEHAVIOUR

REFERENCES

1. Booch, G.; Rumbaugh, J. & Jacobson, I. The
unified modelling language user guide. Addison-
Wesley, 1999.

2. Papasimeon, M. & Heinze, C. Extending the
UML for designing JACK agents. In Proceedings
of the Australian Software Engineering Conference
(ASWEC01), Canberra, Australia, 2001. pp.
89-97.

3. d'Inverno, M. & Luck, M. Understanding agent
systems. In Springer-Verlag Series on Agent
Technology, 2001.

4. Ishida, T.; Jennings, N. & Sycara, K. In Springer-
Verlag Series on Agent Technology, 2001.

5. Jennings, N.R. & Wooldridge, M.J. Agent
technology, foundations, applications and markets.
Springer-Verlag, 1998.

6. Luck, M. & d'Inverno, M. A Conceptual framework
for agent definition and development. The Computer
Journal, 2001, 44(1).

7. Odell, J. Object and agents: Is there room for
both? Distributed Computing, November 1999
44-45.

8. Malhotra, A.; Bisht, S. & Taneja, S.B. Using
intelligent agents to simulate battle tank tactics.
In Proceedings of the International Conference
for Cognitive Science, New Delhi, 2004.

9. Rao, A.; Lucas, A. & Morley, D. Agent-oriented
architecture for air combat simulation. Australian
Artificial Intelligence Institute. Technical Note
No. 42, 1993.

10. Hodgson, A.; Ronnquist, R. & Busetta, P.
Specification of coordinated agent behaviour
(The SimpleTeam approach). Agent oriented
software Pty. Ltd. Technical Report 99-05,
1999.

11. Jarvis, J. JACK - Intelligent agents TM JACK,
Teams Manual. Release 4.1, 2003.

12. Busetta, P.; Ronnquist, R.; Hodgson, A. & Lucas,
A. JACK intelligent agents - components for

intelligent agents in Java. Technical Report,
Agent Oriented Software Pvt. Ltd., Melborne,
Australia, December, 1999. (Also at
www.agentlink.org as AgentLink News letter,
January 1999, 2, 2-5)

13. Busetta, P.; Ronnquist, R.; Hodgson, A. & Lucas,
A. Light-weight intelligent software agents in
simulation. Technical Report 99-03. Agent Oriented
Software Pvt. Ltd., Melborne, Australia, 1999.

14. Howden, N.; Ronnquist, R.; Hodgson, A. &
Lucas, A. JACK intelligent agentsTM - Summary
of an agent infrastructure. Agent Oriented Software
Pvt. Ltd., Melborne, Australia, 2003.

15. JACKTM Intelligent agents evaluation version.
http://www.agent-software.com

16. Tidhar, G.; Heinze, C.; Goss, S.; Murray, G.;
Appla, D. & Llyod, I. Using intelligent agents
in military simulation or using agents intelligently.
DSTO, Fishermen's Bend, Victoria, Australia,
2000.

17. Rao, A.S. & Georgeff, M.P. BDI agents: From
theory to practice. Technical Note 56, Australian
Artificial Intelligence Institute. [Also In Proceedings
of the Ist International Conference on Multi-
Agent Systems, ICMAS-95, San Francisco, USA,
1995. pp. 312-19].

18. Winikoff, M.; Padgham, L. & Harland, J. Simplifying
the development of intelligent agents. Technical
Report TR-01-3, School of Computer Science
and Information Technology, RMIT University.
[Also In Proceedings of the 14th Australian
Joint Conference on Artificial Intelligence, AI'01,
Adelaide, 2001].

19. Cheryl, B.; Cleotilde, G.; Mike S. & Haydee,
C. Modelling shared situational awareness. In
Conference on Behaviour Representation in
Modelling and Simulation, 2005 (BRIMS05),
Simulation Interoperability Standards Organisation
(SISO), www.sisostds.org.

http://www.agentlink.org
http://www.agent-software.com
http://www.sisostds.org

862

DEF SCI J, VOL. 57, NO. 6, NOVEMBER 2007

Inset 1: JACK Teams concepts

The team concept encapsulates coordinated activity and extends the
agent concept by associating tasks with roles. Each team is a distinct
entity, which is characterised by the roles it performs and roles it
requires others to play and attaches sub-teams capable of doing
different roles required by containing team. The new concepts added
to the basic JACK paradigm provide a consistent scheme for
specifying coordinated team behaviour between the various
components of the team.

Team: A team is a distinct reasoning entity, which is characterised by
the roles it performs, and/or the roles it requires others to perform.

Role: A role is a distinct entity, which defines a relationship between
teams and sub-teams. Roles contain a description of facilities that the
participants in team / sub team must provide.

Teamdata: This allows propagation of beliefs from team to sub-team
and vice-versa.

Teamplan: This specifies how a team will achieve a task in terms of
one or more roles. It represents the activity of a group of sub-teams or
agents in order to achieve a team goal. It also dictates the steps
directing each sub-team to achieve specific goals.

Inset 2: Tactical Terms

Armour Regiment: It is a unit consisting of 45 tanks, and
approximately 600 personnel. It is organised into three fighting
squadrons and one administrative squadron. Each fighting squadron
consists of a squadron headquarter and four fighting troop.
Combat Group: It is a grouping of all arms based on an armoured
regiment or a mechanised infantry battalion. The aim of the grouping
is to create a composite force capable of carrying out the mission
assigned to it. Its composition will be affected by the type of terrain &
obstacles, the mission, anticipated enemy opposition, availability of
own troops and time of execution. The combat group normally forms a
number of combat teams.
Combat Team: A combined team of an armour squadron and a
mechanised company. A combat team is normally a sub-team of a
combat group.
Forward Assembly Area: In case distance between Assemble Area
and objective is excessive, a forward assembly area may be interposed
for purposes of regaining control/halting during daylight hours.

Masking: Masking is the act of covering the enemy force, so that it
cannot effectively interfere against our own forces’ offensive missions.
Masking therefore may be a prelude to bypassing or capturing of an
enemy position. In this case the neighbouring position to the one being
captured may need masking, so that the operations being conducted
are not interfered or assisted by the position being masked.

Outflanking: The movement of a force onto an enemy flank (side) or
rear without penetrating his position.

Reconnaissance: It is the process of obtaining information by direct
examination of an area of ground.

Reconnaissance Troop (recee troop): The primary task of the
reconnaissance troop is battle reconnaissance. Reconnaissance
detachments from the reconnaissance section of the Combat Team will
be deployed along the likely approach of enemy reaction.

Listing 1

public team CONTROLLER extends Team {

 #requires role RECEE_ROLE role_recee;
 #requires role MASK_ROLE role_mask;
 #requires role ARMOUR_ROLE role_armour;

 #handles event Start; #uses plan ControllerPlan;

 // Used for peer-coordination of Recee, Mask & Main armour team
 #handles event recee_event; #uses plan CoordinateR;

// Used when reccee team sends detection information to controller
 #handles event info_detection_to_cont;

#uses plan info_detection_to_cont_plan;

// Used when reccee team sends no detection information to controller
 #handles event info_rec_goal_to_cont;

#uses plan info_rec_goal_to_cont_plan;
 .

// similar “event-plan” pairs are made for communicating with mask and
 // armour sub-teams
 .

#posts event Start s; // posts start event to self

// Attributes of the Controller Team relevant to the recee sub-team
public String name_controller;

 int receegoalx,receegoaly, armour_goalx, armour_goaly;
int enemy_x,enemy_y, detection_counter, recee_goal_acheived;

 // constructor
public CONTROLLER(String name_cont)

 {
 super(name_cont);

name_controller = name_cont;
armour_goalx= armour_goaly= enemy_x= enemy_y = 0;

 detection_counter= recee_goal_achieved=0;
 }

public void initialize_controller()
 {
 postEvent(s.start(receegoalx,receegoaly));
 }

 // Set Recee goal
public set_recee_goal(int x, int y)

 {
 receegoalx = x;
 receegoaly = y;
 }

// Used for getting enemy_location from Recee Team
public void get_enemy(int detect,int x,int y)

 {
detection_counter=detect;

 enemy_x=x;
 enemy_y=y;
 return;
 }

// Used for getting objective location
 public void set_goal(Point obj_location)
 {
 armour_goalx= obj_location.x;
 armour_goaly= obj_location.y;
 return;
 }

// Set enemy location
public void set_enemy_cur_loc(Point enemy_location)

 {
enemy_x= enemy_location.x;
enemy_y= enemy_location.y;

 return;
 }
}

Appendix 1

863

BISHT, et al.: MODELLING AND SIMULATION OF TACTICAL TEAM BEHAVIOUR

Listing 2

public team R_TEAM extends Team
 {

#performs role RECEE_ROLE;

// Initiates recee team plans
#handles event recee_event; #uses plan recee_plan;

// Events needed to communicate with the team controller
#sends event info_detection_to_cont;
#sends event info_rec_goal_to_cont;

// Attributes of the Recee Team
String recee_team_name;
public String TeamController;
public int detection_counter;
int recee_goal_achieved, enemy_x, enemy_y;

 // constructor of recee team
public R_TEAM(String rteam_name)
{
super(rteam_name);
recee_team_name= rteam_name;
detection_counter= enemy_x = enemy_y= recee_goal_achieved= 0;

}

// method for getting the name of the team controller
 public void set_controllername(String name_cont)
 {

TeamController = name_cont; return;
 }
}

Listing 3

public team R_TEAM extends Team
{
#performs role MASK_ROLE;
;
}
public team A_TEAM extends Team
{
#performs role ARMOUR_ROLE;
;
}

Listing 4

role RECEE_ROLE extends Role
 {

#handles event recee_event handle_recee_event;
#posts event recee_event post_recee_event;
// Team location variables

 }

Listing 5

teamplan ControllerPlan extends TeamPlan {

#handles event Start ev;
 #uses role RECEE_ROLE role_recee;
 #uses role MASK_ROLE role_mask;
 #uses role ARMOUR_ROLE role_armour;
 #uses agent implementing CONTROLLER CONT;
 body()
 {
 // initially, only the reccee team goes for detection.

//The other two teams are stationary
 while(CONT.detection_counter==0)
 {

if(CONT.recee_goal_acheived==1)
break; // stop receeing

// tasking recee team to go for recee

@team_achieve(role_recee,role_recee.handle_recee_event.start(ev.goal_x,ev.goa
l_y,1));

}
// this code executes when the reccee team detects some enemy.
// It simultaneously assigns relevant tasks to the mask and armour sub-teams
if(CONT.detection_counter > 0)
{

@parallel(ParallelFSM.ALL,false,null)
 {

// assigning armour goal to recee team
@team_achieve(role_recee,role_recee.handle_recee_event.start(CONT.armo

ur_goalx,CONT.armour_goaly,0));
// assigning armour goal to armour team
@team_achieve(role_armour,role_armour.handle_armour_event.start(CONT.

armour_goalx,CONT.armour_goaly,0));
// tasking the mask team to engage detected enemy
@team_achieve(role_mask,role_mask.handle_mask_event.start(CONT.enem

y_x,CONT.enemy_y,1,0));
};//@parallel
}//if

// this code executes when the armour is out of range from the enemy's firing range.
The masking team can now join the main armour

if(CONT.recee_goal_acheived==1)
 {

@parallel(ParallelFSM.ALL,false,null)
{

 // assigning armour goal to recee team
@team_achieve(role_recee,role_recee.handle_recee_event.start(CONT.armou

r_goalx,CONT.armour_goaly,0));
 // assigning armour goal to armour team
@team_achieve(role_armour,role_armour.handle_armour_event.start(CONT.

armour_goalx,CONT.armour_goaly,0));
// tasking masking team to join main armour team

@team_achieve(role_mask,role_mask.handle_mask_event.start(CONT.armou
r_goalx,CONT.armour_goaly,0,0));

}
 };
 } // body
}

864

DEF SCI J, VOL. 57, NO. 6, NOVEMBER 2007

Listing 6

teamplan recee_plan extends TeamPlan {
 #handles event recee_event ev;
 #applicable_for role RECEE_ROLE self;
 #sends event info_detection_to_cont detect;
 #sends event info_rec_goal_to_cont goalinfo;
 #uses agent implementing R_TEAM Team1;
 #sends event start_sim_from_team start_sim;

 body()
 {
 . . .
 //code to implement the objective that this team wants to
achieve

@team_achieve(. . .);
 }
 }

Listing 7

//The main method (executed through GUI), that instantiates the teams

initialise_teams(Point armour_goal, Point recee_goal)
 {

// Creation of sub-teams
// initiate recee_team with name RECEE_TEAM
R_TEAM recee_team = new R_TEAM("RECEE_TEAM");

// initiate mask_team with name MASK_TEAM
M_TEAM mask_team = new M_TEAM("MASK_TEAM ");

// initiate armour_team with name ARMOUR_TEAM
A_TEAM armour_team = new A_TEAM("ARMOUR_TEAM ");

// Object of the main team controller team instantiated
CONTROLLER cc_r = new CONTROLLER("TEAM_CONTROLLER_RED");

// Attach the three sub-teams with the main controller team
// role “role_recee” is attached to the team RECEE_TEAM
cc_r.attachRole("role_recee", "RECEE_TEAM");

// role “role_mask” is attached to the team MASK_TEAM
cc_r.attachRole("role_mask", "MASK_TEAM");

// role “role_armour” is attached to the team ARMOUR_TEAM
cc_r.attachRole("role_armour", "ARMOUR_TEAM");

 // Function called by sub-teams for getting the name of their team controller

recee_team.set_controllername(cc_r.name_controller);
mask_team.set_controllername(cc_r.name_controller);
armour_team.set_controllername(cc_r.name_controller);

 // Supply goals to the sub-teams
cc_r.set_goal(armour_goal);
cc_r.set_enemy_cur_loc(recee_goal);
set_recee_goal(recee_goal)

// Initiates execution of the first controller plan
cc_r.initiate_controller();

 }

Mr Sanjay Bisht obtained his MSc (Computer Science) from the DAVV University,
Indore. Presently, he is working as Scientist C at the Institute for Systems Studies
and Analyses (ISSA), Delhi. His areas of interest are: Heuristic optimisation,
genetic algorithm, simulated annealing, and agent technology.

Ms Aparna Malhotra obtained her MSc (Computer Science) from Devi Ahilya
Vishwavidyalaya, Indore, in 1992. She joined as a Scientist in ISSA, in1992. Her
areas of research are naval wargaming, soft computing techniques, and intelligent
agent technology.

Contributors

Mr S.B. Taneja obtained his MSc (Electronics) from Delhi University; Electronics
Fellowship Course from Institute of Armament Technology (now DIAT), Pune;
and MTech (Computer Science) from IIT Roorkee. Presently, he is working as
Scientist F at ISSA, Delhi, and is involved in design and development of wargame
simulation systems. His areas of interest are: Distributed simulation, wargame
simulation system design, GIS, and agent-based models for warfare simulation.

