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ABStRAct

Satellite image processing is a manually tedious job and offers scope for automation as part of the information 
extraction process from satellite images. The process of information extraction involves object detection and 
one of the challenges is ascertaining the minimum number of images required to train the deep learning model 
to achieve a certain minimum accuracy. To the best of the authors’ knowledge, work in missile site detection is 
relatively limited, with an existing exploration of the latest one-shot detection methods, such as RetinaNet, being 
absent. This work proposes an optimal deep learning model based on the RetinaNet framework and training on a 
minimal dataset.    A comparative analysis with previous work paves the road for future research in one-shot methods 
and optimally trained models. As part of the study, the key findings are that an optimal training scheme based on 
a minimal training dataset is possible. This step enables a reduction in training time for the development of an 
optimal missile site detection model is concerned. One of the many techniques to determine the minimal number 
of training images required to train the object detection model is plotting the number of training images versus 
the mean average precision. The same is validated in our work. Further, a hybrid scheme based on the two-model 
concept is tested wherein one model prioritizes Recall while the other prioritizes Precision. Thus a combination of 
both models to detect a set of targets provides an optimal framework for object detection. Lastly, the study finds 
that the single-stage RetinaNet algorithm offers the advantage of balancing speed and accuracy over erstwhile two-
stage and other single-stage methods. 
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1. INtRODUctION
Missile sites are an important military asset of any nation and 

there is a need to establishing means to detect and identify them as 
part of a fully automated customized application. There is little 
work in the open domain on the subject.1-3 Thus this area needs 
to be explored, and a framework of object detection developed 
for detecting these missile sites via satellite images. This step will 
reduce the time in image analysis while enabling vital information 
to be available to commanders at all levels in the battlefield. Figure 
1 shows the typical Missile sites in existence. We can observe that 
even though the various patterns appear broadly similar, there are 
vital differences resulting in each site possessing a unique feature 
set. This aspect renders a specific challenge in object detection 
and is discussed in detail subsequently. The study’s objective is to 
assist or better replace the image analyst in detecting various 
missile sites in satellite imagery. The algorithm or application 
should reduce the time of detection of the sites while providing 
a reasonably high degree of accuracy which is a challenging 
task considering the heterogeneous nature of the target in terms 
of the varying patterns as depicted in Fig. 1. Figure 1 illustrates 

only a few possible patterns from many others (refer to www.
climateviewer.org).4 The challenges are summarized below:  
(a) The heterogeneous nature of the patterns gives rise 

to unique features corresponding to each site. Thus 
the feature set is not finite making the application of 
traditional object detection algorithms such as Scale 
Invariant Feature Transform (SIFT) and Orient FAST 
and Rotate BRIEF (ORB)5-6 complex.

(b) It isn’t easy to extract the complete feature set or 
manually prepare a standard feature map corresponding 
to the targets for use in a traditional Machine Learning 
(ML) framework.

(c)  Choosing a suitable algorithm that is fast but relatively 
accurate from amongst traditional methods, ML and 
Deep Learning (DL) for the object detection task.

 
The importance of the training process and data has been 

discussed by Lin et al.7 in their work on aircraft detection 
using the YOLO-v3 algorithm. In the present work too, 
the focus is on a systematic training process to maximize 
accuracy.  The paper endeavors to address the challenges 
highlighted above in the context of the problem of missile 
site detection. The main contribution of this paper is:
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(a)   Application of the single-stage RetinaNet DL algorithm 
to the missile detection problem and comparative analysis 
with previous work. Only two-stage methods are currently 
in use in the missile site detection problem.1-3 

(b)  Development of an optimal hybrid model scheme trained 
on the concept of minimal training dataset framework and 

Figure 1. typical missile site structures.
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its testing on high and low-resolution images.
The organization of the paper is as follows: 

1. Section 2 describes the proposed framework for object 
detection. 

2. Section 3 discusses the results, comparison with existing 
work, and analysis. 

3. Section 4 summarizes the study.

2. PROPOSED FRAMEWORK
2.1 Background

Mahony et al.8 carried out a comparative analysis of 
traditional vs. DL methods for object detection. ML-based 
methods, such as Histogram of Gradients (HoG)9 using Support 
Vector Machine (SVM) classifier post feature extraction,  also 

suffer from the same shortcomings as that of traditional methods 
in terms of the prerequisite of the full feature set description of 
the target. This aspect is brought out in the study by Mahony 
et al.8  We are therefore encouraged to apply the DL-based 
methods considering the heterogeneous nature of missile 
site patterns and the comparative advantages of the method 
therein. Traditionally research has focused on two-stage DL 

methods such as Region-based Convolution Neural Network 
RCNN.10 Liu et al.3 have applied two-stage methods such as 

                     (a)                                                                (b)                                                                    (c) 

                     (d)                                                                (e)                                                                    (f) 

                     (g)                                                                (h)                                                                    (i) 

                     (j)                                                                (k)                                                                    (l) 

(a) two-stage faster R-cNN (b) One-stage RetinaNet
Figure 2.  One-stage versus two-stage detectors (courtesy Manuel 

carranza et al.13).
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Faster RCNN and one-stage YOLO-v311 to the problem. More 
recent single-stage detection methods such as RetinaNet12 have 
not yet been applied to solve the problem of missile detection. 
Figure 2 illustrates the difference in architecture between the 
two-stage and one-stage methods. Thus in the current work, 
we apply the RetinaNet algorithm with its inherent advantages 
of balance between speed and accuracy compared to erstwhile 
single-stage and existing two-stage methods. 

2.2 Methodology and Data Set Description
Figure 3 illustrates the methodology. The present work 

applies the RetinaNet algorithm12 based on Fizyr’s python 
code,16 employing a pre-trained Pascal Visual Object Classes 
(VOC)17 model applied in a transfer learning framework to a 
customized dataset.  Ranyal et al.18 use the RetinaNet algorithm 
in their work on detection of rail fasteners. The current 
work aims to train the model on the minimum dataset while 
maximizing the Mean Average Precision (mAP). The images 
used for training are from Google Earth, a bonafide source.19 
The training step is executed iteratively with a gradual increase 
in the mAP using the model with the highest mAP from the 
previous stage. A 70:30 ratio of training to validation images 
is maintained.

Figure 3. Methodology: Missile site detection.

unseen images of missile sites not contained within 
the training or validation data form part of the testing 
process. Based on the results obtained, the model is 
tested on 10 m resolution Sentinel 2 images obtained 
from Google Earth Engine (GEE) framework.20 The 
objective is to try whether the model can learn a feature 
set corresponding to a coarser (10 m compared to 2-3 
m of Google earth) resolution. Testing on two models, 
one trained on a set of limited images (up to 210) and 
the second on an augmented dataset (up to 300) obtained 
using horizontal and vertical rotation operations, is 
carried out. These models, termed the blue and red 
models, are illustrated in Fig. 8. The study explores the 
possibility of combining these two models providing 

improved results compared to the individual models. The 
blue model provides higher recall while the red model 
provides higher precision (refer to Tables 4-5). The study 
explores a hybrid approach by combining both models 
for object detection on a set of images to overcome the 
limitations of the individual models. Results are illustrated 
and discussed ahead accordingly. The study compares 
results achieved with previous work.1,3 The website www.
climateviewer.org4 provides the locations of the missile 
sites with images downloaded subsequently from Google 
Earth Google Earth offers a high-resolution image 
(<=43 cm Ground sample distance (GSD)) set compared 
to other costlier commercial satellite systems. 35% of the 
authors in the survey paper19 have verified Google Earth as 
a bonafide resource. Testing on Sentinel 10 m GSD images 
sourced from the GEE platform20 validates whether the 
model has learned the coarse resolution feature set. The 
GEE framework enables cropping of the image to user 
requirements, unlike standard satellite images downloaded 
from other sources. Figure 4 represents the images used for 
training the model, while Fig. 5 shows the GEE platform 
image used for testing purposes.                                                                   

  target

Figure 4. Sample google earth image used for training.
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2.3 Execution
Based on the methodology illustrated vide Fig. 3 following 

are the steps.
(a) The testing process uses images from 30 missile sites4  in 

the ratio of 70:30 training versus validation data format 
with a set of 7 images per site (i.e., a total of 210). Figure 
6 depicts a sample image. The images are obtained at 
varying. Along with the inherent Feature Pyramid Network 
(FPN) feature of the Retina Net model, this shall enable a 
fair degree of scale invariance. The Neural Network model 
used in the Retina Net model is the ResNet50 architecture 
by Kaming He, et al..21

(b) The tool of data augmentation in the form of horizontal 
and vertical rotation of selected images within the dataset Figure 5. Sample 10 m GSD Sentinel image (GEE platform) 

for testing.

  target

              Figure 6. Sample set of training images per site.
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enables an increase in the number of training images in 
steps of 30 (horizontal and vertical flip of 15 random 
pictures at a time) from 210 to a maximum of 300. Table 
1 and Fig. 7 depict the number of images versus the 
maximum mAP achieved at each stage.

table 1. Number of images vs mAP achieved

Number of training cum validation images      mAP(fraction)

210 .5547
240 .6047
270 .6620
300 .6701

(c) The objective was to answer the question “What is 
the minimum number of images to train your model 
effectively.” (Effectively implies a reasonably high mAP 
to detect missile sites in an unseen image.)

(d)  The next step is testing the models with varying mAPs 
on both categories of images (Refer to Fig. 8 and 9, 
respectively), with testing on coarse resolution only 
demonstrative. Results are based on testing on Google 
Earth Images (Refer to Fig. 7).

(e) The last step is a comparison with previous work.1, 3

3.  RESULtS AND ANALYSIS
3.1 Results

Results are as presented below: 
(a) Results obtained vide Table1 and Fig. 7 demonstrates that 

it is possible to train   the model with a minimum number 
of images while trying to maximize the mAP.

(b) An unknown set of Google earth images test the Red model. 
The model detected the missile site in an image corresponding 
to an area of 8.9 x 5.2 on the ground. However, it could not 
detect the missile site in a Sentinel 2 10 m GEE image.

(c) The Blue model was tested on the Sentinel 210 m resolution 
GEE platform RGB image. It can detect the missile site in an 
area of 6 x 8 km.

(d)  A random unknown set of 10 images obtained from the 
balance of 30 sites (excluding the ones used for training) of 
the total original 60 missile sites test the Blue and Red. Table 
2 presents the Standard metrics of True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN) 
corresponding to each of the models in terms of numbers 
obtained. The values of metrics are the respective total based 
on cumulative testing on the ten image datasets for each 
model.   

(e)  The hybrid schemes nos 1 and 2 in Table 2 above represent 
the optimum solution. In the Hybrid 1 model the blue model 
processes image sequence, 6 while red model processes the 
balance thereby achieving an overall balance between recall 
and precision. In the Hybrid 2 model image sequences, 6 and 
9 are processed by the blue model with the balance being 
processed by the red model to achieve higher recall. (e.g. 
military target detection)

3.2 comparison with Previous Work
A comparison of the   RetinaNet model with the work by 

Figure 7. Images vs mAP plot.

Figure 8. Sample Red model detection in 8.9 x 5.2 km area, 
Google earth image.

  target

Figure 9. Sample Blue model detection in 7 x 8 km area, GEE 
platform image.

Marcum et al1 and Feng Liu3 is carried out vide Table 3. The 
objective of this work is similar to1,3 i.e., to aid or better 
substitute the image analyst in the detection of missile sites over 
large areas in the shortest possible time. Following important 
points in the context of the two existing works merit attention:
(a) The vintage of the M a r c u m ’s  paper1 is October 2017 

and RetinaNet was developed in February 2018. T he 
paper only gives the base architecture of the network 
e.g., Resnet50 but does not describe the underlying Deep 
CNN framework in greater detail.

(b) Marcum’s approach1 is based on a 4 GPu hardware 
architecture which is a single GPu in our case and hence 
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we compensate for the same accordingly.
(c) Liu’s paper3 is of April 2019 vintage and applies the two-

stage faster R-CNN and one-stage YOLO-v3 methods 
to the problem. It is based on a single GPu-based 
architecture.

(d) The work by Marcum1 is a more comprehensive study, 
going into depth regarding challenges of the missile site 
detection and executing a thorough comparison with a 
visual Broad Area Search (BAS) carried out by image 
analysts (IA). 

The model once fully trained and tested offline requires no 
manual verification of the results or corrections therein on the 
application.

table 2. ROc Metrics

Model tPs tNs FPs FNs Recall Precision F1 Score
Red 7 5 4 3      .7     .64      .67

       Blue 8 2 17 2      .8      .32      .46
Hybrid 1* 7 5 3 3       .7       .7      .70
Hybrid 2** 8 5 7 2       .8       .53       .64

*: Image sequence no 6 is processed by the blue model and all others by the red model. This model provides a balance of 
precision and recall.

 **: Image sequence no 6 and 9 is processed by the blue model and all others by the red model. This model provides high recall 
at cost of lower precision.

3.3 Deductions
Based on the results and comparison following are the 

relevant deductions.
(a) The RetinaNet algorithm as a DL model provides an 

effective target detection model in terms of both speed 
and accuracy compared to two-stage DL and traditional 
methods.

(b) The red model is effective in detecting targets in high-
resolution imagery with a fair degree of scale invariance 
but is unable to detect targets of the coarse resolution GEE 
imagery type and reports improved precision compared 
to the blue model.  

(c) The blue model is effective in detecting the target in 
low-resolution GEE-based imagery compared to the red 

Parameter Marcum’s work1 Feng Liu et al.3 Our Method
Algorithm/Method Not specified. Only Classification YOLO-v3, Faster R-CNN Retina Net. Classification and localization
Architecture CaffeNet,GoogLeNet,ResNet-50, 

ResNet-101
VGG-16,ResNet101 ResNet50

Training The model requires training on a set 
of counter or negative examples. 
This enables a reduction in false 
positives. Time taken for training 
the model is 4.8 hrs

Based on pre-trained VGG-16 and 
ResNet101 architectures. Training 
time data not specified.

Training does not require negative example-
based training as the focal loss feature 
circumvents this problem. Training time for 
our model is 30 minutes based on a training 
cycle of 25 epochs with 10 steps each with 
a training image set of 210 images (165 
training and 45 validation)

Input image size The Maximum permitted is 
227x227

Not specified 830x1330

Spatial resolution (GSD) 1m .15 -.6 m As per Google Earth imagery (up to 43 cm)
Processing speed 42.3 minutes. (BAS based on 

88,640 sq km in the paper1 using 
4 GPus detected by 10 IAs 
simultaneously)

3 hrs including human verification 
to search an area of 6000 sq 
km based on a search of a total 
of 40000 images. It has been 
implemented on a single system

-5.6 min * for unassisted fully automatic 
detection(by the algorithm itself) and hence 
nearly 8 times faster [(42.3/5.6)=7.55] 
compared to1

-15.16 min** for unassisted fully automatic 
detection(by the algorithm itself) and hence 
nearly 12 times faster [(3x60)/15.16=11.87] 
compared to3

Accuracy and other 
metrics

up to 99.4% based on a ResNet50 
architecture based on a training 
dataset of 893,376 images post 
augmentation

up to 91.02% precision was 
achieved using the Faster 
R-CNN based on a ResNet101 
architecture. corresponding to a 
training dataset of 10443 images 
(post data augmentation)

Maximum Recall is 80 % and precision 
is 70%. The model is optimal considering 
training on a dataset size of 300 images post 
dataset augmentation(2988 less than1 and 
35 less than3)

table 3. comparison with previous work.
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model which fails in this regard. But for the Google Earth-
based test images, the blue model provides lower precision 
compared to the red model, which is suitably overcome 
via the hybrid scheme. 

(d) An effective target detection framework should comprise 
a combination of models to detect targets sourced from the 
imagery of varying spatial resolution. Fig 9 illustrates that 
a model trained on a limited number of high-resolution 
images can learn coarse-resolution target features as well. 
However, the contrary may not be true i.e. a model 
trained on coarse resolution images is unlikely to detect 
targets sourced from high-resolution imagery.

(e) From Table 1 and Fig. 7 it is observed that increasing 
the training dataset indefinitely is not likely to result in 
commensurate improvement in mAP with the point of 
saturation being reached at a certain point of training 
(at approximately 270 images) as indicated by the 
nonlinear portion of the curve.   

(f) Table 2 illustrates the performance of the red and blue 
models. Considering the minimum image training 
aspect, the performance is satisfactory as the recall 
value of both models is greater than the individual 
mAPs. The Recall parameter is important in the case 
of military target detection wherein no target should 
remain undetected, even at the cost of lower precision. 
The Red model yields higher precision with fewer false 
positives while the Blue model provides a higher recall 
but lower precision. Thus increasing the training dataset 
by data augmentation has limitations and ultimately the 
variety of training images has to be increased for the 
model to learn a sufficient feature set of the missile 
target.

(g) Table 2 also illustrates the performance of two hybrid 
models based on the Blue and Red models respectively 
by combining the advantages of both. The Hybrid 2 
model is optimal for the military framework wherein 
the objective is to maximize recall. Even though the 
recall value in the hybrid 2 model is the same as that 
of the blue model however the overall precision has 
improved. The Hybrid 1 model may be used when a 
balance between recall and precision. 

(h) Overall the advantage of the DL-based methodology in 
form of an automated model for object detection is seen. 
Two of the authors have applied the concept to the crop 
identification problem using DL.22 The advantages of 
speed based on area coverage are evident. From table 8 it 
is seen that the RetinaNet algorithm scores over Marcum 
et al1 and Feng     Liu et al3 in terms of the processing speed 
while using less training data. The advantage of the Retina 
Net algorithm compared to the Faster R-CNN and YOLO-
v3 used in3 is evident. Advantages in terms of training and 
inference time of the one-stage detectors are accordingly 
validated in our work.

(i) The work is demonstrative and once a sufficiently 
accurate model is obtained it can be used to substitute 
the image analyst whose task shifts from detection to that 
of validation. The valuable man hours saved will help 
in improving the overall efficiency within the image 
processing framework.

4. cONcLUSION
To the best of the knowledge of the authors, this is the 

only study on the application of a single-stage DL model to 
the problem of missile site detection. An automatic detection 
framework based on the RetinaNet algorithm has been studied 
and a comparison carried out with existing work in the domain. 
Automated detection or information extraction framework based 
on satellite imagery greatly simplifies the task of the image analyst 
enabling efficiency within the image analysis workflow. The 
advantage of speed in processing and validation of the minimum 
training dataset concept has been carried out. The scope for the 
development of an optimal hybrid framework based on the blue 
and red models applied to the detection problem has also been 
explored using the minimal data set training model concept. This 
enables a reduction in the training time while also improving the 
mAP to a maximum limit. It may be noted that training based 
on data augmentation to a limit of 300 images has been carried 
out which is symbolic and may be increased or variation in the 
number of original training images be increased from 210. The 
approach to determining the minimum number of training images 
based on the graph is one of the possible methods among others. 
The combination of models used may be increased from   2 
based on the feature set learned by the various models developed 
and tested therein. This scope will be defined by the resolution, 
quality, and nature of the unknown target dataset. The study has 
focused on the missile site detection problem however, the 
results obtained may be well applied to similar target datasets 
wherein a heterogeneous and complex feature set exists.
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