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ABSTRACT

In this paper, a generalised target density function (TDF) is studied for active imaging by
sensors such as radar. This is achieved by estimating a new TDF which is called range density
function (RDF). It is proposed by utilising of a generalised range-angle density function for
imaging. While the RDF is developed by a new approach based on inverse Wandermonde matrix
computation, it is obtained by considering a new range and scanning angle plane different from
the conventional methods.
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1. INTRODUCTION

Imaging is a mapping process from a 3-D object
to a 2-D image1-7. This transformation is obtained
using signal transforms such as Fourier and Wavelet
transforms2,4-9. As an active sensor, radar imaging
is based on a multi-sensor image fusion technique,
which is in the form of multiple-apertures and
arrays10-15. This imaging is a reconstruction process
which extracts the radar echo signals off the targets.
Radar image formation consists of three consecutive
phases such as signal acquisition, signal processing,
and image processing6-7.

Target density function (TDF) is the reflectivity
of spatially, continuously distributed targets and is
an important characteristic of radar imaging. The
dense target environments that occur when the
density is spread over a wider space, are studied
by Fowle-Naparst16,17. TDF is known by different
names such as ambiguity function, density function,
object (target), object reflectivity function, doubly-
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spread reflectivity function, and reflection
coefficient8,10,18. All these are the object representation
functions obtained via multi-sensor data fusion systems.

If TDF is assumed to be a reflection coefficient,
it is defined as the ratio of the received signal to
the transmitted signal. By this definition, the reflected
signals from the object space are amplitudes relevant
to the intensities of the points on the target or
objects. If the object’s geometric plane is considered,
since the integration of these amplitudes or the
illuminated intensities reveal information related to
the object shape, TDF will have an important role
in obtaining the radar images.

There are two well known approaches on TDF.
First one considers point scatterers reflected off
the target scatterer centres. Integration of all point
scatterers is able to obtain the whole object. This
radar imaging technique is based on inverse Fourier
transform (IFT) and used mostly in inverse synthetic
aperture radar (ISAR) studies2,4-7,19-20.
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Second method on TDF is a dense target
environment approach by Fowle and Naparst16-17.
This takes into consideration the existence of densities
of the targets in a high dense target environment.
It is based on the ambiguity functions with two
variables as range and velocity21. Especially, the
advanced function in the dense target environment
by Naparst is developed in a novel way. Rather
than typical radar imaging, this is an approach to
measure the closeness of the targets to each other
in the dense target environment. However, this
provides an important contribution to the analysis
of TDF related to the radar imaging.

In this study, a new TDF is theoretically developed
by a new approach on a range-scanning angle
plane different from the early approaches. This
technique is developed based on inverse Wandermonde
matrix.

2. PRELIMINARIES OF DENSITY FUNCTIONS

In this study, the background of the target
density functions consists of  SAR-ISAR reflectivity
functions, ambiguity functions, and Naparst's target
density functions.

2.1 SAR-ISAR Reflectivity Functions

Synthetic aperture radar (SAR) is a well known
radar imaging technique used for earth surface
imaging. A SAR image is a high-resolution map of
surface target areas and terrain in the range and
the azimuth dimension. Coherent SAR imaging is
an alternative approach to remote sensing that provides
contribution to the imaging over visible/infrared
sensing technology6-7,22-25.

For SAR receiving mode, if the target is composed
of continuum-point targets (scatterers), by the
superposition principle, the echo (reflected signal)
x(t), from such a target at x,y,z points is
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Here, f is the transmitted signal function, ρ is
reflectivity function, R is the range, and c is the
speed of light. As stated in Eqn (1), the returned

signal x(t) is a delayed and time-scaled version of
the transmitted signal, f(t).

As a TDF definition, reflection coefficient is
used in inverse Fourier transform (IFT) and ISAR
image formation. This technique defines the reflection
coefficient by the superposition method, which involves
integration of all point scatterers. Summation of the
point scatterers represents the whole object2,4-7,19-20,22-25 as
shown in Eqn (1). (x, y, z) determines the integration
of the point scatterers at the object or target. SAR
systems are designed by moving a real aperture or
antenna through a series of positions along the
flight track. This corresponds to multi-aperture SAR
imaging26.

As for ISAR systems, imaging is based on
similar principles to SAR imaging. However, these
have different configurations. In SAR imaging, the
radar is flying in space and the object is stationary,
while in ISAR imaging, the object is moving and
the radar is stationary. Target motion is the essence
of the difference between SAR and ISAR2,6-7,27-28.

ISAR is considered as an IFT of a 3-D object
on a 2-D image. If Eqn (1) is expressed in two
dimensions, after demodulation and some pre-filtering
processes, the measured ISAR signal becomes:
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Figure 1. Radar-target detection.
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Here, PRIT is pulse interval repetition, c is the

speed of light, f
0 

is carrier frequency, and Rp(t)
is the range from the radar to the point scatterer,
given as:

])(sin[])(cos[)()( α−θ−α−θ+= tytxtRtRp (3)

In Eqn (3), α is the azimuth angle and θ(t) is
the rotation angle. If IFT is applied to Eqn (2), the
image (x,y) is obtained as a 2-D form of 3-D
object2,6-7.
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2.2. Ambiguity Functions

The radar ambiguity function can be used as
a criterion of goodness for modulation waveforms
to discriminate the range and range rate of point
targets21,29-33. Radar waveforms can usually be
described as a narrowband modulation of a single
radio frequency carrier. For the narrowband radar
signal of short duration, the Doppler effect is simply
to shift the frequency of the carrier signal by an
amount proportional to both the scatterer's radial
velocity wrt the radar and the signal carrier frequency.
For other radar signals, however, the representation
of the Doppler effect as a simple carrier frequency
shift is no longer valid. When either the modulation
bandwidth or coherent signal duration is sufficiently
large, the Doppler effect on the modulation envelope
also becomes significant, and must be properly
accounted for in radar design. Such is increasingly
the case as radar waveforms and signal processing
increase in sophistication, with goals of achieving
higher range and velocity resolution, and better
clutter rejection.

The radar ambiguity function describes the
response of a particular range-velocity resolution
cell of a radar to a point target, as the target range
and velocity vary. Radar performance in terms of

capability to resolve target and clutter scatterers
in range and velocity dimensions can be assessed
by direct examination of the ambiguity function
surface in the range-velocity ambiguity plane.

Recognising the importance of ambiguity functions
as a signal design criterion in mathematical radar
theory is generally credited to Woodward21. The
ambiguity function A(x,y) of a signal u(t) is given
by
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where û is the complex conjugate of u. As seen,
the ambiguity function A(x,y) is a 2-D correlation
function varying wrt x and y variables. If A(x,y)
is considered for the radar, the quantities x and y
are, respectively, the time delay in the echo due
to the range of the object, and the Doppler, or
frequency shift in the echo, due to the object's
velocity.

As Woodward21 observed, the ambiguity function
A(x,y) of a transmitted signal u(t) measures the
uncertainty with which the returning echo distinguishes,
simultaneously, both ranges and velocities of a
target system. In all cases of the ambiguity function
A(x,y), the number of objects and their various
ranges and velocities obviously are not completely
determined by the pattern, and the ambiguity in the
determination is described by the structure of A(x,y).
Hence, it is natural to call A(x,y) the ambiguity
function for the waveform u(t).

2.3 Target Density Function

First density term related to the TDF is called
as dense and density by Fowle16, et al. In their
paper, in general, two types of target density
environment including multiple target complex are
considered: (i) case of high density of similar targets,
and (ii) case of single target in a dissimilar clutter
background.

In Fowle's work, a particular aspect of the
radar resolution problem was studied. Whereas
many discussions of radar resolution are concerned
with the highest possible degree of separation of
two very nearby targets, usually in one dimension.
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Fowle was concerned with the problem of the
detection and resolution in two dimensions(range
and range rate) of a large number of targets in a
fixed part of the target space. He claims that the
high target density is more characteristic of this
resolution problem than is the close proximity of
target pairs.

While Fowle had focused on the problem of
the detection and resolution in two dimensions of
a large number of targets in a fixed part of the
target space, he was inspired of ambiguity functions.

After Fowle, dense target environment term
was used by Naparst's paper17. In addition to dense
target environment definition, Naparst also described
a TDF as a new concept in the same work. Contrary
to Fowle's low target density environment, Naparst
method was on multiple and high-density target
environment. His new approach was based on ambiguity
and cross-ambiguity functions. In this work, the
dense target environment was defined as the closeness
of a lot of targets at a distance, when their velocities
are so close to each other. While Naparst developed
the new technique with the high target density
environment, he was inspired by Fowle's study,
which defines that the high target density is more
characteristic of this resolution problem than is the
close proximity of target pairs.

As per the definition by Naparst, density of
targets at distance x and velocity y is D(x,y). In
this case, the echo or the reflected signal from
targets is
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In this approach, it is assumed that all targets
are illuminated equally. As stated, the target density
function is a function of the range and velocity
variables similar to the ambiguity functions.

Reconstruction of the TDF in Naparst algorithm
by the ambiguity and orthonorrmal functions in
Hilbert17 space is finalised as:
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3. IMAGING BY A NEW TARGET DENSITY
FUNCTION

In this paper, an active sensor imaging has
been studied by an alternative TDF, which is based
on the range-scanning angle. New target density
function, g(R,β) is composed of two variables,
which are the range R, and the scanning angle β.
Definition of g(R,β) is given as follows.

Target density function is the limit of the ratio
of the amplitude of the signal reflected from an
infinitesimally neighborhood about the point (R,β)
to the amplitude of the incoming signal. By this
definition, the new TDF g(R,β) is

t

r
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where d(Ω) is the diameter of the disc about the
point (R,β)∈Ω , A

r 
and $A

t 
are the amplitudes of

the reflected and the transmitted signals, respectively.

In this definition, the TDF is relevant to the
reflectivity of spatially, continuously distributed targets.
This approach is different from the conventional
TDF definitions stated early. Instead of ambiguity
functions based on range-velocity variables, the
imaging is taken by a new TDF with the range and
scanning angle.
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Figure 2. Radar imaging plane.
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Let one consider the target plane shown in
Fig. 2, where β is cos θ and R is the range from
the target to the radar.

As seen in Fig. 2, the TDF is a function of the
spatial coordinates (R,β) in the upper semi-plane.
Now a new target density function is defined by
utilizing Fig. 2. This function is the range density
function (RDF).

3.1 Imaging by Range Target Density Function

In a radar system, if R is the range from the
sensor in a fixed direction β, which is direction
cosine of the line joining the point and the phase
centre, as a new TDF, the new RDF is defined as
follows:

Range density function, g(R) is the reflectivity
of the point at range R.

By this definition, g(R) represents the image
along the range or the distance to the sensor. Let
one formulate this definition. The direction density
function g(R,β) at a fixed direction β is

),()()( β≡≡ β RgRgRg                   (9)

Let one write the TDF wrt N targets on a
semi-upper plane in Fig. 2 as
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Let P(t) be the signal transmitted in the fixed
direction β, which can be done by a directed single
antenna or a phased array using beamforming34-35.
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Then, the reflectivity of one point at g(R) is
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is the output of the sensor located

at the centre (the feature space), and c is the
speed of light. Let one generalise Eqn (13) for the
whole radar-target semi upper plane by  superpositioning
principle considering all point scatterers related to
the range angle.

If g(R) is the reflectivity of the point (R) at
the fixed direction β, of the interest target area,
then the total reflected incoming signal to the phase
center will be
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Eqn (14) gives:
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then 
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where c
iZ ω term in Eqn (22) is in a Wandermonde

matrix form. Thus, it makes the calculation of g(R
i
)

easy. Then, let write Eqn (22) in matrix form as
follows: 

Y=WG                                 (23)

where Y is the radar output function, W is Wandermonde
matrix, and G is the desired TDF. Then, the desired
result is obtained as follows; 

G=W-1Y                                (24)

In case of W or cZ ω matrix with a large dimension,
solution of the problem becomes very complex and
requires an alternative computation. To reduce it
to a smaller dimension, let consider the transmitted

signal P(t) as a band-limited as ( ω≤ω≤ω kc ). Then,
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Now for 0=ωc , the steps after Eqn (18) are

rewritten as follows:
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Because the right side of Eqn (30) is in a
typical Wandermonde matrix form, it is rewritten
in a matrix form as
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where Y is the radar output function, W is Wandermonde
matrix, and G is the desired TDF. Then Eqn (31)
is rewritten in matrix form as 

Y=WG                                 (33)

By utilising the inverse Wandermonde matrix
properties, the desired target density function G, is
obtained in form of inverse Wandermonde matrix
by multiplied the radar output function as follows: 

G=W-1Y                                (35)

which is the desired result. Thus, using a novel
target density function in form of the range density
function β)(Rg , the radar targets can be imaged
by utilising an inverse Wandermonde matrix
approach.
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3.2 Comparison

The developed technique here was inspired
partly by analogy to Fowle-Naparst and SAR-ISAR
approaches.

• Comparing to Fowle-Naparst approach: As an
advanced work of Fowle's study, Naparst has
developed a TDF for a high dense target environment
with multiple targets, whose velocities are close
to each other. This TDF acts like a separator
rather than an imaging function for the targets
at the distance with a given velocity. The significant
difference arises from the imaging approach.
However, the contribution of especially Naparst,
to the new TDF studies is quite remarkable.

• Comparing to ISAR approach: While ISAR
imaging is based on the integration of the point
scatterers on the target in ISAR, the proposed
TDF is produced by the integration of the ranges
at the fixed scanning angles.

4. SUMMARY AND CONCLUSIONS

In this paper, an alternative TDF is obtained
by a new algorithm and technique different from
the conventional approaches. Two main contributions
of this study are:

• New Target Density Function Plane: New
imaging TDF was presented in a novel range
and scanning angle plane.

• Novel Direction-Range Target Density Function:
A new TDF was defined to imaging by active
sensors in a variable direction angle and at a
range.

• Imaging by a New TDF: A new TDF which
was called direction density function, was defined
to imaging by active sensors in a variable range
and at fixed-direction angles.

• Proposed TDF Algorithm: New range density
function was produced by a new technique
based on inverse Wandermonde matrix
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