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ABStrACt

Airframe construction in conical form is the most desired shape of flight hardware due to their low drag profile 
and are located at the fore-end region of flight vehicles encountering high drag loads. Owing to their tailoring 
capability, materials with orthotropic mechanical properties are preferred choice. Delamination defects formed in 
them while manufacturing or when subjected to loads would unfavorably influence the mechanical performance 
of the orthotropic airframe. In the current work, FE simulation of delamination which is embedded in orthotropic 
cone shaped shells under external pressure load is performed as per the method cited in published literature. A layer 
wise element based on shell theory has been used and the effect of delamination size and its through the thickness 
position on the mechanical performance of the cone shaped shell is investigated. Circumferential and rectangular 
shapes of defects have been simulated. The investigation is performed for metal and composite materials with 3 types 
of stacking sequences generally used in practical designs. Verification of the procedure is carried out by equating 
with the procedure cited in published studies on shells of thin orthotropic cylinders. The eigen value of the first 
mode is taken as the critical buckling factor under external pressure. The buckling factor of the delaminated cone 
is normalized with the buckling factor of the ideal cone. The normalized buckling factor is showed graphically with 
the normalised defect size. Global, as well as local buckling and also symmetric as well as asymmetric buckling 
shapes, are observed in the results of the simulation. Shift from global mode to local mode of buckling is also 
observed in certain cases. Drastic reduction in buckling capability with the local mode is observed when the defect 
location is close to the surface and more prominent for an outer surface case.
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NomENClAtUrE  
[A] -  Extensional stiffness matrix 
N6  -  Shear force resultant in x1 to x2 direction
[B] -  Bending-extensional coupling stiffener matrix

N


   -  Axial compressive load (+ in compression)
[D] -  Bending stiffness matrix 
Q1  -  Transverse shear force in x1 direction
d1  -   Lower diameter of the cone 
Q2  -  Transverse shear force in x2 direction
d2  -  Higher diameter of the cone 
Q    -  Transformed stiffness matrix
ΕL  -  Young’s modulus in the longitudinal direction 
t     -  Location of defect/delamination from the inner surface
ET  -  Young’s modulus in the transverse direction 
T    -  Total thickness of the shell
GLT -  In plane shear modulus  
u0   -  Translation of mid surface in x1 direction
υ    -  Poisson’s ratio 
h  - Ratio: location of delamination from inner surface / 
          total thickness 
v0   -  Translation of mid surface in x2 direction

KS  -  Shear correction factor 
w0  -  Translation of mid surface in x3 direction
L    -  Length of the cone 
x1   -  Meridional direction
Ld  -  Length of delamination
x2    -  Circumferential direction
[M] -  Column matrix of M1, M2 & M6 
x3    -  Normal direction
M1  -  Moment resultant in x1 direction 
α     -  Width of delamination in degree
M2  -  Moment resultant in x2 direction 
ϕ     -  Rotation normal to reference surface
M6    -  Moment resultant in x1 to x2 direction 
η (eta) - Element natural coordinate in x1 direction
[N]  -  Column matrix of N1, N2 & N6 
ξ (xi) -  Element natural coordinate in x2 direction
N1    -  Force resultant in x1 direction 
ψ (psi) -  Lagrange interpolation function
N2    -  Force resultant in x2 direction 
ζ (zeta)  -  Natural coordinate in x3 direction

1.  INtroDUCtIoN
Composite materials are preferred in the design of flight 

vehicles because of their high specific strength and specific 
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modulus. Thin shell construction constitutes the major 
geometries of flight configurations. Conical shells are the most 
appropriate aerospace structures owing to their smooth shape 
that offer less drag and located in the leading region of flight 
structures that undergo sever loads. 

In orthotropic thin shells, flaws of the nature of 
delamination / de-bond generate during manufacturing or when 
subjected to loads. These flaws would decrease the stiffness 
due to the absence of through the thickness reinforcement. The 
residual stiffness and strength depend on the geometry and 
through the thickness position of the flaw. 

Aerodynamic load on the aerospace structure during flight 
condition arise from external pressure, causing compressive 
nature of stress, in a biaxial direction. Compressive stress 
initiates failure of the cone not only by stress measures but 
also through geometric buckling. The instability can occur 
before failure by stress if the shell is insufficiently stiff. The 
existence of defects additionally reduces the shell stiffness and 
drastically lowers the buckling factor.  Laminate separation at 
the zone of delamination contributes to the reduction.

sufficient studies are available in the literature on various 
techniques and methods for the evaluation of residual strength 
and stiffness of laminated plates. Circular cylindrical laminated 
shells with de-bond and de-laminations are also studied 
exhaustively1-9. As discussed, conical laminated composite 
shells form the primary airframe structures in advanced launch 
vehicles and missiles. Very meager literature is available on 
the de-lamination aspects of the conical shell. Authors have 
studied this gap in research which is much needed for today’s 
practical use of laminated conical shells with advanced 
composite materials.

In the present study, numerical simulation is carried 
out to evaluate the buckling capability of composite conical 
shells with embedded delamination. Carbon fiber-based epoxy 
composite material system has been chosen for simulations 
on two types of delamination, viz. rectangular delamination 
and circumferential delamination. The effect of depth-wise, 
circumferential and longitudinal location and size of defect are 
thoroughly investigated.

2.  lItErAtUrE rEvIEw
The existence of delamination will lessen the load-bearing 

ability of thin shells made of orthotropic materials1. Many 
studies have been performed by researchers on the implication 
of delamination on structures. The vast amount of the published 
literature present the studies on delamination in beams and 
plates. The available literature on shells and curved panels 
considering buckling behavior in the presence of delamination 
is limited. The most similar research effort in the present area 
of work is published by simitses2-3 and Tafreshi4-5. 

 Analytical formulation from membrane theory of shell 
with subsequent numerical solution has been performed by 
Simitses2 on delamination buckling of very long cylindrical 
shells under external pressure. The investigation has been 
for isotropic materials with longitudinal delamination over 
the entire length with simply supported as well as clamped 
boundary conditions. Auxiliary conditions involving kinematic 
continuity and local equilibrium conditions have been 

considered along the common boundaries between the perfect 
zone and the delaminated zone. The effect of size and through-
the-thickness position of delamination is studied. It is assumed 
that the implication of the through-the-thickness position 
is symmetric about the mid-thickness of the shell. Critical 
buckling loads for the different angular sizes of delamination 
have been presented for cylindrical shells and quarter as well 
as half panels. The larger the delamination size, the lower the 
buckling capability is the observation. When the through-the-
thickness position is close to the surface, the observation is 
a local buckling mode and has the lowest critical load for a 
delamination size. Orthotropic Graphite / Epoxy material with 
stacking sequence [90°/0°/90°]10T has been considered by 
Simitses3 in the study of delamination buckling of cylindrical 
laminates and reported similar aforesaid observations. In both 
works, there is a likelihood of delaminated layers penetrating 
each other and altering the observed results as the feature that 
prevents penetration is not incorporated in the mathematical 
model. 

A finite element-based study on delamination buckling of 
cylindrical shells under external pressure, utilizing the contact 
element/gap element to avoid interpenetration of delaminated 
layers has been carried out by Tafreshi4. A combination of 
a single layer and a double layer of shell elements has been 
employed which reduced the computation time as compared 
to 3D elements. The effect of material properties and stacking 
sequence is studied along with the size and through-the-
thickness position. A raise in buckling load is observed due to 
incorporation of contact elements in the finite element model. 
The applied boundary conditions would result in a shell with a 
uniaxial state of stress whereas the shell would be in a biaxial 
state of stress. The rectangular delamination simulated spans 
from end to end and would be affected by the end boundary 
conditions. This geometry would not simulate embedded 
delamination which is of present attention. 

Experimental investigations and corresponding numerical 
simulations of filament wound composite tubes under axial 
compression have been made by Jose Humberto S.6, et al. The 
investigation involved testing tubes till buckling failure with 
various helical angles and thicknesses. The study demonstrated 
the adequacy of linear finite element analysis for thin tubes 
and helical plies of unique angles which failed by buckling. 
Thicker and helical plies of multiple angles needed nonlinear 
simulation involving progressive damage based on the 
Continuum Damage Model for better correlation as the failure 
of tubes is by material damage. Delamination is not included 
either in the numerical simulation or testing. 

For underwater application which is another area of weight-
sensitive application, large-sized pipes made of composites 
are subjected to bending loads due to support conditions. 
Results of collective experimental and numerical analysis of 
large-scale filament wound composite pipes under four-point 
bending are published by Zhenyu Huang7, et al. A layered shell 
with multiple angles failed at higher flexural strength than with 
layered shell with a unique angle. Delamination is the failure 
mode observed rather than as a source of failure. 

Numerical simulation of buckling and post-buckling of 
curved composite panels subjected to axial load in compression 
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has been carried out by Behnam Ameri8, et al. Curved panels 
of various included angles have been analyzed through the 
width delamination located at the mid thickness and near the 
surface. This parametric study involved fiber angle and stacking 
sequence concluding that the buckling load is considerably 
affected by near-surface delamination. 

Investigation of transverse deflection of conical roof 
structures made of composites with local supports under various 
delamination sizes is performed by kamalika Das9, et al. The 
transverse deflection is reported to be directly proportional 
to the area of delamination. For a typical delamination size, 
the deflection is reduced by a greater number of supports 
and a greater number of plies. Symmetric cross-ply and 
antisymmetric angle plies have demonstrated lower transverse 
deflections among various stacking sequences studied. 

most of the testified work is on thin cylinders with cross-
ply stacking sequence.  Inadequate literature is existing on 
cones. Available classical work10 is based on the equivalent 
cylinder with fore-end geometric details, the outcome of which 
would be a conservative design. For a weight-sensitive area 
of application like aerospace, it is not satisfactory. Large-sized 
orthotropic cones are realized by filament winding technique 
and at any station in the longitudinal direction, the stacking order 
is angle-ply of varying angles. Therefore, the study on conical 
shells having angle-ply stacking order with angle varying in 
longitudinal direction would be of direct applicability. 

The study is also performed for isotropic material 
(Aluminum) and cross-ply sequence. Two variants of stacking 
orders of cross-ply arrangement are simulated. One cross-ply 
sequence is (00, 900, 00)s, designated as cross-ply0 and the 
other cross-ply sequence is (900, 00, 900)s, designated as cross-
ply90.   

3.  mEthoDology
The geometric details of the carbon epoxy cone having 

8.50 half-cone angle is in Fig. 1 along with two types of 
delamination rectangular and circumferential. Studies 
have been carried out for a load of external pressure with 
delamination present at 1/8th, 1/4th, 1/2, 3/4th, and 7/8th shell 
thickness, represented as delamination thickness: h of 0.125, 
0.25, 0.5, 0.75 and 0.875 respectively (non-dimensional term; 
position of delamination/total thickness). The presence of 
delamination is referred from the internal surface of the cone. 
The delamination is supposed to be present at mid of the cone 
and grows in equal increments to both sides in the longitudinal 
direction in the case of circumferential delamination. For the 
rectangular case, delamination is supposed to be present at mid 
of the cone and progress in the circumferential direction. For 
the angle-ply case, the stacking order is ± θ0 with variation in 
the length direction. For the geodesic winding, at the middle of 
the cone, θ is 350, and variation is calculated using Clairaut’s 
relation. 

4.  FINItE ElEmENt moDEl DEtAIlS
The cone is meshed with element based on shell theory 

using SHELL 28111, 8 noded element of Ansys, a general-
purpose FEA software. The element behavior is based on 
the First-order shear Deformation shell Theory (FsDT). The 

relevant equations for degrees of freedom, strain displacement 
relations, constitutive relations, and governing differential 
equations are provided in Appendix. 

The integral region in the FE geometry is discretized with 
element size of 5 mm. The delaminated region and the transition 
region are discretized with an element size of 2 mm. The integral 
region in the FE geometry is discretized with one element in 
thickness direction. The delaminated region is meshed with 
two elements in thickness direction and contact feature linking 
the two elements for force transmission and interpenetration 
stoppage. These linking elements exhibit compression-only 
behavior which provides resistance when compressive force 
transmits through them and does not provide resistance when 
tensile load transfers separates them; therefore, a contact based 
non-linearity is present. The intermediate zone is discretized 
with two elements and a multi-point constraint joining the two 
elements. section offset feature has been used to preserve the 
consistency of the middle surface in the longitudinal direction 
of the conical shell, which is plotted in Fig. 2.

A mesh convergence study is carried out to ascertain the 
adequacy of discretization. Although the regular buckling 
analysis is not highly sensitive to element size, because of the 
presence of contact elements which introduces nonlinearity the 
mesh convergence is evaluated.  The evaluation is performed 
for an isotropic conical shell with circumferential delamination 
of L/3 for a delamination thickness of 0.5. The mesh size is 
altered in delamination zone only and the results of the 
evaluation are mentioned in Table 1. As the difference in result 
between medium and fine meshes is 2 %, in view of the solution 
times for multiple simulations, medium mesh is preferred.

table 1. Convergence study result

Coarse medium Fine
Element size, mm 4 2 1
% difference in buckling factor 4.2 2.0

The finite element model which is used in this study 
involves 30256 elements and 57096 nodes. External pressure 
is applied as surface load and axial load consistent with 
longitudinal stress is applied on the smaller end of the cone, 
simulating a biaxial stress state. At the fore-end of the cone, 
degrees of freedom other than longitudinal translation are 
constrained.  Rear end of the conical shell is constrained in all 
directions representing clamped condition. A parametric script 
using Ansys Parametric Design Language11 has been developed 
to automate the change in delamination size and contact area 
size. The material and geometric details of the conical shell 
considered in this study are as mentioned in Table 2.   

table 2. geometry and material data

geometric 
details
of conical shell

length, 
l, mm

lower diameter, 
d1, mm

thickness, 
t, mm

320 96 4

lamina 
properties

EL, GPa ET, GPa GLT, GPa υ

115 6 4 0.25

5.  vAlIDAtIoN StUDy
Corroboration of the current procedure has been performed 

by carrying out a simulation of an orthotropic thin cylinder of 
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graphite-epoxy (stacking sequence: [90°/0°/90°]10) with both 
ends simply supported9 under external pressure, matching with 
the simulation by Tafreshi4. Rectangular delamination of width 
(a) extended over entire length and geometric features L to R 
= 6, R to t = 100 & h = 1/2 is taken for comparison. Buckling 
factors are standardized with the buckling factor of the perfect 
cylindrical shell. A comparison of normalized critical loads 
with that of reference data is shown in Fig. 3. As there is a good 
agreement, the methodology is validated and the study can be 
extended to conical geometry. A peak error of 4 % is noted, 
the possible causes being discretization difference and time 
increments that are not stated in the mentioned publication.

6.  rESUltS AND DISCUSSIoN
In this section, results for the conical shell under external 

pressure are discussed. The eigen value buckling factor is 
considered as the critical external pressure. The first mode is 
considered irrespective of the buckled shape because large 
amount of distortion of the conical shell would increase the 
drag on the vehicle which is undesirable. Combinations of 
global & local and symmetric & asymmetric mode shapes 
are noticed in the outcome of the study which are shown in  
Fig. 4. Global buckling is noticed majorly for depths of 0.25, 
0.5, and 0.75. 

The critical external pressure of cone with defect is 
standardized with the critical external pressure of the ideal cone. 
The normalized critical pressure vs. the normalized length of 

delamination is presented in graph form in Fig. 5 – Fig. 8 for 
isotropic, angle-ply, cross-ply0, and cross-ply90 respectively 
for various depths of delamination. 

For the isotropic case (Fig. 5), at depths of 0.125 & 
0.25, for circumferential defect, global symmetric modes are 
observed and for rectangular defect, global asymmetric modes 
are observed. mode shape remained the same with a reduction 
in buckling factor as the defect length is increased. At depth 
of 0.5, for circumferential defect, a global symmetric mode 
is observed till defect length of 0.19 and a local symmetric 
mode is observed beyond this defect length, hence a change 
in the slope of the curve is seen. For rectangular defects, a 
global symmetric mode is observed till the defect width of 
450 and a global asymmetric mode is observed. There is no 
effect of defect width on buckling load factor beyond defect 
width of 2250. At depth of 0.75, for circumferential as well 
as rectangular defects, the buckling mode is global symmetric 
and located beyond the defect zone. hence defect length and 
width have no implication and a flat curve is seen. At a depth of 
0.875, local modes have been observed with a drastic reduction 
in buckling capability for both types of defects. 

For the angle-ply case (Fig. 6), a similar tendency as that 
of the isotropic case has been observed with a minor change in 
values of defect length and width, beyond which the buckling 
capability is independent of defect size. For rectangular defects, 
the curves of 0.125 and 0.875 are identical, unlike the isotropic 
case. 

table 3. Summary of simulation results
legend: g – global, l – local, S – Symmetric, A – Asymmetric

Depth of ↓
delamination Isotropic Angle-ply Cross-ply0 Cross-ply90

0.125

Circum. G & S G & S G & S till defect length 
0.05 and L & S beyond

G & S till defect length 
0.05 and L & S beyond

Rectangular G & A G & A

G & A till defect width 
450 and L & A beyond. 
No effect of defect width 
beyond 450

G & A till defect width 
450 and L & A beyond. 
No effect of defect Width 
beyond 450

0.25
Circum. G & S G & S G & S G & S

Rectangular G & A G & A. No effect of defect 
width beyond 2250 G & A G & A

0.5

Circum. G & S till defect length
0.19 and L & S beyond

G & S till defect length 0.2 
and L & S beyond

G & S till defect length 0.2 
and L & S beyond

G & S till defect length 
0.18 and L & S beyond

Rectangular G & s till defect width 450 
and G & A beyond

G & s till defect width 
450 and G & A beyond. 
No effect of defect width 
beyond 1800

G & A. No effect of defect 
width beyond 1800

G & A. No effect of defect 
width beyond 2250

0.75
Circum. G & s. beyond defect zone G & s beyond defect zone L & s. No effect of defect 

length beyond 0.125
L & s. No effect of defect 
length beyond  0.1

Rectangular G & s. beyond defect zone G & s beyond defect zone L & A. No effect of defect 
width beyond 450.

L & A. No effect of defect 
width beyond 450.

0.875
Circum. L & S G & S. identical to 0.125 L & s. No effect of defect 

length beyond 0.05
L & s. No effect of defect 
length beyond 0.025

Rectangular L & A G & A. identical to 0.125 L & A. No effect of defect 
width beyond 100.

L & A. No effect of defect 
width beyond 50.
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Figure 1. Conical shell with delamination under external pressure.

For cross-ply 0 and cross-ply90 case (Fig. 7 & Fig. 8), for 
circumferential defect, global symmetric modes are observed 
at depths of 0.125, 0.25 & 0.5 and local symmetric modes at 
depths of 0.75 & 0.875. For rectangular defects, asymmetric 
modes are observed which are global at depths of 0.125, 0.25 
& 0.5, and local at depths of 0.75 & 0.875. When there is a shift 
from global mode to local mode, a change in the slope of the 
curve is seen and a flat curve is seen when the effect of defect 
size is negligible on the buckling capability. The observations 
are summarized into Table 3. 

This simulation data also can be observed for various 
delamination depths, while comparing stacking sequences of 
angle-ply, cross-ply0, and cross-ply90. For delamination depth 
of 0.125, angle-ply exhibits a comparatively greater buckling 
factor under delamination. At depths of 0.25 & 0.5, there is 
the minimum influence of stacking sequence. At depth of 0.75, 
there is a minimum influence of delamination size on angle-
ply as the buckling modes are located outside the delamination 
zone. At depth of 0.875, a drastic reduction of buckling 
capability is observed for all three stacking sequences.

7.  CoNClUSIoN
A detailed study for assessing the residual capability of 

cones with embedded delamination under external pressure is 
carried out. A corroboration using this procedure is performed 
for thin cylinders and validated with the available literature. 
A fair comparison is observed. Subsequently, the procedure is 
extended to conical shells with isotropic material, angle-ply, 
and two variants of cross-ply. 

The localized modes are noticed for delamination depths 
of 0.125 and 0.875 when the defect is located close to the 
surface. Buckling mode shapes are symmetric in the case of 
the circumferential defect and asymmetric modes in the case of 
the rectangular defect (other than 3600 ). A regular pattern of a 
drastic reduction in buckling load as the defect location is close 
to the surface and more distinct when it is located close to the 
outer surface is observed. 

The bifurcation buckling effects represent the upper limits 
of the assessments because of the perfect linear elastic shell and 
stable defect idealized in the present work. The finite element 
model will be augmented with geometric nonlinearity in f uture 
studies.  

Figure A. laminated shell geometry and coordinate 
system12.

(i) Circumferential delamination (ii) Rectangular delamination
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Figure 2. Section-offset for continuity of middle surface for different ratios of sub-laminates.

Translational degree of freedom of mid surface in • x1 
direction, u0 is given by
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where, ψ is the displacement interpolation function, expressed 
in terms of element natural coordinates given as follows for an 
8 node quadratic element. 0
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(2)

strain displacement relations as per first order shear • 
deformation shell theory are given as follows.
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The laminate constitutive relations are given as follows. • 
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Figure 3.  Critical buckling pressure vs effect of delamination 
width evaluation for cylindrical shell with delamination 
extended over the entire length, at a depth of 0.5 with 
contact elements.

(4)
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Figure 5. Effect of defect size on critical buckling pressure of isotropic conical shell.

Figure 4. typical global and local buckling mode shapes in the conical shell under external pressure with embedded defect.

(i) Global and symmetric (ii) Global and asymmetric

(iii) Local and symmetric (iv) Local and asymmetric (v) Global mode beyond the 
delamination zone
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Figure 7. Effect of defect size on critical buckling pressure of composite shell (cross-ply0).

Figure 6. Effect of defect size on critical buckling pressure of composite shell (angle-ply).
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The equations of motion of simplified shell theory (in • 
the coordinate system as shown in Fig. A.1) for a cross-
ply laminated cylindrical shell of radius ‘R’ based on 
first-order shear deformation shell theory are as follows:
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Figure 8. Effect of defect size on critical buckling pressure of composite shell (cross-ply90).


