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AbStRACt

Autonomous Mobile Robots’ performance relies on intelligent motion planning algorithms. In autonomous 
mobile robots, sampling-based path-planning algorithms are widely used. One of the efficient sampling-based path 
planning algorithms is the Rapidly Exploring Random Tree (RRT). However, the solution provided by RRT is 
suboptimal. An RRT extension known as RRT* is optimal, but it takes time to converge. To improve the RRT* 
slow convergence problem, a goal-oriented sampling-based RRT* algorithm known as GS-RRT* is proposed in 
this paper. The focus of the proposed research work is to reduce unwanted sample exploration and solve the slow 
convergence problem of RRT* by taking more samples in the vicinity of the goal region. The proposed research work 
is validated in three different environments with a map size of 384*384 and compared to the existing algorithms: 
RRT, Goal-directed RRT(G-RRT), RRT*, and Informed-RRT*. The proposed research work is compared with 
existing algorithms using four metrics: path length, time to find the solution, the number of nodes visited, and the 
convergence rate. The validation is done in the Gazebo Simulation and on a TurtleBot3 mobile robot using the 
Robotics Operating System (ROS). The numerical findings show that the proposed research work improves the 
convergence rate by an average of 33 % over RRT* and 27 % over Informed RRT*, and the node exploration is 
26 % better than RRT* and 20 % better than Informed RRT*.

Keywords: Goal-oriented sampling; Mobile robot navigation; Path planning algorithm; Rapidly exploring random 
tree

1. INtRoduCtIoN 
Autonomous Mobile Robots (AMR) are used in industrial 

automation1, agriculture2, and healthcare applications such as 
patient food delivery, hospital disinfection, and transportation3-6. 
To carry out their tasks in an active environment, the 
autonomous mobile robot needs to have competent and 
intelligent path planning algorithms7-8. The main objective of 
the path planning algorithm is to determine a feasible path from 
the initial position to the desired position by avoiding obstacles 
in its path9-10. Due to their higher efficiency in real-world 
applications, sampling-based path planning algorithms are 
widely used in robotics11. There are many reported sampling-
based algorithms in the literature12. The Probabilistic Roadmap 
(PRM)13 and the Rapidly Exploring Random Tree (RRT)14 are 
the most prominent sampling-based path planning techniques. 
The PRM technique is a multiple-query approach that works 
well for issues when the environment is known in advance. In 
reality, the environment is not always known in advance, so the 
algorithm is not always effective. For a single query problem, 
the RRT is probabilistically complete and faster than the 
PRM15. However, the RRT algorithms’ path is a non-optimal 
solution, which is its primary limitation. RRT*16, an RRT 

extension, offers an asymptotically optimal solution. Since 
the RRT* sampling technique uniformly selects a sample 
configuration from the entire configuration space, it leads to 
slow convergence, which is due to pure excess exploration17. In 
this paper, we are proposing a new method to improve the slow 
convergence problem of the RRT* path planning algorithm.

In general, two fundamental approaches are considered to 
improve the slow convergence problem of the RRT*18: the first 
involves the sampling procedure19-21, and the second involves 
path optimisation22-24. Of the two approaches, modifying the 
sampling procedure is the one being considered in this proposed 
research work. A review of the various sampling techniques in 
the Rapidly-Exploring Random Trees can be found in the work 
of Veras25, et al. The RRT* sampling process is biased using the 
Artificial Potential Fields (APF) technique to attract the samples 
towards goal26. The primary benefit of using the artificial 
potential function is that it reduces the sample distribution, 
thereby speeding up the RRT* convergence process. Goal-
biased sampling methods27-28 are based on the sampling process 
towards the goal region of the search space with a certain 
probability. A goal-directed method is proposed that collects 
two random samples concurrently and uses the sample that is 
closest to the goal position to expand the tree29. A probability 
distribution is used to generate samples30, with samples closer to 
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the goal having a higher probability which improves the speed 
and robustness. The initial path is determined via goal-biased 
bounded sampling31 within the boundary of the connected 
region. A goal direction-based sampling technique is used to 
improve the convergence of the RRT*32. Even though all these 
methods converge more quickly than RRT*, they are trapped 
in the obstacle-surrounded environment, which results in a 
larger path length than RRT*. To avoid the trapping problem, 
the GO-RRT path planning algorithm includes a node counting 
approach33. However, the node counting technique does not 
rely on the number of samples used in the path planning 
algorithm, resulting in performance reduction. To improve the 
performance, a method called Goal-oriented Sampling-based 
RRT* (GS-RRT*) is proposed in this paper, which incorporates 
the simple random selection method34 into our previous work 
on Goal-oriented RRT*(G-RRT*) algorithm35. The focus of 
the proposed research work is to reduce the unwanted sample 
exploration to solve the slow convergence problem of RRT* 
by taking more samples near the vicinity of the goal region. At 
the same time, it generates a few samples in the other regions 
using a simple random selection method to avoid the local 
minima problem and boost the success rate.

The remainder of the paper is organized as follows: 
the problem statement is discussed in Section 2. Section 3 
presents the proposed GS-RRT* algorithm. Section 4 presents 
the simulation results, and Section 5 discusses the real-time 
experimental evaluation. Section 6 presents the conclusions 
and future research directions.

2. PRobleM defINItIoN
Consider a configuration space (C-space) denoted as 

C⊆RN that contains all the robot’s possible configurations in 
N-Dimensions. The position of the robot is described as a 
configuration Z∈C. The obstacle space is defined as Cobs and 
obstacle-free space is defined as Cfree=C\Cobs. If Zinit∈Cfree denotes 
the initial configuration and Zgoal∈Cfree the goal configuration, 
then the path through C-space is denoted by σ:[0,1]→C. The 
path planning problem is concerned with determining a path 
σ:[0,1]→Cfree that begins at σ(0)=Zinit and ends at σ(1)∈Zgoal 
and σ(τ)∈Cfree∀τ∈[0,1]. 

2.1  feasible Path Planning Problem
For a given path planning problem (Zinit, Zgoal, Cfree), 

feasible path planning is concerned with determining a feasible 
path if exists and reporting a failure if no such path exists. 

let the set of all possible paths over C denoted by S and 
the set of all feasible paths by Sfeasible.

2.2  optimal Path Planning Problem
For a given path planning problem (Zinit, Zgoal, Cfree), 

optimal path planning is concerned with determining a feasible 
path σ* such that plen(σ*)=min{plen(σ):σ feasible} if exists 
and if no such path exists report failure. Where plen:S→R≥0 is 
a path length function.

3. Goal-oriented Sampling RRt*(GS-RRt*)
The proposed Goal-oriented Sampling RRT* path 

planning Algorithm is explained in this section.

3.1 Goal-oriented Sampling Procedure
The sampling scheme is the brain of the sampling-based 

path planning algorithm, which plays an important role in 
finding the initial path planning rapidly. The RRT* algorithm 
explores the whole configuration space (C-space) as shown in 
Fig 1(a) using a uniform sampling method to find a feasible 
path from an initial node Zinit until it gets to the goal node 
Zgoal. This means that the RRT* sampling method generates 
the samples in the redundant area. Therefore, to improve the 
sampling scheme and to minimize the redundant sampling area, 
the proposed GS-RRT* generates more samples near the goal 
region as given in Fig 1(b). When compared to RRT* uniform 
sampling, GS-RRT* search space is more oriented towards the 
goal configuration Zgoal. As a result, it discovers an initial path 
with fewer node visits.

Algorithm 1 provides pseudo code for the proposed GS-
RRT* sampling process ‘GS sample’, which returns a random 
node configuration Zrand using the steps given below. The 
Euclidean distance between the current node configuration 
and the goal node configuration is used to compute the ball 
radius R shown in Fig. 1(b) (Step1). Then, a random number 
is generated between 0 and 1 using the ‘Rand’ function (Step 
2). According to the value of the node counting variable  
node_count (Step 3), the ball radius R is changed. If the node 

(a)

(b)
figure 1.  Samples generated with a goal as a center by: (a) 

RRt* and (b) GS-RRt* with 10000 samples.
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count condition node_count˂τ is met, the ball radius R is 
transformed into R×rand (Step 4). If the node count criterion 
node_count˂τ is not met, Goal-oriented sampling with the 
default radius is performed (Step 6). A constant τ=a×k is 
calculated using the path planning algorithm’s number of 
samples k and a biasing percentage a. The number of samples 
k used in the experiment is 10000, and the biasing percentage a 
is selected as 0.2 based on the previous experimental study35. 

Algorithm 1
GS sample procedure (Znew, Zgoal)

3.2 GS-RRt* framework
Algorithm 2 gives the pseudocode for the proposed 

GS-RRT* framework. The proposed GS-RRT* framework 
combines the advantages of goal-oriented sampling and 
uniform sampling using a simple random selection34 function 
‘Rand’ (step 3). A Goal-oriented Sampling procedure, function 
‘GS sample’ generates a random sample Zrand (Step 4). To 
avoid the local minima problem and boost the success rate, the 
proposed research work generates a few samples from the entire 
C-space like RRT* using ‘Uniformsample’ function (Step 6). 
The function‘ ’ nearest identifies and returns the node Znearest, 
the node closest to Zrand from the vertices v based on the path 
length using a distance function (Step 7). The function ‘steer’ 
drive the path σ from the node Zrand to the nearest node Znearest 
through a new node Znew at a distance δ from the node Znearest 
towards the node Zrand (Step 8). The ‘obstaclefree’ function 
determines whether the path σ is in the obstacle-free region or 
not (Step 9). If the edge between the nodes Znearest and Znew is 
in the obstacle collision-free zone, the function ‘near_nodes’ 
finds and returns the nearby node Znear that is in a ball with 
a volume of (β(logn/n)) around the node Zrand, where β is a 
constant that varies depending on the planner (Step 10). The 
‘updateParent’ function35 compares the path length of each 
path and selects the parent node Zparent (Step 11). Then the ‘add’ 
function adds the node Znew to the tree T and assign the node 
Zparent as its parent (Step 12). The ‘rewire’ function35 checks the 
node path length and updates the tree T (Step 13).

Finally, the GS-RRT* establishes a feasible optimal 
path σ* between Zinit and Zgoal using a tree T(v,e) with a set of 
vertices v

 
and edges e. Thus, the proposed GS-RRT* takes the 

sample points from the reduced configuration space through 
the ‘GS sample’ function without wasting more samples. At the 
same time, it generates a few samples using ‘Uniformsample’ 
function to avoid the local minima problem and boost the 
success rate.

Algorithm 2
GS - RRt*framework

------------------------------------------------------------------------------------------------------------------------------ 
Algorithm 2: GS - RRT* Framework 

------------------------------------------------------------------------------------------------------------------------------ 
1:  { }; ; ;init new initv Z e Z Z    
2:  for 0i   to k  do 
3:  if () 0.5Rand   then  
4:      , ;rand new goalZ GS sample Z Z  
5:  else  
6:                       ;randZ Uniformsample  

7:    , ;nearest randZ nearest Z v   
8:   (  , ;, )new nearest randZ steer Z Z   
9:  if ( )obstaclefree  then  
10:   _ ( , );near newZ near nodes Z T  
11:             ( , ) ( , , , );parent parent near nearest newZ updateParent Z Z Z   
12:   ( , , , );new parent parentT add T Z Z   
13:    ( , , );new nearT rewire T Z Z  
14:  end if 
15: end for                  
16: return T ;  

------------------------------------------------------------------------------------------------------------------------------ 
 

3.3 Probabilistic Completeness
3.3.1 Theorem: The proposed GS-RRT* Path Planning
     Algorithm is Probabilistic Complete 

For a given path-planning problem (Zinit,Zgoal,Cfree), consider 
constants x0∈R and d>0 and it depends on Zinit and Zgoal, such 
that P({VGSRRT*∩ Zgoal ≠∅})>1-e-dx

,∀x> x0 Where VGSRRT* is the 
proposed GS-RRT* path planning algorithm vertices.

Proof: For any given environment, the proposed  
GS-RRT* path planning algorithm returns a connected graph, 
so the proposed GS-RRT* follows the RRT*probabilistic 
completeness.

3.4 Complexity Analysis
3.4.1 Time Complexity Analysis

The time complexity is measured by the number of process 
calls to the procedure that takes the longest time.

let ALG
nO represent the number of times the ‘obstaclefree’ 

procedure call made by the given algorithm in n iterations.

lemma 1. 
*( ) ( ).GSRRT

nO O logn∈

Proof. let *GSRRT
nU and *GSRRT

nR denote the number of times the 
‘obstaclefree’ procedure call made in ‘updateParent’ and the 
‘rewire’ procedure, then

* * *RRT RRT   RRT GS GS GS
n n nO U R= +            (1)

The time complexity analysis of the proposed GS-
RRT* algorithm is the same as the RRT* algorithm because 
the ‘updateParent’ and the ‘rewire’ procedures are not 
changed, ( )*RRT    GS

nU O log n∈  
and

*( ) ( ).GSRRT
nR O logn∈ . Hence 

*( ) ( )GSRRT
nO O logn∈ .

3.4.2 Space Complexity Analysis
Space complexity is defined as how much memory is used 

by a specific algorithm.
The proposed GS-RRT* path planning algorithm builds 

a tree Tn=(vn, en) and the size of memory consumed by the 
proposed GS-RRT* algorithm is found using the tree Tn.



GANESAN, et al.: A NOVEl GOAl-ORIENTED SAMPlING METHOD FOR IMPROVING THE CONVERGENCE RATE 

325

lemma 2. ( )nT O n∈ .
Proof: The size of the tree nT

 
constructed by the proposed 

GS-RRT* algorithm is computed as   n n nT v e= + . If the tree 
nT visit ‘n’ nodes, then nv n= , and  1ne n= − . Therefore, the 

size of the tree is
  2 1n n nT v e n= + = − . Hence ( )nT O n∈ .

4. SIMulAtIoN exPeRIMeNt SetuP
To verify the effectiveness of the proposed GS-RRT* 

algorithm, a simple TurtleBot3 Autonomous Mobile Robot 
(AMR) is used in the gazebo simulation experiments. The 
proposed GS-RRT* is compared with the existing algorithms 
RRT, G-RRT, RRT*, and Informed-RRT* in three different 
environments namely narrow, maze, and cluttered environments 
as shown in Fig 2(a),(b)&(c) respectively. The 2D map is 
considered with a size of 384*384 pixels and 0.05 pixels/m 
resolution in the Gazebo simulations. Three performance 
metrics are used to compare the different path planning 
algorithms: path length denoted as p, the number of nodes 
visited denoted as nv, and time to discover the solution denoted 
as t. Experimental simulations are conducted by employing the 
algorithms written in C++ code on an Intel i5-7500 CPU with  
8 GB RAM, running on Ubuntu 18.04 with the Robot Operating 
System (ROS) Melodic. Because of the randomness of the 
sampling-based techniques, all of the algorithm’s statistical data 
is generated from 100 independent runs. First, an environment 
is created in the Gazebo simulator using the building editor 

GUI as shown in Fig 2(a). A corresponding environment map 
is constructed with the help of the turtlebot3_teleoperation 
and the Simultaneous Localization and Mapping (SLAM) 
package36. 

The map_server package is used to store the created map 
and open the map when required. The ROS Visualization 
(RViz) tool is used to view the created environment map, as 
illustrated in Fig 2(b). The TurtleBot3 robot is localized in a 
given environment map with the help of the Adaptive Monte 
Carlo Localization (AMCL) algorithm, which uses a particle 
filter to locate the TurtleBot3’s position and TurtleBot3 
odometry information. The TurtleBot3 wheel optical encoders 
and IMU sensors, as well as the liDAR, are used to update 
the TurtleBot3 position on the given environment map. The 
proposed GS-RRT* algorithm is implemented with a step size 
of 6.

Figure 3 depicts the path constructed with 10,000 
samples in the three environments using RRT* and GS-RRT* 
algorithms. As illustrated in Fig. 3(a), a path is generated in 
RRT* after more node visits. Whereas GS-RRT* generates 
a path with a lower number of node visits, as shown in  
Fig. 3(b).

Statistical information of the path length p, time t,
 
and 

the number of nodes visited nv by various popular existing 
algorithms in the considered three environments is presented in 
Table 1. The proposed algorithm and all the baseline algorithms 
listed in Table 1 are offline planning algorithms, and they are 

(a) (b) (c)

(d)
figure 2. environments: (a) Narrow, (b) Maze, and (c) Cluttered in (d) Rviz tool.
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implemented using the TurtleBot3 robot’s differential drive 
mechanism. The Euclidean metric is used to find the distance 
calculation for all the algorithms. However, different sampling 
strategies are used for all the algorithms, as listed in Table 1.

The path length performance of the proposed GS-RRT* 
algorithm with the existing algorithms is shown in Fig 4(a). 
When compared to all of the other algorithms in the three 
environments, the proposed GS-RRT* path length is the 
shortest. It is 2 % less compared with RRT* and 4 % less 
compared with Informed RRT*. The time performance of the 
proposed GS-RRT* algorithm with the existing algorithms is 
shown in Fig. 4(b). The graph clearly shows that the proposed 

GS-RRT* takes 20 % less time to build a path than the RRT*. 
The number of nodes visited by the proposed GS-RRT* 
algorithm with the existing algorithms is shown in Fig 4(c). 
It is clear from the plot that the number of nodes visited by 
the proposed GS-RRT* is less than RRT* by 26 % and 15 % 
less compared with Informed RRT*. The convergence rate of 
the proposed GS-RRT* and RRT* is computed in the three 
different environments. The convergence rate26 is defined as 

 ALG
nO             

lemma 1. 
*( ) ( ).GSRRT

nO O logn  

Proof.  let  *GSRRT
nU  and *GSRRT

nR  

* * *RRT RRT   RRT GS GS GS
n n nO U R   1 

 *RRT    GS
nU O log n  and 

*( ) ( ).GSRRT
nR O logn  Hence 

*( ) ( )GSRRT
nO O logn  

 

lemma 2. ( )nT O n . 

Proof.  The size of the tree nT constructed by the proposed GS-RRT* algorithm is computed 

as   n n nT v e  . If the tree nT visit ‘n’ nodes, then nv n , and  1ne n  . Therefore, the 
size of the tree is 

  2 1n n nT v e n    .  Hence ( )nT O n . 

 

   *plen  plen
 

  
init

opt initt t
 


 

 

 
(units/sec), whereas σinit is the initial feasible 

path computed in tinit and σ* is optimal path computed in topt 
time. The convergence rate (units/sec) of the proposed GS-
RRT* is 0.5, 0.63, and 0.23 in the narrow, maze, and cluttered 

(a) RRt*

(b) GS-RRt*
figure 3. Path generation using (a) RRt* and (b) GS-RRt* with 10000 samples.

table 1. Performance comparison of the GS-RRt* with some popular existing algorithms

environment
Performance measure RRt12 G-RRt27 RRt*14 Informed RRt*19 GS-RRt* (Proposed)

Sampling strategy uniform biased   uniform     Adaptive     biased   

Narrow

p (units) 1760 1624 1162 1194 1144

t(s) 0.82 0.66 1.93 1.64 1.60

nv 7946 6583 7932 7236 6057

Maze

p (units) 2398 2285  1877 1928 1928

t(s) 0.84 0.82 2.01 1.62 1.14

nv 8241 6704 8241 7384 6320

Cluttered

p (units) 1724 1717 1310 1297 1289

t(s) 0.79 0.78 1.43 1.267 1.06

nv 8430 7200 8053 8015 6196
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(a) Path length performance

(b) time performance

(c) Number of nodes visited performance
figure 4.  Performance of the proposed GS-RRt* algorithm with traditional algorithms concerning the path length, time, and the 

number of nodes visited.

environments, respectively, whereas the RRT* convergence 
rate is 0.42, 0.34, and 0.27, respectively. The proposed GS-
RRT* convergence rate is 17 % improved over RRT* algorithm 
in the narrow environment and 60 % in the maze environment. 
At the same time, the convergence rate is 16 % less compared 
with RRT* in the cluttered environment. This is due to less 
difference between the initial to optimal time of the proposed 
GS-RRT*. Thus, the numerical results show that the proposed 
GS-RRT* framework improves the convergence rate by an 
average of 33 % over RRT* and 27 % over Informed RRT*; 

node exploration is 26 % better than RRT* and 20 % better than 
Informed RRT*; planning time improves by 34 % over RRT* 
and 17 % over Informed RRT*; and path length improves by  
2 % over RRT* and 3 % over Informed RRT*, while maintaining 
the same computational complexity as RRT*.

5. ReAl-tIMe exPeRIMeNtAl 
VAlIdAtIoN
In a real-time environment, the ROS Melodic and the 

TurtleBot3 robot are used to validate the proposed GS-RRT* 
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Table 2.  Specifications of the TurtleBot3 robot with technical 
details

Specification technical detail

Single board computer       Raspberry Pi
Microcontroller 32-bit ARM Cortex®-M7

I/O Communication              10/100 Ethernet, 802.11n WiFi, and 
Bluetooth 4.1

Size (L x W x H) 138 mm x 178 mm x 192 mm

Speed                                    Max velocity linear 0.22 m/s and 
angular 2.84 rad/s

Weight                                  1kg
Actuator                                DyNAMIXEl Xl430-W250
Payload 15kg

figure 6. Navigation of turtlebot3 robot in the real-time environment (1to9).

figure 5.  Navigation of turtlebot3 Robot in the real-time 
environment using Rviz.

(a)

(b)path planning algorithm. The specifications of the TurtleBot3 
robot are given in Table 2. A real environment map used in 
the proposed GS-RRT* algorithm evaluation is shown in  
Fig 5(a). The TurtleBot3 robot moves from the starting position 
to the goal location autonomously using the proposed GS-
RRT* global path planning algorithm with a step size of 6. To 
handle both static and dynamic obstacles, the proposed GS-
RRT* algorithm is used as a global path planning algorithm 
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and a Dynamic-Window Approach (DWA) is employed as a 
local planning algorithm. As shown in Fig 5(b), the Rviz tool 
is used to display the generated path using the proposed GS-
RRT* algorithm.

As shown in Fig. 6 (1 to 9), the generated path using the 
proposed GS-RRT* is verified in a real-time experiment using 
the TurtleBot3 robot. During the real-time experiment, the 
generated path is the same as the path obtained by the Gazebo 
Simulation results. While the generated global path plan is 
identical to that plan generated in the Gazebo simulation, the 
TurtleBot3 robot’s real-time path execution differs slightly 
from the Gazebo simulation. This is due to the factors such 
as positional sensing error and wheel slippage on the robot. 
However, the results obtained are encouraging, as is the ease 
with which it was implemented.

6. CoNCluSIoNS
Among sampling-based path-planning algorithms, 

RRT* is an optimal path-planning algorithm, but it suffers 
from a slow convergence problem. To address this problem, 
this paper proposed a Goal-oriented Sampling-based RRT* 
algorithm called GS-RRT*. The focus of the proposed GS-
RRT* is to reduce unwanted sample exploration and solve the 
slow convergence problem of RRT* by taking more samples 
in the vicinity of the goal region. To avoid the local minima 
problem and boost the success rate, the proposed research 
work generates a few samples using uniform sampling using a 
simple random selection method. The proposed research work 
is compared with existing RRT* and Informed RRT* baseline 
algorithms using four metrics: path length, time to find the 
solution, the number of nodes visited, and the convergence 
rate. The numerical results demonstrate that the proposed 
GS-RRT* framework improves the convergence rate by 33 % 
over RRT* and 27 % over Informed RRT* while retaining the 
same computational complexity as RRT*. The proposed GS-
RRT* framework is also validated in a real-time laboratory 
environment with the TurtleBot3 robot acting as a global 
planner, and it can be extended to act as a local planner. The 
proposed GS-RRT* path planning algorithm can be employed 
in real-time autonomous mobile robot navigation applications, 
such as warehouse applications.
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