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ABSTRACT 

Armor technologists’ improvement of protection systems led to the design of complex systems. Given the 
risk factor on human life, increasing requirements on the ballistic resistance evaluation are imposed. Consequently, 
an increased effort is dedicated to estimating the perforation probability curve as a function of the bullet impact 
velocity. The main limitation of methods that fits a normal law to perforation velocities is their purely statistical 
character. A Brownian-based approach that couples the system response variability and physics was proposed using 
the Chi-square and Kolmogorov-Smirnov criterion function for model parameters estimation. One major limitation 
of this inference approach is the large experimental database required for its execution. The contribution of this 
paper is the introduction of the maximum likelihood inference for parameters estimation of the Brownian-based 
approach. The agreement between the obtained results and the experimental ones confirms the appropriateness of 
the likelihood inference to solve the studied problem. Moreover, the estimations uncertainty was analyzed and 
compared to the existing method ones. It was observed that the proposed model reduces the confidence intervals 
on key velocity estimations. Accordingly, the present work encourages the adoption of this proposed methodology 
in a laboratory context with a restrained sample size. 
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NOMENCLATURE
Vi	 : Velocity of the bullet at the time step i
Vx	 : Impact velocity of the bullet with x % 
	   probability of perforation
V50	 : Impact velocity of the bullet with 50 %  
	   probability of perforation
U	 : Binary outcome of the target response, 0 if  
	   perforation and 1 if not
V(t)	 : Bullet instantaneous velocity
a(V,t)	 : Bullet instantaneous deceleration
σ(V,t)	 : SDE’s diffusion
W(t)	 : Wiener or Brownian motion process
X(t)	 : Bullet instantaneous position
Zx	 : x percentile of the standard normal  
	   distribution
ti	 : Time step i 
L(a,σ)	 : Likelihood function 
P	 : Probability of perforation
j	 : jth sample of the experimental database
H	 : Target thickness
Rt	 : Effective resisting stress to the penetration
ρp	 : Impactor density

Leff	 : Impactor effective length
χ2

1	 : Chi square law with 1 degree of freedom
CI95%	 : Confidence interval with a 5% confidence 
	   level, the super and subscript indicate the upper  
	   and lower limits of the interval. 

1.	 INTRODUCTION
Ballistic materials are protection materials designed 

to defeat a variety of ballistic threats such as bullets and 
fragments. Performance enhancement of these materials 
has gained considerable attention in recent years. Thus, 
performance assessment metrics are required during either the 
materials research and development process or final control 
quality (acceptance tests and end-of-life tests). The typical key 
performance indicator is the limit velocity V0, the maximum 
bullet velocity at which the considered bullet never perforates 
the assessed target. Given the complexity of the determination 
of this maximum impact velocity that still gives zero probability 
of perforation1, this measurement is generally reserved for final 
control quality. Therefore, the V50 velocity, where V50 is the 
bullet velocity with 50 % probability of complete penetration 
of the given target, is used during the earliest stages of 
material improvement. Several methods have been developed 
for the estimation of the V50 and even the whole curve of the 
perforation probability as a function of the bullet velocity. 
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An exhaustive literature survey is available 2. These methods 
analyse the coupled observations of the bullet impact velocity 
and the target response coded in a binary outcome (occurrence 
or not of perforation). The STANAG 29203 approach gives 
an estimate of the V50 velocity based on small sample size 
but it does not provide any information about the dispersion 
of the impact response distribution. Langlie4, Kneubuehl5, 
and Probit6 implement advanced statistical tools leading to 
a better description of the system variability. Therefore, in 
addition to the V50 velocity, an estimate of the sample standard 
deviation σ̂  is provided, under the assumption of the normality 
of the impact response distribution. Furthermore, the stated 
assumption allows the estimation of any percentile of interest 
Vx as follows:  

óZV=V xx −50 s	 (1)
where, Vx is the impact velocity corresponding to x % of the 
probability of perforation and Zx is the equivalent percentile of 
the standard normal distribution.

A literature survey reveals that authors7–9 have extensively 
discussed these methods’ performance. The common 
conclusion is that existing methods produce significant 
differences in estimating perforation probabilities at high and 
low impact velocities (extreme values probabilities) despite the 
similarities shown when estimating the V50. For the sensitivity 
analysis of binary outcome experiments, Dixon10 explained that 
the normality assumption is only valid around the mean value 
according to the central limit theorem. This result encouraged 
investigations for a new modelling paradigm that is not based 
on the normality of perforation velocities.

Recently, Coghe11 & Tahenti12 introduced the concept of 
stochastic differential equations to model the stochastic response 
of ballistic impact phenomena. This first implementation used 
the Chi-square and Kolmogorov-Smirnov goodness of fit tests. 
The proposed inference requires an experimental estimation of 
the perforation probability per impact velocity. Therefore, the 
collected experimental database has to be sufficiently large.  
Accordingly, the aim of this paper is the development of a 
maximum likelihood inference tool that extends the application 
of this Brownian-based approach to samples with a limited size. 
In parallel, uncertainty quantification on model estimations is 
executed based on the maximum likelihood inference results 
under sample size restriction. First, the experimental database 
is introduced. Then, the stochastic modelling concept is 
explained. Afterwards, the results for the Brownian-based 
approach using maximum likelihood inference are presented 
and discussed.

2.	 METHODOLOGY
The goal of this stochastic approach is to model the 

impact response variability based on the bullet motion within 
the target. Newton’s second law is applied to model the 
penetration process with additional fluctuations issuing from 
complementary “random” forces. Consequently, a stochastic 
differential equation (SDE) model is introduced to describe 
the observed randomness. In the first section, the experimental 
database is introduced. Next, the proposed modelling concept 
is explained. Finally, the likelihood inference method is 
introduced for model parameters determination.

2.1	 Experimental Results
The experimental database is composed of ballistic 

impacts of a 5.56x45 mm NATO projectile against two mild 
steel plates spaced by a 20 mm gap. Table 1 provides a detailed 
description of the impact configuration. The first column 
illustrates the parameters of the used bullet. The second column 
supplies the parameters of the target. 

The experimental observation is the bullet impact velocity 
and the material response coded in a binary outcome (U=0 if 
complete penetration takes place and 1 if partial penetration 
occurs). The number of observations that were recorded is 
N=581. In addition, the experiments were conducted to identify 
a zone of mixed results to allow the comparison of the model 
results with those provided by existing methods. The ballistic 
resistance of the studied system was characterized using V1, V50 
and V99 estimations. The subscripts 1, 50 and 99 indicate the 
equivalent probability of perforation at this impact velocity. 
Different methods exist in the literature for the V50 velocity 
estimation or even the entire curve estimation of the perforation 
probability. Table 2 summarizes the estimation results of the 
established database using the empirical histogram and the 
Probit6 method.

50

Table 1. Configuration parameter

Bullet Target

Designation FN SS109 Front plate 
thickness 16 mm

Materials lead core and a steel 
penetrator in its tip. Air gap 20 mm

Masse 4,011 ± 0,1 g Back plate 
thickness 4 mm

Impact 
velocity

Measured at 2.5 m 
before the target

Test plate 
dimensions 

500 mm x 
500 mm

Impact 
condition Normal to the plate Material Mild steel

Table 2. 	 Impact results of two spaced mild steel plates impacted 
by a 5.56x45 mm NATO Ball.

Velocity method V1 (ms-1) V50 (ms-1) V99 (ms-1)
Histogram 488.15 512.47 543.78
Probit 484.92 513.92 542.91

2.2	 Brownian-Based Approach
The modelling of the stochastic system behaviour under 

impact loading is based on the implementation of Newton’s 
second law. The bullet deceleration is the sum of a deterministic 
term and a fluctuating term. The latter simulates the random 
resistance to the bullet penetration to reproduce all its possible 
paths within the target. Accordingly, the bullet motion within 
the target is governed by the following stochastic differential 
Eqn. (SDE):  
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where, a(V,t) is the drift coefficient which defines the 
bullet deceleration, s(V,t) is the SDE’s diffusion that will 
reproduce the system response variability and W(t) is the 
Wiener process. Accordingly, the bullet motion is described by 
the following system: 
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where, X(t) is the instantaneous bullet position within the target 
material. The initial state is defined by the bullet position X=0 
and the impact velocity V=Vi at the front face of the target. The 
diffusion process V(t) solution of the SDE defined in Eqn. 2 is :
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The term I in Eqn. 4 is a deterministic integral of a bounded 
function (the bullet deceleration). The Riemann–Stieltjes 
approximation leads under a given time step discretization of 
the interval [0,t] to :
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. The integral II is 
a stochastic integral. Itô stochastic integration of the Wiener 
process is equivalent to the Riemann-Stieltjes sum where the 
integrand is evaluated at the left endpoint of the observation 
interval [ti-1, ti]:
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Applying the previous calculation on a time step interval, 

[ti-1, ti], leads to the Euler-Maruyama scheme for numerical 
integration. Then, Eqn. 4 is discretized as:
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where, the bullet deceleration a(ti-1, Vi-1) is considered 
constant according to the Robins-Euler formula. This choice 
is motivated by the research findings of Rosenberg13. The 
diffusion coefficient is assumed constant to simplify this first 
implementation of stochastic processes to model the problem 
under consideration. A random bullet trajectory is provided 
for each simulated Brownian path. For this bullet/target 
combination, the impact duration is of the order of magnitude 
of 1 ms as a maximum limit.  Thus, a time step dt=T/29=0.2 
ms-1 is utilized in this numerical integration which provides 
the same integration parameters12. Physically, the bullet’s 
instantaneous velocity is limited to the interval [0, Vi]. For 
this reason, the bullet motion computation is stopped at the 
first-time step that yields a negative velocity which prevents 
the computation of non-physical data (which is known as 
the stopping time that is equivalent to the drop of the bullet 
velocity to zero). Furthermore, the comparison of the depth of 
penetration X with the total target thickness is used to identify 
the occurrence or not of target perforation.

2.3	 Maximum Likelihood Inference 
The functional form of the SDE system that describes the 

bullet motion is supplied. However, the parameters (a) and (s) 
are still unknown. The inverse problem is addressed. In the 
first step, Tahenti12 applied the Chi-square and Kolmogorov-
Smirnov goodness-of-fit tests to find estimators of (a) and 
(s). The disadvantage of this approach lies in the need to 

have experimental estimations of the perforation probability 
at a given set of bullet impact velocities. Thus, large sample 
size is required for sufficiently precise estimations. In the 
present work, the maximum likelihood inference is proposed 
to detect the model parameters that better reproduce the 
observed stochastic behaviour of the impact events. Langlie4 
already applied the likelihood inference on one-shot item tests 
involving N experimental observations as follows:
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where, the conditional probability of perforation/ 
no-perforation, P(Uj \Vij), is defined like:
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The computation of the likelihood function requires 

the evaluation of the perforation probability, Pj, for all the 
observation couples (Vij, Uj) of the sample. Langlie [3] used the 
normality assumption of the perforation probability to compute 
Pj where the unknown distribution parameters are determined 
by the likelihood inference. The idea in this implementation is 
to use the stochastic model for Pj estimation. Indeed, for each 
observation couple (Vij, Uj), the conditional probability P(Uj\Vij) 
is computed numerically based on the stochastic model using 
Monte Carlo simulations. The higher the number of Monte 
Carlo replications Nmc is, the more accurate the numerical 
estimation of the probability Pj is. In this work, Nmc=105 
Brownian paths are generated. The perforation probability is 
computed by dividing the number of detected perforations by 
the total number of observations Nmc.

The parameter (a, s) selection is governed by the 
maximization of the probability L(a, s) that the stochastic 
model generates the experimentally observed sample (Vij, Uj). 
Therefore, the maximization problem of L(a, s) associated 
with the variables (a, s) has to be solved. The advantage of 
the likelihood inference lies in its direct application to physical 
measurements rather than using results of observations post-
processing as already advanced in Tahenti12.

3.	 RESULTS AND DISCUSSION
In the subsequent section, the model results based on the 

maximum likelihood inference technique will be displayed 
and discussed. In the first step, the model behaviour regarding 
the used sample size is examined by applying the inference 
technique to the complete sample and a reduced subset of the 
initial sample. Later, the stochastic model results are compared 
to Probit estimations. Obtaining a good agreement between 
the stochastic model and existing models is evidence of the 
appropriateness of the implemented likelihood inference 
technique for this modelling approach. Additionally, confidence 
intervals on the model’s parameters estimation are established 
to inspect their effect on key velocities estimations. Again, the 
comparison of the obtained results with Probit results permits 
the evaluation of the model performance using the maximum 
likelihood inference technique.  

3.1	 Inference Results 
One major constraint in ballistic performance assessment 

is the limited number of test items. For this reason, the statistical 
inference is tested both on the complete available database and a 
reduced subset of it. It is useful to be mentioned that the reduced 

I II
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sample contains N=20 ballistic impacts (9 perforations and 11 
non-perforations shots). Table 3 summarizes the statistical 
inference results. The different outcomes of the statistical 
estimation (the values of â and σ̂ ) are displayed in Table 3. 
In addition, for each parameter estimation, the complete and 
reduced sample inference is referenced, respectively, under the 
full and subset label in the first column of Table 3. Finally, the 
maximum likelihood estimator (MLE) is the location of the 
best-found maximum of the likelihood function (MLF).

estimation with experimental and Probit results. For each 
impact velocity, the numerical resolution of the equations 
system 7 outputs a simulation of the bullet motion within 
the target. Several replications of this simulation deliver an 
estimation of the perforation probability. Accordingly, the 
mean of the perforation probability is evaluated for each 
impact velocity based on Monte Carlo simulations. First, this 
procedure is executed using the parameters estimation of the 
Brownian motion approach with the full experimental database. 
Next, the same procedure is applied to a reduced subset of the 
experimental database. In parallel, the Probit method is applied 
to this same reduced subset for comparison purposes. 

Figure 1 displays the perforation probability curves as 
a function of the impact velocity. Figure 1(a) serves for the 
analysis of the database size effect on the model parameters 
estimation using the maximum likelihood inference. It displays 
the obtained results using the stochastic model applied to the 
full experimental database and its subset. The black (dash-dot) 
and the blue (dashed) curves represent the obtained results 
using the full and the subset databases, respectively. Alongside, 
the point estimations of the experimental ones per class of 
impact velocities and their corresponding 95 % confidence 

Table 3. Inference results for the stochastic model’s parameters

Database Parameter MLE MLF

Full
â 2.3610 × 107

1.0733× 10-97

σ̂ 4567.05

Subset
â 2.3718 × 107

9.2609× 10-5

σ̂ 4250

To verify the model results, the research findings of 
Rosenberg13 are used. In short, Rosenberg established an 
analytical formula for the estimation of the V50 velocity based 
on numerical simulation results of impact phenomena. The 
following Eqn. was obtained:
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where, Rt is the effective resisting stress, ρp is the impactor 
density and Leff is the impactor effective length. Furthermore, 
in14 it was proven that this formula is still valid for the impact 
of metallic plates by rigid projectiles, as is the case in this 
work. In fact, regarding the overall process, the constant 
effective resisting force Rt delivers the same global work to the 
system, despite that in reality the bullet deceleration during the 
penetration process is time-dependent. Hence, the average of 
the bullet deceleration can be estimated using: 
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Considering the experimentally estimated ballistic 

limit 1
50

513V ms-»  and the target thickness H=5.6 mm, the 
average deceleration is computed using Eqn. 11 and is equal 
to a=2.35x107 ms-2. The maximum relative error between 
the model results and the average deceleration is thus 0.9 % 
(regarding the results of the subset and the complete databases). 
We conclude that the results of the maximum likelihood 
inference for the stochastic model are in good agreement with 
Rosenberg’s calculations. Then, the obtained results based 
on the maximum likelihood inference are in line with the 
theoretical predictions of the deceleration parameters. Next, 
the analysis of the stochastic model performance will be based 
on the comparison of the perforation probability estimations 
with the experimental and existing methods ones.

3.2	 Perforation Probability Estimations 
The maximum likelihood inference is fundamental for 

parameters estimation of the Brownian motion approach 
using an experimental database with a limited size. The bullet 
deceleration estimation was verified using the Rosenberg 
result. A second verification tool of this inference method 
may be based on the comparison of the perforation probability 

Figure 1. 	 Probability of perforation versus the projectile impact 
velocity.

(b)

(a)
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intervals are displayed. The Clopper and Pearson method for 
binomial distributions15 is called for the construction of the 
confidence intervals. It can be noted that the two curves pass 
by the confidence intervals of the experimental estimations 
of the perforation probability. Moreover, the full database 
implementation detects more variability in the target response. 
Effectively, the transition of the relative probability curve from 
0 to 1 requires a slightly wider interval of impact velocities. 
Figure 1(b) represents the perforation probability estimation 
as a function of impact velocities based on the stochastic 
(the dashed/blue curve) and the Probit (the dotted/red curve) 
methods using a subset of the experimental database. 

The excellent agreement between the results testifies 
the competing performance of the stochastic model with the 
maximum likelihood inference. The main limitation of the 
Probit method is that it is purely statistical. Conversely, this 
stochastic model implements an analytical formulation of the 
physical phenomena with a stochastic term to describe the 
observed randomness. This methodology can then follow the 
progress in the field of penetration mechanics by incorporating 
new knowledge on bullet deceleration, the randomness of the 
phenomenon regarding the target thickness, the bullet velocity 
and the availability of velocity measurements during the 
penetration process.

3.3	 Uncertainty Quantification
The next move in the model analysis will be the 

quantification of the model uncertainty. Point estimates are 
meaningless without information about their corresponding 
CIs. Maldague7, already, computed the confidence intervals 
(CI) relative to key velocities estimations (V1, V50, V99) using 
the Probit method. He pointed out that the main drawback of 
methods based on the normality assumption of perforation 
velocities is the large CIs on the estimations using small 
experimental samples. The same analysis is conducted 
hereafter to examine if the proposed methodology reduces the 
CIs on these estimates or not. For this reason, profile likelihood 
and likelihood ratio concepts are introduced to be applied in 
the present context.   

3.3.1	 Uncertainty on Model Parameters Estimations
For the implementation of the Brownian motion model 

using the small sample case, Fig. 2 shows the likelihood 
function plot while Fig. 3 shows the negative log-likelihood 

function contour plot as a function of the bullet deceleration 
and diffusion coefficient of the penetration process.

The outputted plots are the outcome 
of a grid search optimization applied to the 
following design space: 
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[0,18*10^3]. On the likelihood curve,  
Fig. 2, higher points are estimates for model parameters that best 
fit16 the experimental results. The curve is steep and relatively 
symmetric regarding the bullet deceleration coefficient. So, as 
the parameter estimation moves from the maximum value, the 
fitting quality degrades rapidly. On the other side, the likelihood 
curve is flat and skewed regarding the diffusion coefficient 
dependence. Then, it is harder to find the diffusion parameter 
that best fits the experimental data. Given that confidence 
intervals denote the parameter ranges for which the model 
still fits the data with a given tolerance limit, the confidence 
interval on the process diffusion is expected to be larger than 
the one related to the bullet deceleration. To establish the CIs 
on the model parameters using likelihood inference, the profile 

Figure 2. Likelihood function plot.

Figure 3. Contour plot of the negative log-likelihood function.

likelihood and the likelihood ratio concepts are called.
In the case of small sample use with no guarantee 

regarding the normality of the maximum likelihood estimator, 
it is more accurate to use the likelihood ratio test for CIs 
construction17. Indeed, to determine the CI on the process drift, 
a, the likelihood ratio states that:
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the difference log(L(a,s))-log(Ls(a)) multiplied by two 
follows a  χ1

2
law with 1 degree of freedom where, L(a,s) is 

the global minimum of the negative log-likelihood and Ls(a) is 
the likelihood profile related to the deceleration parameter, a. 
This later is formed by fixing a to a given range of values and 
minimizing the negative log-likelihood in the function of s for 
each a. Going back to Fig. 3, The contours mark the evolution of 
the negative log-likelihood function regarding the parameters 
(a, s) in the design space. Accordingly, the profile likelihood 
for the process parameters a (or s) is established where for 
each value of a (or s) the minimum value of the negative log-
likelihood is sought along the vertical (or horizontal) line. 
Figure 4(a) displays the likelihood profile dependence on the 
bullet deceleration, a, while Fig. 4(b) presents the negative 
log-likelihood function evolution over the diffusion s. We 
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where, a is the confidence level chosen equal to 5 % in this case 
with a related critical value of the Chi-square variable equal 
to 
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=3.84. Thus, the cut-off of the likelihood profiles is 
equal to 
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. Curves in Fig. 4 learn that the 
confidence intervals are [2.29x107, 2.5x107]ms-2 and [1928, 
15836] on the drift a and diffusion σ parameters, respectively. 

(a)

(b)
Figure 4. Likelihood profile related to the model parameters.

would like to mention that the χ1
2  law degree of freedom is 

computed by making the difference between the total number 
of the model parameters (equal to two) and the number of fixed 
parameters for each profile likelihood (equal to one).

The likelihood ratio test specifies the profile likelihood 
limits on the drift parameter, a, that satisfy the little differences 
requirements regarding the global unrestricted obtained 
minimum of the NLL (log(L(a,s))). This is equivalent to 
Reference16:
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	              (13)

Table 4. 	 Comparison of V1, V50, and V99 confidence intervals estimation using the stochastic models and the Probit methods under 
sample size restriction

Velocity method
V1 (ms-1) V50 (ms-1) V99 (ms-1)
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Brownian 
approach
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Figure 5. 	 Variability of the perforation probability with the 
bullet impact velocity.

Now, we move to quantify the effect of these parameter 
estimation uncertainties on key velocities estimations V1, V50, 
and V99.

3.3.2.	 Confidence Intervals on Key Velocities Estimations
Now, the confidence intervals on key velocities estimation, 

under sample size restriction, may be established. The goal is 
to verify if the proposed methodology improves the uncertainty 
on key velocities estimation regarding existing methods 
estimations. Again, we propagate the model parameters’ 
uncertainty to the outputted results using Monte Carlo error 
propagation. The model drift and diffusion are uniformly 
selected from their corresponding confidence intervals. Then, 
for each couple (a, s), the perforation probability curve is 
estimated. 

Figure 5 shows all the possible point estimations 
of the perforation probability for each impact velocity, 
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. Alongside, the red curve illustrates the mean 
perforation probability for each impact velocity. Maldague7, 
computed the confidence intervals on key velocities estimation 
(V1, V50, and V99) while inspecting the normality assumption for 
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perforation probability estimation under sample size limitation. 
He estimated the normal law parameters and their confidence 
intervals using the Probit method with maximum likelihood 
inference. The second raw of Table 4 shows his results 
calculated using uncertainty propagation. In the same way, the 
CIs on key velocities using the Brownian motion approach are 
evaluated by inspecting the plotted data in Fig. 5. The third 
row of Table 4 presents the retrieved results. The obtained 
results for the CIs limits and their equivalent deviations to the 
experimental ones are registered under the value and deviation 
label using each method. 

Again, it is noted that the experimental estimation belongs 
to the determined confidence intervals. Moreover, the width of 
the CI intervals on V1 and V99 is smaller using the Brownian 
motion approach. Effectively, the Brownian motion approach 
provides a CI equal to 104 ms-1 and 99 ms-1, while the probit 
method estimates a CI of 180 ms-1 and 180 ms-1 for the V1 and 
V99, respectively. Moreover, the confidence intervals (CIs) 
estimated using the Brownian-based method are included in the 
those calculated using the Probit method. However, we remark 
that the CI of the V50 is wider than the equivalent estimation 
using the Probit method under the normality assumption of 
the perforation velocities. The interval width is 14.64 ms-1 
and 23 ms-1 for the V50 using the probit and the Brownian-
based approach, respectively. Finally, the deviation of the 
interval limits to the experimental estimation is lower using 
the Brownian-based approach for the V1 and V99.  However, it 
is slightly higher for the V50.

Thus, the proposed methodology slightly ameliorates the 
uncertainty on key velocities estimation even under the limiting 
hypothesis of constant diffusion and bullet deceleration. These 
results encourage deeper research for a better understanding 
and characterization of the process coefficients.

4.	 CONCLUSION
The Brownian motion approach is a recently proposed 

modelling method for ballistic resistance evaluation. In this 
first study, Goodness-of-fit tests, Chi-square and Kolmogorov-
Smirnov criteria were implemented. The main limitation of 
this methodology is the need for large experimental databases. 
The likelihood inference is fundamental for applying the 
Brownian motion approach to feasible laboratory samples. 
For this purpose, the model has been tested on a large-
sized experimental database and a subset of it. The model’s 
estimated deceleration matches its prediction based on 
Rosenberg’s formula. To further analyze the model results, 
the perforation probability curve is evaluated. Again, a good 
match was observed between the experimental estimation of 
the perforation probabilities and the numerically estimated 
ones using the large and small-sized databases. Moreover, 
the comparison of the stochastic model results with the Probit 
results confirms the competitive performance of the likelihood 
inference for the model’s parameters estimation under a sample 
size restriction. In addition, based on the likelihood inference, 
it was observed that the Brownian motion approach slightly 
reduces the uncertainty on key velocities estimation compared 
to the Probit method. In contrast, the advantage of the stochastic 
model over existing methods is manifested by its ability to 
incorporate analytical formulation of the system physics. The 

bullet deceleration is included in this implementation while 
further characterization of the model’s parameters may involve 
more physical parameters of the impact event.

REFERENCES 
1. 	 National Research Council. Opportunities in protection 

materials science and technology for future army 
applications. The National Academies Press, 2011. 
doi:10.17226/13157

2. 	 Tahenti, B.; Coghe, F. & Nasri, R. Ballistic limit estimation 
approaches for ballistic resistance assessment. Def. Sci. J. 
2020, 70(1), 82-89. 

	 doi:10.14429/dsj.70.14122
3. 	 Eriksen, J. Standardization Agreement (STANAG) 2920 

Ed 3 Ballistic Test Method for Personal Armor Materials 
and Combat Clothing. Published online 2006.

4. 	 Langlie, H. A reliability test method for” one-shot” items. 
DTIC Document, 1963.

5. 	 Kneubuehl, B.P. Ballistic protection. Swiss Def Procure 
Agency Thun. Published online 2003.

6. 	 Finney, D. Probit analysis: A statistical treatment of 
the sigmoid response curve. Cambridge University 
Press, 1952. https://dspace.gipe.ac.in/xmlui/bitstream/
handle/10973/36028/GIPE025784.pdf?sequence=3.

	 (Accessed on June 28, 2022).
7. 	 Maldague, M.; Coghe, F. & Pirlot, M. Evaluation of the 

gauss probability function in case of low (high) values 
of perforation probability. In Proceedings of the Personal 
Armour Systems Symposium. 2010.

8. 	 Mauchant, D.; Rice, K.D.; Riley, M.A.; Lebber, D.; 
Samarov, D. & Forster, A.L. Analysis of three different 
regression models to estimate the ballistic performance 
of new and environmentally conditioned body armor. 
National Institute of Standards and Technology, 2011. 
NIST IR 7760. 

	 doi:10.6028/NIST.IR.7760
9. 	 Johnson, T.H.; Freeman, L.; Hester, J. & Bell, J.L. A 

comparison of ballistic resistance testing techniques in 
the department of defense. IEEE Access. 2014, 2,1442-
1455. 

	 doi:10.1109/access.2014.2377633
10. 	 Dixon, W.J. & Mood, A.M. A method for obtaining and 

analyzing sensitivity data. J. Am. Stat. Assoc., 1948, 
43(241), 109-126. 	

	 doi:10.1080/01621459.1948.10483254
11. 	 Coghe, F.; Lenom, A.; Lauwens, B.; Tahenti, B.; 

Maldague, M. & Pirlot, M. The V50 approach revisited: 
Application of the brownian motion theory. In 29th 
International Symposium on Ballistics, 2016.

12. 	 Tahenti, B.; Coghe, F.; Nasri, R. & Pirlot, M. Armor’s 
ballistic resistance simulation using stochastic process 
modeling. Int. J. Impact Eng. 2017, 102, 140-146.

	 doi:10.1016/j.ijimpeng.2016.12.009
13. Rosenberg, Z. & Dekel, E. Terminal Ballistics. 2nd 

ed. Springer Singapore. https://link.springer.com/
book/10.1007/978-981-10-0395-0

	 (Accessed on June 28, 2022). 
14. 	 Rosenberg, Z.; Kositski, R. & Dekel, E. On the perforation 



TAHENTI, et al.: ANALYSIS OF THE BROWNIAN MOTION APPROACH FOR BALLISTIC RESISTANCE EVALUATION

559

of aluminum plates by 7.62 mm APM2 projectiles. Int. J. 
Impact Eng., 2016, 97, 79-86. 	

	 doi: 10.1016/j.ijimpeng.2016.06.003
15. 	 Hahn, G.J. & Meeker, W.Q. Statistical intervals: A guide 

for practitioners. John Wiley & Sons, 2011, 16. Bolker B. 
Likelihood and all that. May 2018. 

17. 	 Cole, S.R.; Chu, H. & Greenland, S. Maximum likelihood, 
profile likelihood, and penalized likelihood: A primer. 
Am. J. Epidemiol., 2013, 179(2), 252-260. 

	 doi:10.1093/aje/kwt245

CONTRIBUTORS

Dr Beya Tahenti obtained Joint PhD in Mechanical Science and 
Engineering from the National Engineering school of Tunis and 
the Royal Military Academy of Belgium. Her areas of interest 
include: Terminal ballistics and related fields like material 
and mechanical science, fracture mechanics and metallurgy. 
Presently, she works on teaching ballistics and weapon systems. 
Her contribution to this paper include: Literature survey, method 
and results analysis and the preparation of the manuscript.

Dr Frederik Coghe obtained Joint PhD in Material Science 
and Engineering from the University of Ghent and the Royal 
Military Academy of Belgium. His research interests include:  
Material characterization, engineering and testing, metallurgy, 
ballistic impact, and fracture mechanics. 
His contribution to this paper include: Guidance in the preparation 
of the paper’s overall architecture and revision.

Ms Irène Ndindabahizi is a Doctoral candidate at the Royal 
Military Academy in Belgium. She holds a Master’s degree 
in Aerospace engineering from the University of Liège. Her 
research interests are in the field of Vulnerability and Lethality.
Her contribution to this paper include: Guidance in the preparation 
of the paper’s overall architecture and revision.

Prof Rachid Nasri is a Professor at the National Engineering 
School of Tunis in the Mechanical Engineering Department. He 
is working on mechanical engineering, kinematics and dynamic 
analysis with a specialized interest in mechanical vibrations 
and finite element methods.  
His contribution to this paper include: Guidance in the preparation 
of the paper’s overall architecture and revision.


