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ABSTRACT 

Unsteady state flow of an incompressible elastico-viscous fluid of second-order type past
an infinite vertical porous flat plate by considering uniform and variable suction normal to the
plate has been studied  and an exact solution is obtained for the velocity field. In the present
situation, only two prescribed boundary conditions are available while the governing equation
of motion is of third-order due to the presence of elastico-viscosity parameter.  The concept
following Walters has been used for a much more meaningful solution.  The results for the
velocity distribution and skin friction have been analysed and discussed for different values of
the parameters encountered in the governing equation of motion and skin friction on the plate.
It is found that the effect of elastico-viscosity  and suction has significant contribution on the
backflow at the wall.
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NOMENCLATURE

Coefficient of viscosity

2
Coefficient of elastico–viscosity

3
Coefficient of cross viscosity

Coefficient of elastico-viscosity

Density of the fluid under consideration

A
i

Dimensional form of acceleration component
in the ith direction

U Dimensional form of free stream velocity

0
Dimensional form of frequency of fluctuating
stream

U Dimensional form of magnification factor for
free stream velocity

V Dimensional form of non zero mean suction
velocity

U Dimensional form of velocity component in the

U
i

Dimensional form of velocity component in
the ith direction

T Dimensional form of time parameter

L Dimensional form standard length

g(s) Given history

P Indeterminate hydrostatic pressure

v Non-dimensional form of non zero mean
suction velocity

u Non-dimensional free stream velocity
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u Non-dimensional form of magnification
factor for free stream velocity

p Non-dimensional hydro static pressure parameter

t Non-dimensional time parameter

u Non-dimensional velocity component along
x-direction

Non-dimensional form of frequency of the
fluctuating stream

Retardation factor

g (s) Retarded history

S Stress tensor

V Velocity vector

1 . INTRODUCTION

The study of flows past a porous plate has
wide range of applications in the fields of science,
engineering, technology, biophysics, astrophysics,
and space dynamics. Transpiration cooling of reentry
vehicles and rocket boosters, cross hatching on the
ablative surfaces, and film vaporisation in combustion
chambers, are few such applications. Further, the
problem assumes greater significance, especially
in the chemical and nuclear reactors. In all the
chemical reactors, slurry adheres to the reaction
vessels and gets consolidated. As a result of which
the chemical compounds within the reaction vessel
percolates through the boundaries causing loss of
production and consuming more reaction time. Also,
the problem assumes greater importance, especially
in biological systems, where the secretion through
glands is involved. Many at times, the secreted
fluid is not only viscous but also elastico-viscous.
Therefore due to increasing importance in technological
and physical problems, flow past a bounding surface
with variable suction received the attention of several
researchers. This motivated the study and analysis
of the problem in greater detail.

Lighthill1 initiated an important class of 2-D
time-dependent flow problems dealing with the response
of boundary layer to external unsteady fluctuations
about a mean value. Subsequently, Soundalgekar2

generalised  the problem to account for the effects
of fluctuating flow by considering the variable suction,

while Agarwal and Rani3 investigated MHD free-
convection flow using numerical techniques. Later,
Shah and Verma4 examined MHD free-convection
flow using the finite difference approach. The case
of unsteady  free-convection flow of an incompressible
viscous flow past an infinite vertical plate under
the influence of uniform transverse magnetic field
has been examined by Sreekanth5, et al. while the
problem of hydromagnetic unsteady free-convection
flow past an infinite porous plate using finite difference
approach has been studied by Singh6. In all the
above problems, the fluid under consideration was
either Newtonian or viscous.  The effect of elastico-
viscosity on the flow parameters have not been
studied in detail by the above investigators.

In the present analysis, the fluid under consideration
is purely elastico-viscous of second order type
without magnetic effects.

2 . FORMULATION OF THE PROBLEM

A simple material can be defined as a substance
for which stress can be determined with the entire
knowledge of the history of the strain. Further, it
has the property that all local states, with the same
mass density, are intrinsically equal in response,
with all observable differences in response being
due to definite differences in the history. For any
given history g(s), a retarded history g (s) can be
defined as:

g (s) = g( s);  0 <s< ;  0<

where being termed as a retardation factor.
Assuming that the stress is more sensitive to recent
deformation than to the deformations at distant
past,  it has been proved that the theory of simple
fluids yields  the theory of perfect fluids as 0
and that of Newtonian fluid as a correction ( up
to the order of ) to theory of the perfect fluids.
Neglecting all the terms of the order  higher than
two in , one has incompressible second-order
fluid, governed by the constitutive relation:
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In all the above equations, S is the stress-
tensor, U

i
, A

i 
are the components of velocity and

acceleration in the direction of the ith coordinate
Xi,P is indeterminate hydrostatic  pressure, and
the coefficients 

1
,

2
,

3
, are material constants

and the comma denotes covariant differentiation.

The constitutive relation for general Rivlin- Ericksen
fluid also reduces to Eqn (2) when the squares and
higher orders of E(2) are neglected, the coefficients
being constants while 

2 
= 0, and naming 

3 
as the

coefficient of cross viscosity. With reference to
the Rivlin-Ericksen fluids, 

2  
may be called as the

coefficient of elastico-viscosity. It has been reported
that a solution of poly-iso- butylene in cetane behaves
as a second order fluid and that Markovitz determined
the constants 

1
,

2
,

3
.

If V (U
1
,U

2
,U

3
) is the velocity component  then

the equation of motion in  X, Y and Z directions
are given by

Z
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DT

DU XZXYXX1 (5)
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where VV
T

V

DT

D
.

A set of rectangular coordinate system has
been employed with the X- axis along a 2-D infinite
plane wall and Y-axis perpendicular to it. Under
these conditions, the flow is independent of X.
Therefore, the flow of an incompressible elastico-
viscous fluid is governed by the following equations
of motion and continuity.

The equation of the motion in X-direction is
given by
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The equation of the motion in Y-direction is
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(9)

and the equation of continuity is

0
Y

V                                  
(10)

It is evident from Eqn (10) that V  is a function
of time only. Therefore, in the fitness of the situation,
we may consider

)1(' 0
0

TiAeVV

                      

(11)

where V

 

is a non-zero constant mean suction
velocity, 0  being the  frequency parameter of the
fluctuating stream, while 

  

is small and the suction
parameter (A) is a real positive constant such that
A 1. The negative sign in Eqn (11) indicates that

the suction velocity  is normal to the plate and is
directed towards the wall.  In view of the above,
the equations of motion are governed by
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If in Eqn (12), V = 0 and = 0 , the governing
equation of motion is essentially the same as that
of the Newtonian fluid.
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Also from Eqns (11) and (13), as 
Y

P

 
is small

in the boundary layer, it can be neglected. Hence,
the pressure is taken to be constant along any
normal and is given by its value outside the boundary
layer. If U (T) is the free-stream velocity, then

T

U

X

P '                             
(14)

Then Eqn (12) becomes
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The boundary conditions are U=0 at Y=0 and
U=U (T) as Y .

Considering periodic free-stream velocity of
the form

)1(')(' 0
Ti

o eUTU (16)

and  the velocity in the neighbourhood of the plate
can be assumed as:

)]()(['),( 21
0 YfeYfUTYU
Ti

o
(17)

The following is the scheme of non-
dimensionalisation for further analysis
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3 . SOLUTION OF THE PROBLEM

The  equation of motion  in the non dimensional
form will now be
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where 

 
is the frequency of the fluctuating stream.

Together with the conditions:

u = 0 at y = 0 (19)

and u = u (t) as Y (20)

The periodic free-stream velocity Eqn (16)
and Eqn (17) in the nondimensional form will be

)1(')(' ti
o eutu (21)

and )]()(['),( 21 yfeyfutyu ti
o (22)

Differentiating Eqn (22) partially wrt t and y,
the following set of equations are obtained:
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Using the above set of equations [Eqn (23)]
in Eqn (18) and comparing harmonic terms, viz.,
constant and tie , while neglecting the coefficients
of 2, etc, the following set of equations are obtained:
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where the prime denotes differentiation wrt y.
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Using  the Eqn (19) in Eqn (22) i.e., u = 0 at
y = 0, one gets

)]0(2)0(1['0 ftiefou

As u 0

 
and 0tie , f

1
(0) = f

2
(0) = 0

Now using the Eqn (20) in Eqn (22) i.e., )(' tuu
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which will yield 1)()( 21 ff 

In view of Eqn (22), the boundary conditions
from Eqns (19) and (20) will now be

0)()( 21 yfyf at y = 0 (26)

1)()( 21 yfyf at y = (27)

Equations (24) and (25) are of  third-order
differential equations when and for = 0
these are reduced to equations governing Newtonian
fluid. Hence, it is evident that, the presence of the
elastico viscosity of the fluid, increases the order
of the governing equations from two to three, and
therefore,  which requires three boundary conditions
for a unique solution. In the present situation, there
are only two prescribed boundary conditions as
mentioned in Eqns (26) and (27).

To overcome this, following Walters7 and assuming
the solution as
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Differentiating Eqn (28) partially wrt y, the
following equations are obtained: 
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which is valid only for small values of . Substituting
the above set of equations [Eqns (29)] in Eqns
(24) and (25), and equating the coefficients of
constant term and . While neglecting the coefficients

2 onwards, one has the following set of equations:
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Using the Eqns (26) and (27) in the Eqn (28),
the corresponding boundary conditions are:
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Under the backdrop of Eqn (28), solution of
Eqn (30) using the boundary conditions given in
Eqn (31) yields:
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Hence, the velocity field in the boundary layer
is given by
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Skin friction  on  the plate  is given by

Skin-friction = })1({ 2
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4 . RESULTS AND DISCUSSIONS

1. If = 0 in the expression for the velocity field
given by Eqn (32),  the results are in agreement
with that of Soundelgekar2.

2. The effect of elastico-viscosity ( ) of the  fluid
on the velocity profiles were analysed for various
values of parameters under consideration. From
Figs 1 and 2 it is observed that, there is backflow
near the wall for different values of elastico-

viscosity ( ) and time (t). It is noticed from
Fig. 1 that, as the elastico-viscosity of the fluid
increases, more of back flow has been seen
at the wall while as t increases, the reverse
trend is seen in Fig. 2. This effect can be
attributed to the fact that the intra molecular
forces are much stronger at the entry level
than in the core region.

3. Figure 3 shows the effect of suction parameter
(A) on the distribution of velocity profile. It is
seen that as A increases, the backflow is  found
to be predominant, which  is in agreement with

Figure 1. Velocity profiles for different elastico-viscosity
parameter.
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n

Figure 2. Velocity profiles for different time parameter.

Figure 3. Velocity profiles for different values of suction
parameter.
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the physical phenomena. This is due to the
fact that the recent deformation of the fluid
is more predominant than the deformation at
the distant past.

4. Figure 4 shows the effect of suction parameter
A on the amplitude of the skin friction. As  the
frequency parameter 

 
increases, the amplitude

of skin friction also increases. Further, as the
suction parameter increases, the amplitude of
the skin friction decreases.

5. The effect of elastico-viscosity parameter, 
on the amplitude of the skin friction has been
examined in Fig. 5. It is observed that as

the elastico-viscosity parameter decreases, the
amplitude of the skin friction also decreases.
Further, as the frequency parameter 

 
increases,

the amplitude of the skin friction increases.

5 . CONCLUSIONS

Due to the presence of elastico-viscosity parameter,
 of the fluid that is under consideration, the backflow

occurs at the wall. As 

 

increases, the backflow
in the boundary layer region is found to be predominant.
This phenomena can be attributed to the material
property of recent deformation when compared to
the deformation at distant past. However, as one
moves away from the plate, the velocity of the
fluid is positive for the reason that the material
deformation at distant past has almost no effect.
In case of the constant suction velocity (A = 0),
the velocity of the fluid  at the boundary region
is affected significantly. This is due to the greater
intra-molecular forces at the entry level. Though
there is  a significant backflow at the wall as t
increases, the flow settles down as one moves into
the core region. An increase in suction (A) leads
to decrease in the amplitude of the skin friction,
which is responsible for the  increase in the back
flow at the wall.
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