
Move Table: An Intelligent Software Tool for Optimal
Path Finding and Halt Schedule Generation

Anupam Agrawal, Anugrah Joshi, and M. Radhakrishna
Indian Institute of Information Technology, Allahabad-211 011

ABSTRACT

This study aims to help army officials in taking decisions before war to decide the optimal
path for army troops moving between two points in a real world digital terrain, considering
factors like traveled distance, terrain type, terrain slope, and road network. There can optionally
be one or more enemies (obstacles) located on the terrain which should be avoided. A tile-based
A* search strategy with diagonal distance and tie-breaker heuristics is proposed for finding the
optimal path between source and destination nodes across a real-world 3-D terrain. A performance
comparison (time analysis, search space analysis, and accuracy) has been made between the
multiresolution A* search and the proposed tile-based A* search for large-scale digital terrain
maps. Different heuristics, which are used by the algorithms to guide these to the goal node,
are presented and compared to overcome some of the computational constraints associated with
path finding on large digital terrains. Finally, a halt schedule is generated using the optimal path,
weather condition, moving time, priority and type of a column, so that the senior military planners
can strategically decide in advance the time and locations where the troops have to halt or
overtake other troops depending on their priority and also the time of reaching the destination.

Keywords: Digital terrain, classification maps, digital elevation maps, path finding, halt schedule, Move
Table software, genetic-fuzzy approach

Received 4 July 2006, revised 4 January 2007

1. INTRODUCTION

Path finding has many applications ranging
from path finding in a network, computer games,
and to help robots navigate through an environment.
However, there is less research done on path finding
in digital terrains represented as digital elevation
maps (DEM) and classification maps. Jonsson1

has done some work on path finding for vehicles
in real world digital terrains by focusing on terrain
types, which affect a vehicle's speed, and on avoidance
of enemy units on the terrain1. Wichmann2 has
done some work on the problem of finding an
optimal path connecting two points in a digital
approximation of a large-scale real world terrain2.

Defence Science Journal, Vol. 57, No. 5, September 2007, pp. 721-732
2007, DESIDOC

There are two different path planning problems.
The first problem is how to plan a path when the
locations of all the enemies (obstacles) are known.
The solution to this problem gives the optimal path
to follow before the object actually follows the
ground. It is referred to as the global path planning
case. The planned path is followed in a static
environment. Solutions to the global path planning
case would provide initial strategies in any planning
problem3. In the second problem, the locations of
the obstacles are not known in advance. Instead,
the locations of the obstacle points are known to
the object when these are within a sensor range.
The object changes its path when it senses the
danger areas. It is referred to as the dynamic path

721

722

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

planning case. In this case, a path is created for
a dynamic environment. This corresponds to the
real-world situation of a robot with only a limited
knowledge of its environment navigating through a
maze. Solutions to both the cases are different. In
the global path planning case, one does not have
to worry about the time it takes to formulate the
plan. This is because one would generate his solution
before following it. The dynamic path planning
case is more time critical because one has to constantly
update ones plan while executing it. Thus, one has
the distinction of creating a real-time planner versus
a non-real-time planner. Another distinction between
the two cases is decidability. In the dynamic case,
depending on how one constructs his algorithm,one
may not be able to conclude whether a safe path
exists. This is a direct result of the changing environment.
However, in the global case, one can construct an
algorithm that can determine the existence of a
safe path3.

The success of a given path finding technique
depends on the requirements and the assumptions
of the environment and the constraints it imposes.
There are a wide variety of path finding techniques,
and one technique may excel under certain
circumstances, but do badly under others. The more
factors that intend to incorporate into the environment,
the more complex the path finding becomes.

In this study, the scope is limited to the special
case of finding paths in Euclidean 3-D space, focusing
on movements along a surface that can be projected
onto a 2-D grid. Furthermore, it discusses the global
path planning case, where the environment is static
and the obstacles are not moving. We will develop
and analyse different heuristics and variations of
the A* algorithm to solve the optimal path problem
under a variety of user-defined constraints. The
A* algorithm is used as it has an optimal heuristic
search. The search space, on which the path finding
takes place, can potentially be quite large.

For dealing with large-scale images or raster
data sets, a tile-based approach is proposed, in
which a raster data set is divided into appropriate
number of tiles. Instead of working on the entire
raster data set, only those tiles that are needed are
loaded and used. It results in the reduction of

search space required for path finding process
with moderate search time and the resulting solution
being still optimal.

Using the output of the above optimal path
finding algorithm, the proposed halt schedule algorithm
generates a schedule in the form of a report. This
report contains the reaching time of different troops,
which may start from different locations, at important
path points so that there should be no collision
among the moving troops. It is helpful for senior
military planners to decide in advance the time and
locations where the troops have to halt or overtake
other troops depending on their priority and time
of arrival. This schedule will also generate the time
of reaching the destination for different troops via
optimal path.

2. RELATED WORK

One of the earliest solutions proposed for path
finding is Dijkstra's algorithm which finds the shortest
paths to all other nodes in the search space as
opposed to finding the shortest path to a single goal
node. Dijkstra's algorithm always visits the closest
unvisited node from the starting node, and hence,
the search is not guided towards the goal node1, 4.

In contrast, ‘best first search’ always selects
the node closest to the goal node. Since one does
not know the exact path from the current node to
the goal node, the distance to the goal node has
to be estimated. This estimate is referred to as the
heuristic. Best first search does not keep track of
the cost to the current node, and therefore, does
not necessarily find an optimal solution5,6.

In Weighted graph method, space is divided
into discrete regions, called cells, and movement
is restricted from a particular cell to its neighbours.
Neighbouring cells are those that can be directly
reached from a particular cell. A directed graph is
constructed by taking the cells as graph vertices
and the possible movements to its neighboring cells
as directed edges between the vertices. A weight
function is defined by assigning a cost to every
edge, corresponding to the cost of moving along
the edge. The space division, the definition of neighbours
and the edge cost function can all differ for different

723

AGRAWAL, et al.: MOVE TABLE: SOFTWARE TOOL FOR OPTIMAL PATH FINDING

methods in this class. Disadvantage of these methods
is that for a real-world digital terrain, search space
will be very large1.

The A* algorithm combines the approaches of
Dijkstra's algorithm and best first search. The A*
algorithm is guaranteed to find an optimal solution
(assuming no negative costs and an admissible
heuristic), but because it is guided towards the
goal node by the heuristic it will not visit as many
nodes as Dijkstra's algorithm would do. Hence, it
is preferred over other algorithms.

To reduce the memory and time requirements
of path finding in large-scale terrains, size of the
search space is reduced by computing a multiresolution
representation of the terrain2. First a path is found
on the lowest-resolution version of the digital terrain
(which has the least nodes, and hence, allows a
fast search) and then each pair of nodes of the
resulting solution are used as start and goal nodes
for a search on the next higher-resolution representation
of the terrain. This process is repeated until one
obtains a path for the original terrain. Sub-sampling
factor is used to refer to the reduction of size of
a low-resolution terrain when compared to its full
resolution version. Low-resolution representations
of the digital terrain are computed using a mean
or a median operator. The mean operator just averages
all the height values of a group of cells and does not
work well for groups of cells that contain a ridge or
sudden drop-off. Once the path on the sub-sampled
terrain map has been found, searches between the
path points are performed. Following equations are
used for coordinate transformation from the low-
resolution image to the higher- resolution image.

x
h

= x
hmin

+ (x
l

– x
lmin

) * s
x

y
h

= y
hmin

+ (y
l

– y
lmin

) * s
y

where, (x
h
, y

h
) are the coordinates in the high

resolution image corresponding to the point (x
l
, y

l
)

in the low-resolution image. The variables s
x

and
s

y
are the sub-sampling factors. (x

lmin
, y

lmin
), (x

lmax,

y
lmax

) and (x
hmin,

y
hmin

), (x
hmax,

y
hmax

) are the minimum
and maximum values of x and y coordinates in the
low- and high-resolution representations of the image,
respectively.

Dijkstra's algorithm is a greedy algorithm, its
search space is very large and also the search is
not guided towards the goal node. In case of best
first search, the search is guided and its search
space is small. But it does not give an optimal
solution. In case of A* search, the search space,
on which the path finding takes place, can potentially
be quite large. This means that steps must be
taken to ensure that one does not run out of memory
or that the search does not take an excessive
amount of time to run in large-scale terrains. In
case of multiresolution A* search, the quality of
a solution usually decreases with an increasing
sub-sampling factor. The greater the sub-sampling
factor, the more cells get merged into one cell,
thus making it easier to lose fine terrain structures,
e.g., a narrow passage between two hills. Also the
use of large cells can cause a magnification of bends
('detours') in a path which can not be removed in the
final iteration of the algorithm since the way points
found during the low-resolution passes are fixed.
Large sub-sampling factors decrease the number of
way points along the path, thus increasing the distance
between these on the original terrain map. This means
that one is running the path finding algorithm less
often on the original terrain map2.

3. HEURISTICS

Heuristic is the estimated cost of traveling
from current node to the destination. Different
heuristics are used for finding the optimal path in
different situations. Choosing a heuristic affects
the speed and accuracy of the pathfinder. On a grid,
there are well-known heuristic functions to use.
The Manhattan distance heuristic [Fig. 1(a)] is

h(n) = |x
a

– x
b
| + |y

a
– y

b
|

where (x
a
, y

a
) and (x

b
, y

b
) are the coordinates of

the current and goal nodes, respectively. The heuristic
is ideal when using 4-adjacency. The Euclidean
distance heuristic [Fig. 1(b)] is defined as

2
2() [() ()]a b a bh n x x y y

It is admissible, but usually underestimates the
actual cost by a significant amount. This means

724

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

that we may visit too many nodes unnecessarily,
which in turn increases the time it takes to find the
goal. In Figs 1(a) and 1(b), the pink square is the
starting point, the blue square is the goal, and the
shaded areas show what areas the above two heuristics
scanned.

even though one only needs to explore one of
them. To break ties, paths along the straightline
from the starting point to the goal are preferred.
A vector cross product between the start to goal
vector and the current point to goal vector is computed.
When these vectors don't line up, the cross product
will be larger. The result is that this code will give
slight preference to a path that lies along the straightline
path from the start to goal. When there are no
obstacles, A* not only explore less of the map, the
path looks very nice5 [Fig. 3]. The tie breaker
algorithm is as follows:

dx
1

= current.x – goal.x

dy
1

= current.y – goal.y

dx
2

= start.x – goal.x

dy
2

= start.y – goal.y

cross = abs (dx
1
*dy

2
– dx

2
*dy

1
)

heuristic + = cross * 0.001

where, cross => vector cross-product between the
start to goal vector and the current node to goal
vector.

A*'s ability to vary its behaviour based on the
heuristic and cost functions can be very useful.
The trade–off between speed and accuracy can be
exploited to make the pathfinder faster.

To avoid the expensive square root, Euclidean
distance squared heuristic [Fig. 2(a)] is defined as

h(n) = [(x
a

– x
b
)2 + (y

a
– y

b
)2]

The diagonal distance heuristic [Fig. 2(b)] is
defined as

h (n) = |x
a

– x
b
| + |y

a
– y

b
|

+ (2 – 2)min (|x
a

– x
b
|, |y

a
– y

b
|)

The above heuristic combines aspects of both
the Manhattan and Euclidean heuristics and is admissible
(unless 16-adjacency is used). It has the advantage
of always giving the actual minimum possible cost
to the goal if 8-adjacency is used and taking the
square root is no longer necessary, thus making it
computationally slightly more efficient than the Euclidean
distance heuristic.

One thing that can lead to the poor performance
of path finding is ties in the heuristic. When several
paths have the same f value, they are all explored,

4. PROPOSED METHODOLOGY

This work is divided into two phases: (i) Finding
the optimal path, and (ii) halt schedule generation.

First phase will find the optimal path between
source and destination nodes in large satellite images
and raster data sets using improved A* search
algorithm, considering different factors like terrain
type, terrain slope, road map, obstacles, and distance.

Figure 1. (a) Manhattan distance, and (b) Euclidean distance.

(a) (b)

Figure 3. (a) Ties in f values, and (b) after applying tie breaker.

(a) (b)

Figure 2. (a) Euclidean distance, and (b) diagonal distance
squared

(a) (b)

725

AGRAWAL, et al.: MOVE TABLE: SOFTWARE TOOL FOR OPTIMAL PATH FINDING

Input: Original satellite image, height map of the
image, classified map of the image, road
map of the image, layer representing the
obstacles, starting location, and goal location.

Output: Optimal path (a linked list of contiguous
XY coordinate pairs) from the starting location
to the goal location.

4.1 Cost Function: Considering Road Maps

If a road network exists between the two
nodes then the optimal path is generated considering
only the distance and terrain slope heuristics. Pixel
value of a road point is taken to be 0 and for all
other points in the road raster map pixel value is
taken to be 255.

Cost function is computed as follows:

f(v) = g(v) + h(v)

where, f(v)=> total cost of traveling from source
to destination, g(v)=> exact cost of traveling from
source to node v, and h(v)=> estimated cost of
traveling from node v to destination.

The details of functions g(v) and h(v) are
given below:

g(v) = g(u) + w(u,v)

where, g(u) is the movement cost from the starting
node to u, and w(u,v) which is cost of travelling
from node u to v is defined as follows:

w(u,v) = pix(v) + slope(u,v)

where, pix(v) is the pixel value at that point in the
road map and slope(u,v) is the slope between u
and v.

h(v) = h(tie,v) + h(tie,v) * h(slope,v)

where, h(tie,v) is diagonal distance tie breaker
heuristic and h(slope,v) is average slope difference.

4.2 Cost Function: Without Considering
Road Maps

If a road network does not exists between the
two nodes then the optimal path is generated considering

traveled distance, terrain type, terrain slope and
obstacles heuristics.

Cost function is computed as follows:

f(v) = g(v) + h(v)

g(v) = g(u) + w(u,v)

w(u,v) = d(u,v) + t(u,v) + slope(u,v) + o(u,v)

where, d(u,v) is distance between u and v; t(u,v)
is terrain type cost at v; slope(u,v) is slope between
u and v; and o(u,v) is obstacle cost, have higher
values for more difficult obstacles.

h(v) consists of four parts:

h(v) = h(tie,v) + h(tie,v)*{h(t,v) + h(slope,v)}+h(o,v)

where, h(tie,v) is the diagonal tie breaker heuristic;
h(t,v) is the average terrain cost; h(slope,v) is the
average slope difference; and h(o,v) is the n/N*
cost of obstacles, where n is the number of obstacle
points and N is the total number of points.

4.3 Proposed Tile-based Optimal Path
Finding Algorithm

For large-scale terrain maps, the entire raster
data set is not used for path finding; only required
portion of it is used. The tile-based approach divides
the whole raster data set into multiple tiles of
appropriate size. During path finding, the tiles are
managed using an efficient indexing scheme. Initially,
the tile with source node is loaded and path points
are found considering the location of destination
node until path finder reaches the boundary of the
current tile. Now the neighbouring tile is loaded
using the indexing scheme and path finding process
continues on that tile.

During the path finding process, if the pathfinder
finds a road point then it follows the road using
the cost function given in Section 4.1 until the
number of road points traversed (road_count) is
greater than a threshold. After that, it leaves the
road at a point which is nearest to the destination
(having min h value) and then again follows the
terrain using the cost function given in Section 4.2
towards the destination.

726

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

Linked list RoadList stores all the road points
that are neighbours of the current node visited,
TerrainList stores all the terrain points that are
neighbours of the current node visited, TempList
stores all the terrain points that are the neighbours
of the current road point, CloseList contains all the
currently visited nodes and FinalList contains the
nodes in the optimal path.

Function get_min_node(LIST) returns a node
with minimum f value from the LIST and the function
get_min_h(LIST) returns a node with minimum h
value from the LIST. The variable search_count
represents the search space and road_count represents
the number of road points traversed.

Algorithm

TileBased_Astar (start, end)
{

search_count=0;
road_count=0;
found = false;
Load initial tile in which source node lies;
if start node is a road point then insert it
into RoadList;
else insert it into the TerrainList;
While(found == false) // path not found

{
curr = get_min_node(RoadList);

if(curr == null)
{
curr1=get_min_node(TerrainList);
if(curr1==null)

{
curr1 = get_min_h(TempList);
if(curr1== null)

{
print("No path found "); exit;
}

}
curr = curr1;

}
else

{
if (road_count>threshold)

{
curr1= get_min_h(TempList);

if(curr1!=null)
{curr=curr1;

clear RoadList;
clear TempList;
road_count=0;

}
}
}
if(curr node's tile != current tile loaded)
{

Load curr node's tile;
Current tile = curr node's tile;

}
CloseList = insert_node(CloseList,curr);
if(curr == end)
{

found = true;
print("Path Found "); break;

}
if(curr is a road point)

{
clear TerrainList;
opt_path_road(curr); //defined below
road_count++; search_count++;
}

else
{
clear RoadList;
opt_path_terrain(curr);//defined below
search_count++;
}
}// end while

starting from the curr node traverse CloseList
until we get the start node;

store all the nodes in a list FinalList;
return FinalList;

}
opt_path_road (node current)
{

consider the 8 neighbors of the curr node,
create a node for each neighbor, apply cost
function and calculate f, g and h values;

if (neighbor does not belong to the current tile)
{
Load appropriate tile;

727

AGRAWAL, et al.: MOVE TABLE: SOFTWARE TOOL FOR OPTIMAL PATH FINDING

Create a node for that neighbor, apply
cost function and calculate f, g and h values;
}

for (int i=0; i<8; i++)
{
if(neigh[i] is already present in RoadList as

node
temp)
{
if (neigh[i].fval< temp.fval)
temp = neigh[i];

}
else

{
if(neigh[i] is a road point)
insert it into RoadList;
if(neigh[i] is not a road point)
insert it into TempList;
}

}//end for
}

opt_path_terrain (node current)

{

Similar to opt_path_road(node current) described
above, with neighbor terrain point is inserted into
TerrainList and road point is inserted into RoadList.

}

4.4 Proposed Halt Schedule Generation
Algorithm

The halt schedule is generated using the optimal
path returned by the path finding module, weather
condition, priority, average size of a column (vehicle)
and moving time so that the senior military planners
can decide in advance the time and locations where
the troops have to halt or overtake other troops
depending on their priority and also the time of
reaching the destination. The halt schedule is generated
in the form of a report and can be shown graphically.

Input: Computed optimal path, troop Id, troop priority,
starting date and time, starting location,
destination, number of vehicles in a troop,
dimension of each vehicle, special instructions
(move during day/night), and weather condition.

Output:Output will be generated in the form of a
report that will contain Halt Schedule (time
and location at which the troops will halt)
and reaching time at the destination.

Algorithm

Halt_Schedule_Gen ()

{

(1) One is getting the optimal path from source to
destination in which the coordinates of all the
points are known and this path is computed
using a cost function;

(2) According to the given input, the program will
generate the schedule for the first troop in
terms of locations, time and distance of halting;

(3) This schedule will then be stored in a table and
used for generating other troop schedules;

(4) When the schedule for some other troop is to
be generated then it will take the following
steps:

(a) First it will check whether there is a common
path or not among the current troop and
the troops in the table;

(b) If yes, then it will check the timing at
which the two troops will arrive on that
common path calculated on the basis of
distance and speed of the vehicles;

(c) If there is any overlap in time then it will
check the priority of the troops. The higher
priority troop will be allowed to pass first
and the schedule of both the troops will be
changed and stored in the table;

(d) The lower priority troop can either halt
before reaching over the common path or
the troop will have to be delayed at the
starting location itself.

(5) Above steps will be repeated for generating
the schedules of other troops also;

(6) When a troop will reach to its destination, then
its entry will be removed from the database;

728

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

(7) At the end it will generate the report and can
be stored in a file;

(8) The halt schedule will also be displayed graphically
in the map.

}

5. IMPLEMENTATION

The modules are written in Java Net Beans
IDE7. The software has been tested on Dehradun,
India, and Grand Canyon, Arizona data sets.

5.1 Tools and Software Used

Data Preparation: Adobe PhotoShop, Photo Impact
4.0, PCI Geomatica 9.0

Classification: ERDAS Imagine 8.7

Java Platform and Development Environment
(for path finding and halt schedule generation):
Net Beans IDE and J2SDK 1.4.2

5.2 Database Used

Halt Schedule Generation: MS Access

Database consists of the following relations:

Path (troop _id, xcoord, ycoord) => stores x and
y coordinates of the optimal path for the troop
identified by troop_id.

Troop_Detail (troop_id, troop_priority, no_vehicles,
avg_leng_vehicle, move_night weather_cond,
starting_date, starting_time, avg_speed_troop)
=> stores the details of the troop and travel
condition.

Temp (xcoord, ycoord, troop_id, no_vehicles,
reaching_date, reaching_time, troop_priority,
avg_speed_troop, avg_len_vehicle) => Temporary
table used for generating the schedule and contains
those troops that overlap both in path and time with
the current troop.

Halt_Schedule (troop _id, xcoord, ycoord,
reaching_date, reaching_time) => stores the
schedule generated for each point in the optimal
path for all the troops.

Final_Schedule (troop_id, halt_xcoord, halt_ycoord,
reaching_day, reaching_time, halt_time) => stores
the final halt schedule generated.

6. RESULTS AND ANALYSIS

The geocoded IRS-1D LISS III multispectral
satellite image of Dehradun (February 2003) and
its height map or DEM are used for optimal path
finding. The height map has been generated using
digitised contours on 1:50,000 scale toposheet (number
53 J/3) [Fig. 4(a)]. Dehradun road map [Fig. 4(b)],
digitised from above toposheet, is merged with the
original image using Photo Impact package [Fig. 5(a)].
Classified map with 5 classes is generated using
ERDAS Imagine 8.7 unsupervised classifier [Fig.
5(b)]. After consulting the toposheet, the classified
image pixels were labeled as forest (vegetation),
mountains (rocks), residential areas (buildings), dry
river path (sand) and unknown class (remaining
unlabeled pixels). These classes are assigned different
cost values to be used in the cost function to
compute the optimal path.

Highest priority is given to the road. If during
path finding process, pathfinder finds a road point,

Figure 4. (a) Height map, and (b) road map.

(a) (b)

Figure 5. (a) Merged image, and (b) classified map.

(a) (b)

729

AGRAWAL, et al.: MOVE TABLE: SOFTWARE TOOL FOR OPTIMAL PATH FINDING

then it follows the road and leaves the road at a
point nearest to the destination, after that, terrain
is followed. In the terrain, pathfinder avoids any
obstacle and moves in the direction of least cost
[Figs 6(a)-6(b)]. The white patches in the image
show obstacle regions and should be avoided.

In multiresolution A* Search, first a path is
found on the lowest resolution version of the terrain
(256BX256B) [Fig. 7] and then each pair of nodes
of the resulting solution are mapped into the higher

Figure 6. (a), (b) Pathfinder avoiding hills, following road,
avoiding obstacles and following the terrain.

(a) (b)

the comparison of results obtained using both the
methods.

6.1 Time Analysis

The average time taken by multiresolution approach
is much lesser then the tile-based approach as the
search space greatly reduces in the lower resolution
image. In the higher resolution representation of
the image, if the sub-sampling factor is less, then
the numbers of nodes between every pair of mapped

Figure 8. Near-optimal path in high resolution representation
(not avoiding the narrow obstacle).

Figure 7. Lower resolution path, not avoiding a narrow
obstacle.

resolution representation of the terrain (512B X
512B) as a start and goal node for a search. This
process is repeated until a path is obtain in the
original terrain [Fig. 8]. But it has the disadvantage
of loosing narrow terrain structures, like narrow
obstacles resulting in a near-optimal path.

But in the tile-based approach, only those tiles
are loaded and used that are needed, resulting in
an optimal path [Figs 9(a)-9(d)]. Table 1 presents

(a)

(c)

(b)

(d)

Figure 9. (a) Tile11, contains source, (b) Tile12, not loaded,
(c) Tile21, contains destination, and (d) Tile22,
not loaded.

730

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

path points are less, which reduces the total time
taken in finding the optimal path (Table 1).

6.2 Search Space Analysis

The search space of the tile-based method is
moderate (Table 1). In the tile-based approach
only the tiles that are needed are loaded and only
the image at a given resolution is used for finding
the path points and no mapping of points is involved.
But for large-scale raster data sets the search
space of the tile-based approach will be larger
than the multiresolution approach.

6.3 Accuracy

The tile-based method always returns an optimal
path, while the multiresolution method returns a
near-optimal path [Table 1]. If there is any narrow
obstacle or passage in the original image then
it may be possible that the corresponding low-
resolution image does not contain it and the path
obtained using multiresolution algorithm will not
be optimal for the highest resolution image.

7. CONCLUSION

An improved solution to the problem of optimal
path finding has been found. Evaluation of a test
implementation has shown that it satisfies the objectives.
One possible optimisatio n for real world digital
terrain maps that are known to contain roads would
be to first search paths from the start to the nearest
road and from the nearest road to the goal. This
has been implemented here.

The proposed tile-based A* approach helps in
finding the optimal path with moderate search space
and search time for large real world digital terrain
maps. Furthermore, this approach gives more optimal
path (avoiding narrow obstacles) as compared to
the multiresolution A* approach.

The halt schedule generation module generates
the halt schedule consisting of locations where the
troops have to halt to avoid collision with other troops.
A minimum time difference is maintained between
the two troops following a common optimal path.

During the various stages of the method, many
approximations have been made. There is a very
low probability that the worst case behaviour occurs
in the real world, so the practical results seem to
be satisfactory. The memory usage and speed objectives
have been met and implementation complexity is
relatively low.

8. FUTURE SCOPE

There are a number of issues that could be
further investigated. Here are a few thoughts that
might be worthwhile to examine in greater depth:

8.1 Dealing with Moving Obstacles

One of the shortcomings of the algorithm is its
inability to deal with dynamic obstacles. If any
input parameter changes a complete new search
must be done. Thus, moving obstacles are not handled
in the proposed approach. It is probably one area

Source Destination Time analysis

(s)

Search space Accuracy

204, 352 334,160 0.126 421 Near-optimal

108, 380 30, 138 0.265 595 Near-optimal

276, 460 406, 264 1.297 1021 Near-optimal

Multi resolution
(Sub-sampling
factor= 2)
approach

172, 284 386, 32 0.203 485 Near-optimal

204, 352 334,160 1.406 248 Optimal

108, 380 30, 138 1.14 301 Optimal

276, 460 406, 264 3.891 747 Optimal

Tile-based
approach

172, 284 386, 32 1.984 307 Optimal

Table 1. Comparison of results from both multiresolution and tile-based approach

731

AGRAWAL, et al.: MOVE TABLE: SOFTWARE TOOL FOR OPTIMAL PATH FINDING

where a more effective algorithm could be most
advantageous for performance8.

8.2 Alternative Search Techniques

A genetic-fuzzy combination can be used in
path finding where the performance of a fuzzy
logic controller is improved by using a genetic
algorithm9. The use of fuzzy logic technique helps
in determining imprecise but obstacle-free paths
and the use of a genetic algorithm helps in mining
an optimal set of rules that can be used in finding
the optimal path. Hence, in genetic-fuzzy approach,
a genetic algorithm is used to find optimised Fuzzy
logic controller which is used on-line, to solve the
path planning problem for real world digital terrain.

ACKNOWLEDGEMENTS

The authors are thankful to WARDEC, Ministry
of Defence, New Delhi, officials for discussing
and explaining the requirements related with the
Move Table software tool development. The authors
express their sincere gratitude to Director, Indian
Institute of Information Technology, Allahabad, for
providing excellent facilities and environment for
research.

REFERENCES

1. Jonsson, F.M. An optimal pathfinder for vehicles
in real world digital terrain maps. The Royal
Institute of Science, Sweden, 1997. Master's
Thesis.

2. Wichmann, Daniel R. & Wuensche, Burkhard
C. Automated route finding on digital terrains.

In Proceedings of IVCNZ '04, 21-23 November
2004, Akaroa, New Zealand, 2004. pp. 107-12.

3. Stentz, Anthony. Optimal and efficient path
planning for partially-known environments. In
Proceedings of IEEE International Conference
on Robotics and Automation, May 1994, San
Diego (USA), 1994. pp. 3310-317.

4. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L. &
Stein, C. Introduction to algorithms, Ed. 2. MIT
Press, 2001.

5. Patel, Amit J. Amit's thoughts on path finding
and A-Star, 2003.
http://theory.stanford.edu/~amitp/GameProgramming/

6. Russell, Stuart J. & Norvig, Peter. Artificial
intelligence: A modern approach, Ed. 2. Pearson
Education, 2003.

7. Rodrigues, Lawrence H. Building imaging
applications with java technology using AWT
imaging, java 2D, and java advanced imaging
(JAI). Addison Wesley Professional, 2001.

8. Stentz, Anthony. The focussed D* algorithm for
real-time replanning. In Proceedings of International
Joint Conference on Artificial Intelligence, August
1995, Montreal, CA, 1995. pp. 1652-659.

9. Roy, S.S. & Pratihar, D.K. A genetic-fuzzy
approach for optimal path-planning of a robotic
manipulator among static obstacles. Inst. Engg.
(India) J., May 2003, 84, 15-22.

http://theory.stanford.edu/~amitp/GameProgramming/

732

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

Mr Anupam Agrawal received his MS (Computer Science) from the J.K. Institute
of Applied Physics and Technology, University of Allahabad in 1988 and MTech
(Computer Sc & Engg) from the IIT Madras, Chennai, in 1995. He is presently
working as Assistant Professor at the Indian Institute of Information Technology,
Allahabad. Earlier, he was working as Scientist D at the DEAL, Dehradun. His
research interests include: Real-time 3-D graphics, computer vision, artificial intelligence
and soft computing, data mining, GIS, remote sensing, and image processing. He
has more than 30 research papers to his credit.

Mr M. Radhakrishna received his MSc (Nuclear Physics) from the Andhra University
in 1962. Currently, he is Advisor and Professor at the Indian Institute of Information
Technology, Allahabad. He is also Technology Advisor to Aptech, Mumbai. His
research interests include: Artificial intelligence, automation, cognitive sciences,
computer graphics and image processing, modelling and simulation, and computer
networks. He has published more than 60 papers.

Contributors

