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ABSTrACT 

The adaptive filtering approach has been commonly used to perform acoustic feedback cancellation (AFC) 
in digital hearing-aids due to its reliable performance and feasibility. Because the loudspeaker and microphone 
are close together in hearing aids, the corresponding signals are highly correlated, resulting in biased estimation if 
adaptive filters are used. This problem can be addressed with the help of the decorrelation prefilter by incorporating 
the Prediction Error Method (PEM) technique into AFC. Frequency-Domain Adaptive Filters (FDAF) are preferable 
over the time-domain implementation to achieve better performance in terms of convergence and computational 
complexity. In addition, Partition-Block Frequency-Domain Adaptive Filters (PBFDAF) offers low processing 
delay. However, because of their fixed step-size, there is a trade-off between initial convergence and steady-state 
misalignment in the widely used frequency-domain algorithms. While Variable Step-Size (VSS) algorithms can help 
with this issue, VSS techniques for frequency-domain algorithms have not been extensively studied in the context of 
PEM-AFC. Hence, in this paper, we presented an Optimal Step-Size (OSS) technique for both the FDAF-PEM_AFC 
and PBFDAF-PEM_AFC algorithms to simultaneously accomplish fast convergence and minimal steady-state error. A 
Feedback Path Change Detector (FPCD) was also incorporated into the proposed algorithms to address the problem 
of convergence in non-stationary feedback paths.  The results of simulations show that the proposed algorithms are 
clearly superior, and they are encouraging.
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NOMENClATurE

wn   Length of the adaptive filter
N   FFT size
R   FFT frame shift
m   Frequency bin number
w    Actual acoustic feedback path 

w
∧

  Adaptive filter weight vector in time-domain 
                             to estimate the acoustic path

W
∧   Weight vector of frequency-domain adaptive 

                             filter
W p
∧

  Weight vector of partition-block frequency 
  domain adaptive filter

P     No. of partition-blocks of filter weight 
  vector

s( )n  Microphone signal vector of length N 
( )e n  Error signal

W(n)
∧

  Weight vector of adaptive filter 
W(l)
∧

  Frequency-domain weight vector

u( )l   Loudspeaker signal vector in 
   frequency-domain 

ˆ ( , )H q l   Source signal model
ˆ( , )A q l    Prediction filter 

u ( )f l    Prewhitened loudspeaker signal 
   vector

s ( )f l   Prewhitened microphone signal 
   vector

e ( )f l   Prewhitened error signal
u ( )f l   Prewhitened loudspeaker signal 

   vector in frequency-domain
E ( )f l   Prewhitened error signal vector in 

   frequency-domain

( )m lµ    Optimal step-size of thm frequency 
   bin

( )m lδ    System distance of thm frequency 
   bin

( )Mis l    Misalignment error of thl  frame

( )MSG l    Maximum achievable stable gain of thl   
   frame
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, ( )
fu p lΦ  Elements of PSD matrix of the prefiltered  

  loudspeaker signal

, ( )x m lΦ        Elements of PSD matrix of the desired  
  signal

, ( )
fe m lΦ  Elements of PSD matrix of the prefiltered 

  error signal
( )lΛ   PSD matrix of loudspeaker signal

. ( )p m lµ   Optimal step-size of thm frequency bin for  

  thp partition

, ( )p m lδ   Optimal step-size of thm frequency bin for  

  thp partition
Note: The variables mentioned in smaller case letters 

denote time-domain; capital case letters represents frequency 
domain variables; bold letters represent signal vectors.

ABBrEviATiONS
AFC Acoustic Feedback Canceller
FDAF Frequency-Domain Adaptive Filter
PBFDAF Partition-Block Frequency Domain Adaptive  

  Filter
PEM Prediction-Error Method
OSS Optimal Step-Size
FSS Fixed Step-Size
FFT Fast Fourier Transform
LMS Least Mean Square
PSD Power Spectral Density
AEC Acoustic Echo Cancellation
FPCD Feedback Path Change Detector
LS  Loudspeaker
Mis  Misalignment
MSG Maximum Stable Gain
AIR Acoustic-Impulse Response
PESq Perceptual Evaluation of Speech quality

1. iNTrODuCTiON
In digital hearing-aids, acoustic feedback is a serious 

issue1, it is the main cause of howling, whistling, and screeching 
sounds. It occurs when the input signal at the microphone’s 
input signal is acoustically coupled with the loudspeaker 
signal. As the acoustic coupling increases, the desired signal 
degrades quickly and causes annoying howling. There are 
numerous strategies for Acoustic Feedback Cancellation 
(AFC), but adaptive filtering is most effective, which involves 
the continuous estimation of the acoustically coupled  signal 
and then subtracted from the microphone signal.2 The primary 
disadvantage of this strategy is that the output signal from the 
loudspeaker is a combination of feedback and input signals.3-4 
Since there is a correlation present among the desired and 
loudspeaker signals, the feedback signal, which is a part of 
loudspeaker signal, is also correlated with the desired source 
signal. As a result of this correlation, the adaptive filter may 
experience a problem with estimation bias.

The Prediction-Error Method (PEM) is commonly 
employed in AFC for estimating an unbiased model of the 

acoustic path by decorrelating the signals in the feedback loop 
with the help of a pre-whitening filter.4-7 Figure 1, illustrates 
the PEM-AFC, w represents the actual acoustic path between 
microphone and loudspeaker, ŵ  represents the estimated 
acoustic path in feedback loop, which is continuously estimated 
by an adaptive filter, and  G represents the hearing-aid gain 
with a forwd delay of Gd . 

Figure 1. PEM-AFC system.

The design of an effective adaptive feedback controller 
demands an unbiased estimation of acoustic path, good steady-
state performance, and the adaptive algorithm’s convergence 
rate.8-9 The LMS algorithm has a low convergence rate for 
colored signals and a high computational complexity when 
modeling an acoustic path with more number of filter weights5. 
The frequency-domain version of LMS algorithm has the 
advantage of being less computationally complex and obtaining 
faster convergence than the time-domain implementation.10-

11 Further improvement in convergence rate is achieved by 
estimating the feedback path using block Frequency Domain 
Adaptive Filters (FDAF). To reduce the delay associated 
with block processing in FDAF, PBFDAF algorithm is 
recommended. However, the performance of FDAF and 
PBFDAF algorithms is heavily reliant on fixed step-size(FSS) 
selection.12 To address the limitations of FSS approach, we 
often use variable step-size techniques, wherein the step-size 
changes over time depending on the state of algorithm. 

An optimal step-size (OSS) approach for the FDAF 
and PBFDAF algorithms for AEC configuration has been 
developed by yang, et al.12,16 and we have briefly studied OSS 
technique for PBFDAF algorithm for AFC system in Prasad, 
et al.13 This paper presents a comprehensive study of the OSS 
approach for FDAF and PBFDAF algorithms implemented for 
PEM-AFC configuration, and these are compared in terms of 
convergence, complexity analysis, and output speech quality.

The contents of this article are organised in the 
following manner: modelling of PEM-AFC configuration 
and implementation of fixed step-size FDAF-PEM-AFC 
and PBFDAF-PEM-AFC algorithms in Section 2, while  
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Section 3 discusses the proposed frequency-domain optimal 
step-size algorithms for PEM-AFC. Section-4 and section-5 
discuss about simulation results and computational complexity 
analysis of proposed algorithms, respectively, and the final 
section provides the work’s conclusion.

2. FiXED STEP-SiZE (FSS) AlGOriTHMS FOr 
PEM-AFC SYSTEM 

2.1 Modelling of PEM-AFC System 
The PEM-AFC illustrated in Fig. 1 uses the benefits 

of source signal modelling by employing a PEM-based 
pre-whitening technique,15 which significantly minimizes 
the correlation among the signals in feedback loop. This 
decorrelation facilitates a reduction in the bias of the 
estimated feedback path, resulting in a more efficient feedback 
cancellation. The model ( , )H q l that generates the source signal

( )x n is assumed to be autoregressive (AR) and time-varying. 
Hence, using the linear-prediction technique, ( , )H q l



  can be 
estimated using the Levinson-Durbin algorithm15 and, from 

the condition ˆˆ ( , ) ( , ) 1H q l A q l =  , the pre-whitening filter ˆ( , )A q l is 
equal to inverse of ˆ ( , )H q l . The mathematical modeling of the 
PEM-AFC2 is described below:

       ( ) u ( ) ( () )T
os n nn x n= +w                                       (1) 

       ( ) ( ) u ( ) ( )T we n s n n n
∧

= −                                      (2) 

where ( )o nw is actual feedback path, 0 1( ) [ , , ]
w

T
nw n w w

∧

−= …
 
 

denotes an adaptive filter of length wn , s( ) [ ( ),.., ( 1)]T
wn s n s n n= − +

represents microphone signal vector, ( )e n  denotes error signal

( )T⋅ stands for transpose of a matrix, u( ) [ ( ),.., ( 1)]T
wn u n u n n= − +  

represents loudspeaker signal, and ( )x n  denotes combination 
of desired signal and the background noise.

To model the problem in the frequency domain, we 
need to change from the time-instant n  to time-frame 
index l; assume FFT size is N, discrete frequency index m 
and the frame shift R. A good choice for R and N is R = wn ;  
N = 2R 12. The loud-speaker signal frame at time l of 

length N-samples is u( ) [ ( 1),.... ( 1), ( )] ,Tl u lR N u lR u lR= − + −

and the microphone signal frame of length R samples is 
s( ) [ ( 1),.... ( 1), ( )]Tl s lR R s lR s lR= − + − . 

  

                 u( ) { u( )}Nl diag l=                                             (3)
The   estimating   acoustic   feedback W(n)

∧
 path   is  specified in 

the frequency-domain by, 
1 0 1

ˆ ˆW( ) [W ( ),0 ] [ ( ), , ( )]T T T
N R Nl l W l W l

∧∧

× −= = …  
where 10 R×  is a zero vector. 

The estimated feedback signal and error-signal, in 
each time-frame are obtained from the below equations 
respectively, 

    
1{( ) u( ) W( )}Ns l  l l

∧
−= 

∼

                          (4)
 

 

                ˆ( ) ( ) ( )e l s l s l= −                                                (5)

where ˆ( )s l  is last frame of ˆ( )s l , which is obtained from eq 
(4). From the error signal in Eqn. (5), we can estimate ˆ ( , )H q l

and prediction filter ^
( , )A q l using Levinson-Durbin algorithm as 

given below,

   
ˆ( , 1) { ( ); ( 1)}A q l levinson durbin e l e l+ = − −                (6)

          
2.2 PEM-AFC System using FSS-FDAF Algorithm

This section describes the FDAF algorithm for the PEM-
AFC configuration.2,4,17 The pre-whitened signal vectors of 
u( )l and s( )l  are obtained by filtering with ˆ( , )A q l . Thus, the 
pre-whitened loud-speaker and microphone signal vectors are 
written as,

ˆ( , ) ( 1)
u ( ) [ ( 1) .... ( 1), ( )]

ˆ( , ) ( )

T
f f f f

A q l u lR N
l  u lR N u lR u lR

A q l u lR

 − +
 

= = − + − 
 
 



 

 
                 (7)
  

ˆ( , ) ( 1)
s ( ) [ ( 1) .... ( 1), ( )]

ˆ( , ) ( )

T
f f f f

A q l s lR R
l  s lR R s lR s lR

A q l s lR

 − +
 

= = − + − 
 
 



        
              (8)

The  pre-whitened   loudspeaker signal u ( )f l is converted 
to frequency domain by  N point FFT matrix N , and associated 
diagonal matrix is obtained with diag{.} operator, as below, 

0 1 (2 1)u ( ) { u ( )} {[ ( ), ( ) , ( )] }T
f N f f f f Nl diag l diag U l U l U l−= = …  

                                                                                               (9)

The FFT representation of prefiltered microphone signal 

frame s ( )f l  is obtained by 1S ( ) [0 ,s ( )]T
f N N fl l×=  . Thus, the 

prefiltered error vector in the frequency domain, is written as                                               

01E ( ) S ( ) u ( ) W( )f f fl  l l l
∧

= −               (10)

where, 01 10 0
0 I

R R

R R

− 
=  

 
   , is the windowing matrix which  

 
makes the first R samples to zeros. Hence, the overlap-save 
constrained FDAF algorithm’s weight updating equation of 
PEM_AFC is written as:

      
110W( 1) W( ) ( ) ( ) ( )H

f fl l l U l E l
∧

−
∧

µΛ+ = +             (11)                  

where, µ is the fixed step-size,  10 1I 0
0 0

R R

R R

− 
=  

 
    

 
which makes the last R samples to zero and, 

,0 ,2 1( ) {[ ( ), , ( )] } [u ( )u ( )]
f f

T H
u u N f fl diag l l E l l−Λ = Φ … Φ = , is the 

loudspeaker signal’s PSD matrix, which helps to make the 
algorithm’s tracking behaviour better. The PSD of pre-whitened 



PRASAD & RAO: OPTIMAL STEP-SIzE TECHNIquE FOR FREquENCy-DOMAIN AND PARTITION-BLOCk ADAPTIVE FILTERS 

745

loudspeaker signal can be determined by smoothing the FFT 
coefficients recursively as,

 ,

2

, ,
ˆ ˆ( ) ( 1) (1 ) ( )

f fu m u f mml l U lΦ = λΦ − + − λ        (12)

where, 0,1, 2,...2 1m N= − , represents frequency-bin number 
and 0 1l< <  is the smoothing- factor.

2.3 PEM-AFC System using FSS-PBFDAF 
Algorithm
In the PBFDAF algorithm, filter weights of the estimating 

acoustic path w
∧

  are divided into P smaller sets of weight 

vectors as W p
∧

 , where 0,1,.. 1p P= − . The weight vector 

of thp subfilter is W ˆ ˆ( ) [ ( ), , ( 1)]T
p l w pN w pN N

∧
= … + −  

with no. of taps /wN n P= . Thus, for PBFDAF-PEM-
AFC,2,18 the pre-whitened error signal is calculated by, 

 
1

,
0

We ( ) s ( ) u ( ) ( )
P T

pf f f p
p

l l l l
− ∧

=
∑= −

     
                      (13) 

where u ( ) [ ( ), , ( ( 1) 1)]T
fp f fl u l pN u l p N= − … − + +

          
The smaller convolutions in Eqn. (13) can be carried 

out effectively in frequency-domain using FFT. The 
pre-whitened loudspeaker signal and the weight vector 
corresponding to the pth

 partition in the frequency-domain are 
given by the following equations respectively,  

(0) (2 1)u ( ) { u ( )} {[ ( ), , ( )] }T
fp fp fp fp Nl diag n diag U l U l−= = …  

                                                                                             (14)
 

1 ,0 ,2 1W W ˆ ˆ( ) [ ( ),0 ] [ ( ), , ( )]
T

T T
p p XN l p Nl l W l W l

∧ ∧

−= = …               (15) 

where 10 XN is a zero vector. The pre-whiten error 
signal vector in frequency-domain representation is 

,0 ,2 1( ) [ ( ), , ( )]T
f f f NE l E l E l−= …  and it can be obtained by, 

 
101

,
0

WE ( ) S ( ) u ( ) ( )
P

pf f f p
p

l   l l l
− ∧

=
∑= −

  
       (16)

where, 1S ( ) [0 , ( ), , (( 1) 1)]T
f N f fl s lN s l N×= … + −  is pre-

whiten microphone signal and 01 10 0
0 I

N N

N N

− 
=  

 
   . Thus,  

 
the update equation of PBFDAF algorithm for PEM-AFC is 
expressed by,  

^10W W( 1) ( ) ( ) u ( ) E ( )H
p p fp fl l l l l

∧ ∧
+ = + µΛ    

         (17) 

where ( )H⋅  indicates matrix hermitian, is 

the fixed step size, 10 1I 0
0 0

N N

N N

− 
=  

 
   ,  and

Ë {[ (0), , (2 1)] } [u ( )u ( )]
f f

T H
p u p u p fp fpdiag N E l l= Φ … Φ − =  is PSD of 

pre-whiten load-speaker signal . The PSD of pre-whitened 
loudspeaker can be estimated recursively as,

   
2

, ,,
ˆ ˆ( ) ( 1) (1 ) ( )

fp fpu m u fp mml l U lΦ = λΦ − + − λ
           (18)

where 0,1,2,...2 1m N= − , represents frequency bin number 
and λ  is the smoothing factor, 0 1< λ <  .

3. PrOPOSED OPTiMAl STEP SiZE (OSS) AlGOriTHMS 
FOr PEM-AFC

3.1 OSS Technique for FDAF Algorithm in the Context 
of PEM-AFC
The step-size of the FDAF algorithm for PEM-AFC is 

fixed in the weight update Eqn. (11), which results in either 
a slower convergence rate for small step-sizes or higher 
steady-state error with large step-sizes. To overcome this 
trade-off, we proposed an approach for determining the 
OSS for FDAF-PEM-AFC algorithm. The methodology for 
estimating the OSS for the FDAF algorithm in the case of 
AEC is discussed by yang,12 et al., and we are using a similar 
approach for proposing OSS-FDAF-PEM-AFC algorithm. 
To describe variable step-size FDAF-PEM-AFC algorithm, 
replace the fixed step-size µ  in the weight update Eqn. (11) 
with variable step-size ì ( )m l , and consequently, the equation 
for filter weight update is written as: 

110W( 1) W( ) ( ) ( ) ( )H
f fml l l l E l

∧ ∧
−µ Λ+ = +           

        (19)
where 0 2 1( ) {[ ( ), , ( )] }T

m Nl diag l l−µ = µ … µ , the suffix denotes 
thm  frequency-bin. The following assumptions are made to 

obtain the expression for optimal step-size:

(i) We assume that the weight vector is random, zero-
mean, and follows first-order simplified Markov model.5-19 
In frequency-domain, weight vector can be approximated 
by the following equation, where H(l) is uncorrelated with 
filter weights and loudspeaker signal,

   
W ( 1) W ( ) H( )o o l  l l+ = +

                                        (20)  
(ii) In Eqn. (19), the frequency-domain weight vector ·W ( )p k  

is statistically independent to u ( )f l  and S ( )f l .  

(iii)
*

, ,[ ( ) ( )] 0f i f jE U l U l =  for i j≠ . 

We get an equation for system distance ( )m lδ  
by using the above assumptions and performing the 
convergence analysis as described by yang12, et al., 
but this system distance is minimum if the step-size 

is optimal, so we get the OSS by equating ( 1)
0.

( )
∂δ +

=
∂µ

m

m

l
l  

The expressions for OSS and system distance were 
obtained as follows:

,

, ( ) )
( )

( ) ( ) ( )

(

2

m

m
m x m

f

f

u m

u

l l
l

l l l

Φ δ
µ =

Φ δ + Φ
     

                          
 (21)   
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( )
( 1) 1 ( ) ( )

4
m

m m m
l

l l l
µ δ + = − δ + Θ 

                      (22)

where, 2( ) (| ( ) | )m ml E H l=Θ , is a measure of the acoustic path’s 

impulse response variability. When ( )m lΘ is not considered in 

Eqn (22), ( )m lδ has a tendency to reach zero or lower value as 
time increases, it results in good steady state performance but 
poor tracking of the system when an abrupt change in feedback 

path occurs, ( )m lΘ , should have larger value to enable fast 
tracking. Hence, this parameter has an effect on both tracking 
and steady-state misalignment. To achieve a good trade-off, it 
can be estimated by the below expression as given in20, 
            

               
2ˆ ˆ( ) ( 1) ( )m m ml W l W l= + −Θ

                                 (23)

 Since, the algorithm’s convergence performance is 
relatively insensitive, system distance is initialized with a 
constant. Additionally, when the filter converges to a certain 
degree, Eqn (22) requires the estimation of the source signal 
PSD, which can be approximated to the PSD of the pre-filtered 
error signal. As a result, the PSD estimation of the source 

signal is , ,( ) ( )
fx m e ml lΦ ≈ Φ , and thus PSD estimation of the 

PEM error signal is.

        
2

, , ,( ) ( 1) (1 ) ( )
f fe m e m f ml l E lΦ = αΦ − + − α

        (24)
 

   
where, α  is smoothing factor between 0 and 1.

 Although the proposed OSS_FDAF-PEM-AFC has 
fast convergence with minimal steady-state error, its tracking 
capability for changes in the feedback path is limited because 
of the decreasing nature of system distance with respect to 
time as in Eqn. (22), with time and also when the feedback 
path changes noise PSD in Eqn. (24) is overestimated. As a 
result, the step size from Eqn. (21), becomes extremely small, 
and the algorithm’s behavior becomes unpredictable when 
the feedback path changes. To overcome this reconvergence 
problem, a feedback path change detection logic14 has been 
added to the proposed algorithm.

3.2 OSS Technique for PBFDAF Algorithm in the 
Context of PEM-AFC
  Similar to the previous section, to represent the OSS 

weight update in PBFDAF-PEM-AFC, step-size µ in Eqn. (17) 

is replaced with variable step-size , ( )p m lµ , for thp partition and 
thm frequency bin, and the weight vector of the next frame is 

obtained by,                                

1
,

10W W( 1) ( ) ( ) ( ) ( )p m
H

fpp fl l l l U E l
∧ ∧ −+ = + µ Λ           (25)

where , ,0 ,2 1( ) {[ ( ), , ( )] }T
p m p p Nl diag l l−µ = µ … µ  . The following 

assumptions are made to obtain the expression for optimal step-
size:  (i) the vectors  u ( )fp l  and x ( )l  are stationary, zero-mean, 

and statistically independent random processes; (ii) u ( )fp l and

x ( )l  are statistically independent to each partition’s weight 

vector W ( )p l
∧

 ; (iii) *[ ( ) ( )] 0fi fjE U l U l =  for i j≠ . With the 
above assumptions and by performing the convergence 

analysis16, we obtain an equation for system distance , ( )p m lδ but 
this system distance is minimum if the step-size is optimal, so, 

we can obtain the OSS by equating .

,

( 1)
0

( )
p m

p m

l
l

∂δ +
=

∂µ
. By solving 

 
this derivative, we obtain the expressions for OSS and system 
distance as follows,

  ,

, 1

, , , ,
0,

, ( ) ( )
( )

1( ) ( ) ( ) 2 ( )
2f

f p m

p m P

u m p m p m x m
p m p

u m l l
l

l l l l
−

= ≠
∑

Φ δ
µ =

 Φ δ + δ + Φ  

   (26) 
   
  

2
, , 2

. . ,

1 ,2
, ,

0,
,

( ) ( ) 1( 1) 1 ( ) ( )
2 4 8

( )1( ) ( )
2 ( )

f

p m p m
p m p m p m

P x m
p m p m

p m p
u m

l l
l l l

l
l l

l
−

= ≠
∑

 µ µ
δ + = − + δ + µ 

  
Φ

× δ + µ
Φ

      

  (27)

As described in previous section, the PSD estimation of 

noise have been approximated by, , ,( ) ( )
fx m e ml lΦ ≈ Φ   and the 

PSD of PEM error-signal can be estimated by,
2

, , ,( ) ( 1) (1 ) ( )
fp fpe m e m fp ml l E lΦ = αΦ − + − α             (28) 

  
where 0 1< α < is the smoothing factor. Here also to overcome 
the reconvergence problem, FPCD logic as discussed in 
previous section, has to be included in this proposed OSS-
PBFDAF-PEM-AFC algorithm.

4. SiMulATiON rESulTS
This section discusses the simulation results of proposed 

algorithms OSS-FDAF-PEM-AFC and OSS-PBFDAF-PEM-
AFC. The developed algorithms are compared against the 
FDAF-PEM-AFC, PBFDAF-PEM-AFC algorithms, using the 
fixed step-size for adaptation. We assumed one fixed step-size 
to be a higher value and the other to be a lower value in our 
simulations because higher step-size provides fast tracking and 
lower step-size provides good steady-state performance. In 
this study, three metrics are used to compare the algorithms, 
they are Misalignment (Mis), achievable maximum stable gain 
(MSG) and perceptual evaluation of speech quality (PESq). 
The Misalignment20 is an estimation error, which is defined as 
the normalized value of difference between the actual feedback 
path and estimated path, often expressed in decibels (dB).

10
( )( ) 20log
( )

r

o

lM s  i l
l

=
w
w

             (29)

where ˆ( ) ( ) ( )r ol l l= −w w w . MSG20 is the maximum stable 
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amplification that can be attained at a given time when the 
forward gain is constant. 

         10( ) 20log max ( )rMSG l l = −   w
             (30)

The effectiveness of algorithms have been compared 
based on assessment of output speech quality using PESq21 
score. The PESq measure takes a value between -0.5 and 4.5, 
where -0.5 means that the quality of speech is very poor and 
a score of 4.5 means the speech quality is best. To measure 

PESq score of an AFC system, the incoming signal ( )x n  is 

considered as reference signal and the loudspeaker signal ( )u n
as test signal.11

The acoustic paths used in the simulation study are 
taken from,20-21 two different acoustic paths are considered 
for our study. For the first half of the simulation time, the 
acoustic path in the free field i.e., AIR1 is used, and for the 
second half, we employ AIR2, which is an acoustic path 
when an object like a mobile phone is kept near the ear.  
Fig. 2 depicts the amplitude response of two feedback paths 

faster convergence rate of the two proposed algorithms, their 
steady-state performance is very similar. Moreover, when the 
feedback path changes from AIR1 to AIR2 at 30 seconds, the 
proposed approaches as shown in Fig. 5 and Fig. 6, are capable 
of tracking the shift accurately.

The output speech quality is assessed with the help of 
PESq to analyse the performance of AFC algorithms. The av-
erage PESq values are reported in Table 1 for ten different 
input speech signals to the AFC system. The PESq measure 
shows that OSS algorithms outperform FSS methods, and 
among the optimal step-size algorithms, OSS-PBFDAF-PEM-
AFC algorithm marginally outperforms the OSS-FDAF-PEM-
AFC method in terms of PESq, which is owing to low process-
ing delay of OSS-PBFDAF-PEM-AFC. 

with respect to frequency. The misalignment and MSG plots are 
the average of ten different simulation runs, using ten different 
speech signals. Each speech signal lasts sixty seconds and is 
concatenated with female and male speech signals extracted 
from the TIMIT database. The sample frequency is set at 8 
kHz. For all the simulations the following parameters are 

used: 80Wn = , Wn
R

P
= where 1P =  for FDAF and 4P = for 

PBFDAF algorithms, 2N R= , 1.0cδ = , 0.85λ = , 0.9α = ,
0.75β = . Two different fixed step-sizes are considered, one is 

low step value 0.001µ = , which can provide lower steady state 
error, and the other one is 0.02µ = which gives faster tracking. 
Fig. 3 and Fig. 4, provides the comparison of misalignment and 
MSG of the proposed algorithms OSS algorithms with fixed 
step-size FDAF and PBFDAF algorithms for PEM-AFC. The 
plot demonstrates that the proposed algorithms have a higher 
rate of convergence and a lower steady-state error than the FSS 
algorithms. Although the OSS-FDAF algorithm has slightly 

Figure 2. Frequency characteristics of the acoustic feedback 
paths.

Figure 3. Misalignment comparision of proposed algorithms 
OSS-FDAF-PEM-AFC and OSS-PBFDAF-PEM-AFC, 
with FSS algorithms.

Figure 4. MSG comparison of proposed OSS algorithms with 
FSS algorithms.
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5. COMPlEXiTY ANAlYSiS
The complexity analysis of the proposed OSS-FDAF-

PEM-AFC and OSS-PBFDAF-PEM_AFC algorithms and 
their comparison with the fixed step size FDAF and PBFDAF 
algorithms for PEM-AFC is discussed in this section. The 
number of real multiplications required for each output 
sample is used to compare the computational complexity of 
different algorithms. We made the following assumptions: A 
real division and multiplication are both equally complex; 

each N point FFT/IFFT calculation requires 2log N N  
multiplications, the Levinsion-Durbin method has a complexity 

of 2 (5 )A An N n N+ + +  multiplications21, where An  is the 
length of prediction-filter. The complexity analysis of the OSS-
FDAF-PEM-AFC and OSS-FDAF-PEM-AFC algorithms are 
provided in the Table 1 and Table 2 respectively.

Figure 5. Misalignment comparison of proposed OSS algorithms 
with FSS algorithms when the feedback path changes 
at 30s from Air1 to Air2.

Figure 6. MSG comparison of proposed OSS algorithms with 
FSS algorithms when the feedback path changes at 
30s from Air1 to Air2.

Algorithm PESQ

FDAF-PEM_AFC (with 0.001µ = ) 2.51

FDAF-PEM_AFC (with 0.02µ = ) 3.17

PBFDAF-PEM-AFC (with 0.001µ = ) 2.69

PBFDAF-PEM-AFC (with 0.02µ = ) 3.36

OSS-FDAF-PEM-AFC 4.16

OSS-PBFDAF-PEM-AFC 4.27

Table 1. Comparison of PESQ score for different algorithms

Algorithm 1. OSS-FDAF-PEM-AFC No. of real multiplications required

, , 1
ˆ (0) (0) [0]

ffu m e m NXΦ = Φ =  ; 1
ˆ( , ) [1,0 ]T

nAA q l −==

, 2w n R N R= =

u( ) [ ( 1).... ( 1), ( )] ,Tl u lR M u lR u lR= − + −

1 ,0 2 1W ˆ ˆ ˆ( ) [ ,0 ] [ ( ), , ( )]T T T
XN l Nl W W l W l

∧

−= = …  2log N N

1{( ) u( ) W( )}Ns l  l l
∧

−= 
∼

2log 3N N N+

ˆ( ) ( ) ( ) e l s l s l= −

Table 2. Computational complexity analysis of OSS-FDAF-PEM_AFC algorithm
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ˆ( , ) ( 1)
u ( ) [ ( 1) .... ( 1), ( )]

ˆ( , ) ( )

T
f f f f

A q l u lR N
l  u lR N u lR u lR

A q l u lR

 − +
 

= = − + − 
 
 

M
ANn

0 1 (2 1)u ( ) { u ( )} {[ ( ), ( ) , ( )] }T
f f f f f Nl diag l diag U l U l U l−= = …

2log N N

ˆ( , ) ( 1)
( ) [ ( 1) .... ( 1), ( )]

ˆ( , ) ( )

T
f f f f

A q l s lR R
l  s lR R s lR s lR

A q l s lR

s
 − +
 

= = − + − 
 
 

M

 RnA

1S ( ) [0 , ( ), , ( 1)]T
f N f fl s lN s lN N×= … + − 2log N N

 
01 WE ( ) S ( ) U ( )f f fl   l l

∧
= − 2log 3 2N N N+

2

, , ,
ˆ ˆ( ) ( 1) (1 ) ( ) ,

f fu m u m f ml l U lΦ = λΦ − + − λ  5N

 ,0 ,2 1( ) {[ ( ), , ( )] }
f f

T
u u Nl diag l l−Λ = Φ … Φ

 
2

, , , , ,( ) ( 1) (1 ) ( ) ) ( ); (
f f fe m e m f m x m e ml l E l l lΦ = αΦ − + − α Φ = Φ    5N

,

, ,

( ) ( )
( )

( ) ( ) 2 ( )
f

f

u m

u
m

mm x m

ml l
l

l l l

Φ δ
µ =

Φ δ + Φ

 14N

. .
1 10( 1) ( ) ( ) ( ) u ( ) ( )H

fm fW l W l l l l E l−µ Λ+ = + 2log 15 2N N N+

2ˆ ˆ( 1) ( 1) ( )m m ml W l W lΘ + = + −
2N

( )
( 1) 1 ( ) ( 1)

4
m

m m m
l

l l l
µ δ + = − δ + Θ + 

 

 5N

ˆ( , ) { ( ); ( 1)}A q l levinson durbin e l e l= − −
2 (5 )A An N n N+ + +

Total Complexity  in terms of no of multiplications required per sample:       2
2log 53 (2 5) ) /A A( 8N N N N R n n R+ + + + +

Algorithm 2. OSS-PBFDAF-PEM-AFC No. of real multiplications required

, , 1
ˆ (0) (0) [0]

ffu m e m NXΦ = Φ =  , 1
ˆ( , ) [1,0 ]T

nAA q l −==

, 2Wn
 R N R

P
= =  

for l = 0,1,....do

 for p = 0,1,…P-1 do

       u ( ) [ ( ( 1) 1).... ( 1), ( )] ,T
p l u lR p N u lR pN u lR pN= − + + − − −

Table 3. Computational complexity analysis of OSS-PBFDAF-PEM_AFC algorithm
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       0 1 (2 1)u ( ) { u ( )} {[ ( ), ( ) , ( )] }T
p N p p p p Nl diag l diag U l U l U l−= = …

2log PN N
  end for 

   

11

0
W( ) u ( ) ( )

P
pN p

p
S l   l l

−∧ ∧−

=
∑=  2log 3 PN N PN+

 ˆ( ) ( ) ( ) e l s l s l= −  

for P = 0,1,…P-1 do

 

ˆ( , ) ( ( 1) 1)
u ( ) [ ( ( 1) 1) .... ( )]

ˆ( , ) ( )

T
fp f f

A q l u lR p N
l  u lR p N u lR PN

A q l u lR pN

 − + +
 

= = − + + − 
 − 

M APNn

 ,0 ,1 ,(2 1)u ( ) { u ( )} {[ ( ), ( ) , ( )] }T
fp N fp fp fp fp Nl diag n diag U l U l U l−= = … 2log PN N

 

ˆ( , ) ( 1)
( ) [ ( 1) .... ( 1), ( )]

ˆ( , ) ( )

T
f f f f

A q l s lR R
l  s lR R s lR s lR

A q l s lR

s
 − +
 

= = − + − 
 
 

M APRn

 1S ( ) [0 , ( ), , (( 1) 1)]T
f N f fl s lN s l N×= … + −

2log PN N
end for 

 

101
,

0
WE ( ) S ( ) u ( ) ( )

P
pf f f p

p
l   l l l

− ∧

=
∑= −

2log 3 2PN N PN+

for P = 0,1,…P-1 do

 
2

, , ,
ˆ ˆ( ) ( 1) (1 ) ( )

fp fpu m u m fp ml l U lΦ = λΦ − + − λ 5 PN

 ,0 ,2 1Ë ( ) {[ ( ), , ( )] }
fp fp

T
p u u Nl diag l l−= Φ … Φ

 
2

, , ,( ) ( 1) (1 ) ( )
f fe m e m f ml l E lΦ = αΦ − + − α   ; , ,( ) ( )

fx m e ml lΦ ≈ Φ 5 PN

 

, ,

, 1

, , , ,
0,

( ) ( )
( )

1( ) ( ) ( ) 2 ( )
2

fu m p m

p m P

Ufp m p m p m x m
p m p

l l
l

l l l l
−

= ≠
∑

Φ δ
µ =

 Φ δ + δ + Φ  

 16PN

 

.
10 1

,

.
( 1) ( ) ( ) ( ) ( )p fpp p m

H
fW l W l l l U E l−+ = µ Λ+ 2log 15 2PN N PN+

 

2
, , 2

. . ,

1 ,2
, ,

0,
,

( ) ( ) 1( 1) 1 ( ) ( )
2 4 8

( )1( ) ( ) ,
2 ( )

f

p m p m
p m p m p m

P x m
p m p m

p m p
u m

l l
l l l

l
l l

l
−

= ≠
∑

 µ µ
δ + = − + δ + µ 

  
Φ

× δ + µ
Φ

23 PN

end for 

 
ˆ( , 1) { ( ); ( 1)}A q l levinson durbin e l e l+ = − − 2 (5 )A An N n N+ + +

end for
Total Complexity  in terms of no of multiplications required per sample :       

2
2log 70 ( 5 ) ) /A A( 8PN N PN N PN PR N n n R+ + + + + + +
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The comparison of computational complexity of discussed 
algorithms is presented in Table 3. It has been noticed that the 
OSS algorithms requires only few additional multiplication 
operations compared to fixed step-size algorithms. Among the 
proposed two algorithms OSS-FDAF-PEM-AFC algorithm 
has lower computational load compared to OSS-PBFDAF-
PEM-AFC. But, the processing delay of frequency domain 

adaptive filter is given by 2 1) ( R − , where R is the frame 

shift. Hence, the processing delay of FDAF is 1)w (n − and for 

PBFDAF is 1)wn
 (

P
− , where wn is length of adaptive filter and 

P is no of partitions. Thus, even though OSS-PBFDAF-PEM-
AFC algorithm has slightly higher computational load, it may 
be preferred due to its low processing delay.

6. CONCluSiONS
In this paper, we proposed a robust optimal step-size 

technique for FDAF and PBFDAF algorithms for PEM-AFC 
configuration. Computer simulation indicated that the OSS 
algorithms have good performance in faster convergence and 
low steady-state error compared to fixed step size algorithms, 
but the computational complexity of OSS algorithms is slightly 
higher. Among the two proposed algorithms, OSS-FDAF-PEM-
AFC has better performance than the OSS-PBFDF-PEM-AFC 
algorithm in terms of faster convergence, misalignment, and 
low computational complexity. However, hearing aid devices 
demand low processing delay, in such case OSS-PBFDAF-
PEM-AFC may be preferred over the OSS-FDAF-PEM-AFC 
algorithm, even though its computational complexity is slightly 
higher.
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