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ABSTRACT

Two aspects involved in automatic target recognition namely, (i) Location and identity
estimation (LIE) of a target by fusing infrared (IR) and acoustic sensor data, and (ii) centroid
tracking for target state estimation using IR sensor data are discussed in this paper. The LIE has
been achieved using a combination of Bayesian fusion and one of the three search algorithms
namely, metropolis hastings (MH), simulated annealing (SA) and gradual greedy (GG). It was
observed that the performance of the GG search algorithms was better in terms of success rate
which has been evaluated through Monte Carlo simulations. For tracking of the centroid, an
algorithm, where the centroid of the gray level image is tracked using probabilistic data association
filter, has been implemented. Simulated data results indicate good tracking performance of this
algorithm. For robust tracking of centroid, the track from the imaging sensor was fused with the
track from ground-based radar using state vector fusion. It was observed that fusion generates
robust tracks even when there is data loss in one of the sensors.

 Keywords: Data fusion, identity estimation, centroid tracking, centroid computation, imaging sensor
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1.  INTRODUCTION

Automatic target recognition (ATR)1 is one of
the key components of present and future defence
weapon systems to be used on autonomous as well
as manned vehicle missions. ATR is extremely
important for the safety and early warning of the
perceived threat in air traffic control or air defence
systems. One of the essential ingredients of ATR
process involves automatic target acquisition,
identification and tracking by processing a sequence
of images. In such applications, suitable algorithms
for registration, detection, classification, feature
computation would be required for target location
and identity estimation. Further, if the targets are
moving, algorithms for tracking targets would involve
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aspects like segmentation, centroid computation
and tracking using appropriate algorithms. In addition,
if multiple sensors are present which give additional
information, all the information could be combined
in an appropriate way, not only to generate inference
about the situation but also increase the confidence
in the ATR process itself.

This paper presents two aspects involved in
ATR: (i) Location and identity estimation (LIE) of
a target by fusing infrared (IR) and acoustic data,
and (ii) tracking of a centroid for target state
estimation using IR sensor data. While the first
aspect is handled using Bayesian fusion and search
algorithms2, the second aspect is solved using a
centroid tracking algorithm3 (CTA).
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The IR sensor detects all the targets in its field
of view (FOV) and generates images, which provide
information of both the target location and identity.
Acoustic sensor provides data which help determine
the direction of the target. These sensors outputs
or their extracted features cannot be fused directly
since the information from the two sensors is disparate.
Bayesian approach2 enables fusion of such data by
fusing the posterior probabilities of the sensor outputs.
Inference about the scene namely the location and
identity of objects, using Bayesian fusion is obtained
by:

(i) Formulating a prior distribution for the scene,

(ii) Constructing probability models for multiple-
sensor data conditioned on the scene, and

(iii) Conducting unified inference about the scene
using the posterior distribution of the scene for
given sensor data.

Probabilities of the respective sensors are
obtained as the product of the current likelihood
and prior probability of the estimate of the scene.
The method assumes that there exists a space of
all the possible estimates where every estimate
has a corresponding posterior probability. In this
case, the posterior probability of a given estimate
is obtained by fusing the data from the acoustic
sensor and the IR sensor resulting in the posterior
distribution. Since the ultimate goal is to obtain
the optimal estimate or an approximation to an
optimal estimate, the actual problem involves obtaining
an estimate with maximum posterior probability
from the posterior distribution. This is done using
search algorithms.

Tracking the moving targets by using image
data involves processing images from a target of
interest and producing at each time step, an estimate
of the target's current position and velocity vectors.
Uncertainties in the target motion and in the measured
values, usually modeled as additive random noise,
lead to corresponding uncertainties in the target
state. In this paper, the CTA that uses probabilistic
data association filter (PDAF)3,4 for the image
centroid tracking problem is presented.

2 . TARGET LOCATION AND IDENTITY
ESTIMATION

In this section, details of data synthesis, mathematical
models for the IR and acoustic sensors, sensor
likelihood estimation for IR and acoustic sensors,
Bayesian fusion for computation of posterior distribution
and the search algorithms used are presented. Figure
1 shows the information flow diagram for target
location and its identity estimation using Bayesian
fusion and search algorithms.

2.1 Data Synthesis

The data scenario forms the input to the
sensor mathematical models for generating the
sensor data. For simplicity the scene X

s 
is considered

to be 2-D. The targets are assumed to be at
fixed orientations and of the same size. The
same techniques could be applied to targets
with different orientations. In case of IR sensors,
the input to the sensor is the radiations emitted
from the targets present in the FOV. The intensity
of the image pixel represents the radiation from
the targets. For acoustic sensor the input is the
acoustic signals from the targets. Since acoustic
sensor can detect only the direction of targets,
the synthesised data for a mathematical model
is a vector consisting of directions only.

The input to the sensors is synthesised by
using the concept of marked spatial point process
(MSP). If S denotes the continuum space, then
the realization of a random point process on S is
a set of points having coordinates in S. In a
marked point process5,6 each point in the set of
points is a realisation of point process that is
associated with some auxiliary variable. The continuum
space could be one-, two- (area) or three-dimensional
(volume). When the space considered is a domain
of area or volume, the marked point process becomes
an MSP process. For scenario simulation, auxiliary
variables associated with the points are considered
as the locations and identities of the targets.
Four typical two dimensional scenes with two
targets  generated by a MSP process are:

),,,( 4321 sssss XXXXX
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where, P(z) is the Poisson mean at z which is
obtained by the convolution of the ideal image I

o

with the point spread function h of the IR camera:

P(z)= poisson [I(z)], where I=I
o
+w and R(z)

is readout noise at z; D(z) accounts for a dead
pixel at z; and B(z) is black current at z.

For simplicity only the P(z) contribution to Y
1

is considered in the simulations. Random noise
with a known standard deviation (

1
) is added to

the generated image to account for the readout
noise. Figure 3 shows the output of the IR sensor
for a typical scenario from which it is clear that
information on both target identity and location
can be obtained from the IR sensor data.

Mathematical model for acoustic sensor is:

The acoustic signal received by a linear array
of m equally spaced sensors at time t is

2
1

( ) ( ) ( ) ( )
p

i i
i

Y t A t d w t

                   

(2)

In these matrices, each column represents a
target with the first 2 rows giving the x, y coordinates
of the target location and the third row gives the
identity of the target (1 or 2). It can be observed
that in each case, total number of targets is varying
(except the last two), also the positions and identities
of the targets are random. The synthesised scenario
data for the space X

s 
is shown in Fig. 2.

2.2 Mathematical Models for IR and
Acoustic Sensors

The mathematical model for the IR sensor is:
If Y

1 
is an image as in Fig. 2, q denotes the

locations of targets contained in the true scene,
and z is a typical pixel in the image Y

1
, then
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Figure 1. Flow diagram of target location and its identity estimation using Bayesian fusion.
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where p is number of target in the scene; w(t) is
the measurement noise at time t,  A

i 
is the amplitude

of the signal from the ith target; and d(
i
) is the

direction vector associated with ith target and is
given as

cos( ) ( 1) cos( )( ) [1, ,..., ]i ij j m T
id e e

Figure 4 shows the synthesised data for acoustic
sensor model with the position of acoustic sensor
at a

x
,a

y 
= (0,150). The simulated scene consists of

three targets along the directions of  84o, 45o and

45o. The direction of targets is wrt acoustic sensor
location on which the signals from the target shown
with white lines strike. The response of acoustic
sensor which is obtained by plotting amplitude for

 
ranging from 1o to 90o, is also shown in the

Figure. It is observed that the response of acoustic
sensor shows peaks along the directions of the
target, since the three targets are present along
two directions 45o and 84o, two main peaks can be
seen along those directions.

2.3 Sensor Likelihood Computation and
Bayesian Fusion

Bayesian sensor fusion methodology fuses the
IR sensor and acoustic sensor outputs by fusing
their posterior probabilities. The posterior probabilities
for the sensor outputs are their likelihood functions.
The IR camera can detect all the aspects of a

scene X and the data  )(),...,2(),1( 111 jYYY  are assumed

to be conditionally independent for a given X. These
assumptions lead to a Poisson likelihood function
for infrared sensor data Y

1 
for a given X.

Figure 2. Synthesised images generated using the
elements X

s
. 
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Figure 4. Simulated scene and corresponding response of
acoustic sensor. 

Figure 3. Generation of infrared image from the model X
s
. 
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The above equation is simplified using a Gaussian
likelihood function2:

2
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where F||||

 

is the Frobenius norm of a matrix, and

2
1

 

is the variance of Y
1 

and Z is a normalising

constant.

If the acoustic sensor output is represented by
a data vector Y

2
, the complex Gaussian likelihood

functions of Y
2 

for a given X is2:
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where ||||

 

is  norm of a matrix.

Applying Bayes' rule and assuming conditional
independence of the sensor outputs Y

i
's for a given

X, the posterior probability is given by:

)()|()|(),|( 221121 XPXYLXYLYYXP

     

(6)

where '
1 2( | , )P X Y Y P

 

is  posterior distribution
and P(X) is the prior probability distribution. Thus,
the Bayesian fusion involves only multiplying the
posterior probabilities of the respective sensors.

After obtaining the a posteriori probability distribution
using Bayesian fusion, the target identity and location
are obtained by searching for appropriate state X

s

in the state space 
s 
. In this paper, the performance

of three search algorithms namely, metropolis hastings
(MH)1,7, simulated annealing (SA)8 and gradual
greedy (GG)2 are evaluated for target location and
identity estimation for the typical scene (Fig. 2).

3 . CENTROID TRACKING ALGORITHM

This section presents the mathematical models
for data generation for tracking, segmentation and
centroid estimation and the tracking algorithm.

In general, typical characteristics of the target
obtained by motion recognition or by object (pattern)
recognition methods are used in associating images
to the target being tracked. Motion recognition
characteristics of a target are its location, velocity
and acceleration (i.e. state vector) which could be
generated using data from successive frames (inter-
scan level). Object (pattern) recognition characteristics
are its geometric structure (shape, size), energy
level distribution (i.e. different gray level in the
image) in one or more spectral bands which are
obtained using image data at the intra scan level.
The CTA combines both object and motion recognition
methods for practical target tracking from imaging
sensors. The CTA implementation involves the
conversion of the data from the image obtained
from the IR camera into a binary image by applying
upper and lower threshold limits for the "target
layers". The binary target image is then converted
to clusters using nearest neighbor criterion. If the
target size is known, the information is used to set
limits for removing those clusters that differ sufficiently
from the size of the target cluster to reduce
computational complexity. The centroid of the clusters
is then calculated and this information is used for
tracking the target.

3.1 Synthetic Image Generation

The mathematical basis for generation of synthetic
image9 is briefly described below:

Consider two-dimensional array of pixels

m = m

 

x m

                             

(7)

where each pixel is represented by a single index
i = 1, ..., m and the intensity I of pixel i is given by

iii nsI

                                 

(8)

where, s
i 

is the target intensity and n
i 

is the noise
intensity in pixel i, which is assumed to be Gaussian
with zero mean and covariance 2 .
The total target-related intensity is given by:

m

i
iss

1

                                  

(9)



644

DEF SCI J, VOL. 57, NO. 5, SEPTEMBER 2007

If the number of pixels covered by the target
is denoted by m

s 
, then the average target intensity

over its extent is given by:

s
s m

s

                                 
(10)

The average pixel SNR (over the extent of the
target) is

' sr

                                  

(11)

Using Eqns (7) - (11), the synthetic images in
a frame can be generated by using the following
inputs:

(i) Target pixel intensity (s
i
): N(

t
,

t
2)

(ii) Noise pixel intensity (s
i
): N(

n
,

n
2)

(iii) Target: Rectangle (base NX and height NY),

(iv) Position of the target in each scan: (x-position
and y-position)

In order to simulate the motion of the target
in the frame, kinematic models of target motion are
used. Constant velocity kinematic model is used
for generation of the data which determines the
position of the target in each scan.

State Model:

)(

0
2

0

0

0
2

)(

1000
100

0010
001

)1( 2

2

kw

T

T
T

T

kXT

T

kX
(12)

where state X(k) = [x
p
,x

v
,y

p
,y

v
], T = sampling period,

and w(k) is the zero mean Gaussian noise with
variance Q.

Measurement Model:

)1()1(0100
0001)1( kvkXkz   (13)

where v(k) is the centroid measurement noise that
is zero mean Gaussian noise with covariance matrix:

2

2

0
0

y

xR

                     

(14)

Both process noise and centroid measurement
noise are assumed to be uncorrelated.

3.2 Segmentation and Centroid Estimation
Technique

Particle segmentation is used to separate the
target (object of interest) from background, when
target is not fully visible3. It is assumed that the
pixel intensities are discretised into 256 gray levels.
Particle segmentation is done in two steps:

(i) The gray level image is transformed into binary
image using lower and upper threshold limits of
the target. These thresholds of target are determined
using the pixel intensity histograms from the
target and its surroundings, and

(ii) The detected pixels are grouped into clusters
with nearest neighbour technique. The gray
image Im(i, j ) is converted into binary image
with intensity (i, j ) by a hard limit on the
intensity:

1 Im( , )
ß( , )

0 otherwise
L UI i j I

i j

                

(15)

where I
L
 and I

U 
are the lower and upper threshold

limits of the target intensity.

The detection probability of the pixel (i, j) can
be defined as:

ß( , ) 1 ( , )

ß( , ) 0 1 ( , )

P i j p i j

P i j p i j

                   

(16)

where 

U

L

2

2I

I

2

)(

2

1
)ji,( dxep

x

, considering the

gray image I (i,j) as having a Gaussian distribution
with mean 

 

and variance 

The binary image is then grouped into
clusters using the nearest neighbour technique. A
pixel is considered as belonging to the cluster only
if the distance between this pixel and at least one
other pixel of the cluster is less than the proximity
distance (d

p
). The d

p 
is chosen as:
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v
p

t p
d

p
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(17)

where p
t 
and p

v 
are detection probabilities of target

and noise pixels respectively.

By choosing the proximity distance as in Eqn
(17), fewer noise clusters are obtained. The d

p

affects the size, shape and number of clusters
obtained by clustering. The centroid of the cluster
is determined using:

N

k
k

N

k
kn

n

I

Ix

x
k

c

1

1

                            

(18)

where 
knx is the  nth co-ordinate of pixel k, N is

the number of pixels in the cluster, k is the pixel

index, and kI

 

is k th pixel intensity..

3.3 Image Centroid Tracking Algorithm

Centroid tracking in the presence of clutter is
achieved using the nearest neighbour Kalman filter
(NNKF) and probabilistic data association filter
(PDAF)4. In general gating and data association
enable tracking in multi target scenario. Gating
helps in deciding if an observation (which includes
clutter, false alarms and electronic counter measures)
is a probable candidate for track maintenance or
track update. Data association is the step to associate
the measurements to the targets with certainty
when several targets are in the same neighbourhood.
The NNKF or PDAF is necessary for the centroid
tracking application because in the neighbourhood of
the predicted location for the target centroid during
tracking, several centroids could be found due to
splitting of the target cluster or due to noise clusters.

3.4 Fusion of IR Sensor Data and Ground-
based Radar Data

For robust tracking in the presence of measurement
loss, the track from the imaging sensor is fused
with the track from ground-based radar using state
vector fusion. It improves the tracking performance
and reduces the uncertainty in the target state

estimation. Flow diagram for fusion of tracks from
imaging sensor and ground-based radar is shown
in Fig. 5. The tracks which are state vector estimates
from the IR sensor (Track i) and ground based
radar (Track j) and their covariance matrices at
scan k are shown as10:

Track i :  kPkx ii
ˆ,ˆ

Track  :  kPkx jj
ˆ,ˆ

                     

(19)

The fused state estimate is given by:

1ˆ ˆˆ ˆ | |

ˆ ˆ| |

c i i ij

j i

x k x k k P k k P k

x k k x k k

         

(20)

The combined covariance matrix associated
with the estimate of Eqn. (20) are given by

1ˆ ˆ ˆ ˆ ˆ| | |c i i ij iP k P k k P k k P k P k k

  

(21)

where ijP̂ is cross covariance between kkxi |ˆ

 

and

kkx j |ˆ , and is given by

kkPkkPkP jiij |ˆ|ˆˆ

                 

(22)

4 . RESULTS AND DISCUSSION

4.1 Performance Evaluation of the LIE
Algorithm

Figure 6 shows the plot of posterior energy
(PE) for MH, SA and GG algorithms for 1000
iterations. It can be seen that the PE ultimately
decreases in all the three cases, which indicates
that the algorithms tends towards the solution. The
PE is computed using the following:

PE = –log (posterior probability y)

For comparison of the three algorithms, the
following parameters are evaluated:

(a) Success rate (sr)

(b) X position error (xpe) and Y position
error (ype)

(c) Id error (ide): Number of targets misclassified

(d) Target count error (tce)
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identical. However, from Table 1 it is seen that in
terms of sr, the GG algorithm seems somewhat
better than other search algorithms.

4.1.1 Tracking Performance

The performance of CTA is evaluated in terms
of the following11:

(i) The percentage fit error (PFE)  (x or y)

ˆ( )
100*

( )

norm x x
PFEx

norm x

                    

(23)

(ii) The root mean square position error

N

i

iiii yyxx

N
RMSPE

1

22

2

)ˆ()ˆ(1
     (24)

(iii) The root sum square position error

RSSPE = 22 )ˆ()ˆ( yyxx

           

(25)

Similar formulae are applicable for velocity errors.

(iv) The state errors with  iiP ,2

 

bounds   (26)

where P is the state error covariance matrix, where
x and y are the measurements, x̂

 

and ŷ

 

are the
estimated target locations in x and y  coordinates,
respectively. 
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Figure 6. Posterior energy convergence for the MH, SA and GG algorithms.

The performance of the algorithms is evaluated
for a typical scenario consisting of two targets.
Tables 1 to 2 give a comparison of the different
parameters for the three algorithms with the average
of 25 Monte Carlo simulations. It is clear that the
performance of these search algorithms is almost 

SEGMENTATION& 
CLUSTERING 

POLAR TO CARTESIAN 
CONVERSION 

CENTROID DETECTION

 
MEAS. TO TRACK 

ASSOCIATION 
MEAS. TO TRACK 

ASSOCIATION

 

TRACKING: 
NNKF/PDAF

 

TRACKING: 
NNKF/PDAF

 

TRACK TO TRACK 
FUSION 

ESTIMATED TRACK

 
RADAR DATA

 
IMAGE DATA 

Figure 5. Fusion of data from imaging sensor and ground-
based radar.
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4.1.2 Performance Evaluation of CTA

A 2-D of 64 x 64  pixels is considered for the
image. A 2-D array of pixels, which is modelled
as white Gaussian random field with a mean 

t 
and

variance 
t

is used to generate a rectangular
target of size (9 x 9). The image is converted into
binary image using the upper (I

U
=110) and lower

(I
L
=90) limits of a target layer [Eqn (15)], and then

grouped into clusters by the nearest neighbor technique
using the optimal proximity distance (d

p
=2).

The initial state vectors of target 1 and target
2 in the image frame are:

Track 1: 10 0.99 10 0.99
T

, and

Track 2: 20 0 60 0.99
T

The total number of scans is 50. The image
frame rate is one frame/s. The target and noise
parameters used in this simulation are as follows3:

Target pixel intensity = 2(100,10 )N , and

Noise pixel intensity = 2(50,50 )N .

The centroid of each cluster is calculated and
used for state estimation in the measurement update
part of the PDAF filters to track the target in
clutter. The PDAF algorithm includes track initiation
and track deletion features which are essential in
multi target tracking in clutter5. Figure 7 shows the
frame, which includes the estimated and true data
of two targets in clutter. The frame shows the
background clutter and the two synthetic target
images at 50th scan. Figures 8(a) and 8(b) show
estimated positions and velocities compared with
the true values. It is observed that the estimated
and true tracks are well matched. The state errors
with their bounds, RSSPE and RSSVE for the two
targets are shown in Figs 9(a) and 9(b). Percentage
fit error in x- and y-positions and RMSPE for two
targets are within the acceptable range as shown

xpe

 

ype

 

ide tce

  

Scenario  Algorithm 
mean  std mean  std mean  std mean  std 

MH 0.4     2 0.48   2.4 0.04   0.2 0        0 

SA 0        0 0        0 0        0 0        0   
I GG 0.16   0.8 0.8     4 0.04   0.2 0        0 

MH 0        0 0        0 0        0 0        0 

SA 1.16   4.02 1.28   4.44 0        0 0        0   
II GG 0        0 0        0 0        0 0        0 

MH 0        0 0        0 0        0 0        0 

SA 0        0 0        0 0        0 0.12   0.33   
III GG 0        0 0        0 0        0 0        0 

MH 0.88   0.67 0.2     0.5 0        0 0        0 

SA 0.24   0.72 0.04   0.2 0        0 0        0  IV  

GG 0        0 0        0 0        0 0        0 

 

Table 2. Statistics for parameters xpe, ype, ide, and tce

 

Scenario I Scenario II Scenario III Scenario IV 

 

Algorithm Su Fa Sr Su Fa Sr Su Fa Sr Su Fa Sr 

MH 24 1 96 25 0 100 25 0 100 6 19 24 
SA 25 0 100 23 2 92 22 3 88 21 4 84 
GG 24 1 96 25 0 100 25 0 100 25 0 100 

Su: Success;  Fa: Failure;  Sr: Success rate 

Table 1. Performance of the algorithms for different inputs (from 25 Monte Carlo simulations)
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in Table 3. State errors and root sum square errors
in position and velocities respectively using 25 Monte
Carlo simulations are shown in Fig. 10. The state
errors are within the theoretical bounds and the
root sum square errors are fraction of a pixel,
which shows the robustness of the algorithm.

The true, estimated and fused trajectories are
shown in Fig. 11 from which it is clear that the
fused trajectory matches the true trajectory. A
measurement loss in imaging sensor is simulated
from 15 s to 25 s and in the ground-based radar
from 30 s to 45 s. Track extrapolation has been

Figure 8. (a) True and estimated positions and velocities for: (a) track 1, and (b) track 2. 

DOTTED LINE: TRUE TRACK  
SOLID LINE WITH STAR: ESTIMATED TRACK 

Figure 7. Tracking of two targets in presence of clutter.
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Figure 9.  State errors in position and velocity, RSSPE and RSSVE for: (a) target 1, and (b) target 2.

Figure 10. State errors, RSSPE, and RSSVE using 25 Monte Carlo simulations (column 1) and mean for the same (column 2).

done during these periods. Track deviation can be
observed in Fig. 11 during these durations.  Percentage
fit error in x and y directions and root mean square

Table 4. Percentage fit error and root mean square errors 

PFEx PFEy RMSPE RMSVE 

Track 1 1.34 1.41 0.52 0.25 

Track 2 2.19 3.39 0.92 0.2 

ND = 50 
samples 

Measure-
ment loss

 
PFEx PFEy RMSPE RMSVE 

Radar 30 - 45 s 2.56 2.59 1.39 0.24 

IR 15 - 25 s 4.29 2.86 1.98 0.37 

Combined 
(fused)  

1.28 1.17 0.65 0.41 

Table 3. Percentage fit error and root mean square error
with radar, CTA and fusion

error in position and velocity for before and after
fusion are shown in Table 4. From Fig. 12 and
Table 4, it is observed that fusion of tracks gives
better results when there is a measurement loss
in either of the sensors thereby demonstrating the
robustness and better accuracy achieved because
of fusion.

(b)(a)
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Figure 11. True and estimated states from: (a) imaging sensor
(b) ground-based radar, and  (c) individual and fused
trajectories.

5 . CONCLUSIONS

Two important aspects involved in ATR, namely,
estimation of identity and location of targets and
tracking of the centroid of targets using IR sensor
data are addressed in this paper. For the purpose
of estimation of target location and identity, data
from the IR sensor is fused with the data from an
acoustic sensor using Bayesian fusion method. Marked
spatial point process and sensor mathematical models
(IR and acoustic) have been adopted to generate
the scenarios. In Bayesian fusion method, the likelihood
functions of the two sensors are used to obtain the
posterior probabilities. From the posterior probability
distribution, the target identity and location are
established using search algorithms. On the average
the performance of the search algorithms is almost
similar. However, GG search algorithm is slightly
better in terms of success rate.

The CTA has been implemented for accurate
target tracking based on the data obtained from
imaging sensors, when the target is not fully visible
during tracking. Using segmentation technique the
gray level image has been converted into binary
image and reduced into clusters using nearest neighbour
(NN) criteria. Tracking filters (PDAF) were employed
for state estimation using centroid measurement of
clusters. It is observed that the CTA performed
very well even in the dense clutter produced by the
segmentation and clustering stage. The state estimates

Figure 12.Individual and fused trajectories in presence of
measurement loss. 

(a)

(b)

(c)
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obtained using the CTA algorithm are fused with
the state vector obtained by processing the ground
based radar data which is also tracking the target
to improve robustness of tracker. It is observed
that fusion generates robust tracks even when
there is data loss in one of the sensors.
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