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ABSTRACT

Acoustic array sensor along with Root-MUSIC algorithm is used to estimate the direction
of arrival of the acoustic signal emitted by an acoustic target. Three architectures are used to
track the target in Cartesian coordinates: (i) digital filter with least square estimation, (ii) linear
Kalman filter with least square estimation, and (iii) extended Kalman filter. A comparative evaluation
of the three architectures in terms of performance metrics is presented.
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NOMENCLATURE

λ Wavelength

θ
i

ith DoA angle

∆x Perturbation step size

σ2 Noise variance

A[θ( t)] Vandermode matrix

a(θ) Steering vector

a Butterworth filter’s denominator coefficients

b Butterworth filter’s numerator coefficients

c Rate of propagation

d Spacing between sensors

E{} Expectation operator

jae Complex envelope of additive Gaussian
noise at jth sensor

F State transition matrix

G Process noise gain matrix
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H Measurement matrix

H(z) Filter transfer function

I Identity matrix

i ,j ,k Index numbers

K Kalman gain

k
i

ith direction vector

l Number of targets

M Number of samples

m Number of sensors

N Number of snapshots

n,p ,q ,r Indexes

P State error covariance

Q Process noise covariance matrix

R Measurement noise covariance matrix

R
a

Correlation matrix
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svd() Singular value decomposition operator

S Innovation covariance matrix

ir
S i th sensor

iaS ith target signal waveform

T Sampling interval

t Continuous time index

U Eigenvector

U
e

Noise subspace

U
s

Signal subspace

v Measurement noise sequence

w Process noise sequence

X State vector

X̂ Estimated X

X
~ Predicted  X

X
t

True state vector

jaX jth sensor output

x Position in x-axis

x
t

True x-position

trx Target x-position

x Velocity in x-axis

Y Array output

y Position in y-axis

y
t

True y-position

y
t r

Target y-position

y Velocity in y-axis

jz jth sensor position

z
m

Measurement vector

AT Transpose of matrix A

λ
i

ith Eigen value

1 . INTRODUCTION

The problem of moving target tracking using
acoustic array sensor has received considerable

attention during the past few years because of its
use in air traffic control, air defence, mobile user
location in cellular communications, military, naval,
underwater tracking, and acoustic source localisation1.
In acoustic sensor array tracking, the sensor array
listens for the acoustic signal emitted by the acoustic
target to determine its direction. Unlike radar, the
acoustic array sensor tracking systems have stealthy
operation capability. Acoustic array sensor-based
target tracking is attractive because these operate
passively, are inexpensive compared with other
modalities and require less power. They can be
used as integral part of an intelligent surveillance
system, which may also include different types of
sensors such as magnetic sensors, imaging sensors,
and so on. When the target is in the near-field of
the acoustic array, acoustic sounds can be used to
determine the location (range and angle) of the
target in polar coordinates. When the target is in
the far-field of the acoustic array, only angle (bearing)
information can be extracted and hence multiple
acoustic array sensors are needed to determine the
target location. Angle only tracking is very useful
when the range measurement is not available2.

Acoustic array sensor output data is processed
by multiple signal classification (MUSIC) algorithm3

to estimate the direction of arrival (DoA) of the
acoustic signal emitted by the acoustic target. The
direction of arrival estimation problem has been
extensively studied in signal processing4. DoA estimation
based on the batch processing such as MUSIC,
minimum norm, etc. does not reuse the information
from the previous batch to help refine the estimates
at the current batch. Some tracking algorithms
accomplish information transfer from the previous
batch to a priori information in the current batch
by imposing motion constraints on the target.  Since
acoustic array sensor provides only the angle (azimuth)
information, it would be difficult to track the target
in Cartesian coordinates with single-angle information.
Hence, multi acoustic array sensors are required
to provide multiple angle measurements of the target
at the same instant of time and the target location
can be computed by triangulation method5,6.

In this paper, the performance of three different
architectures for tracking the acoustic target in
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Cartesian coordinates is evaluated in terms of percentage
fit error, mean absolute error, and root sum square
position error7. It is assumed that the target is in
the far-field of the array. Two such arrays are
used to get the angle (bearing) information of the
target. In the first architecture, digital filter along
with least square estimation is used to estimate the
target position in Cartesian coordinates. This architecture
is very simple and easily adoptable. In the second
architecture, linear Kalman filter along with least
square estimation is used to track the target in
Cartesian coordinates. It is quite straight-forward
since the time updation and measurement updation
are in polar coordinates. Extended Kalman filter
is used in third architecture to track the target in
Cartesian coordinates. Here, the state estimation
is in Cartesian coordinates and measurement updation
is in polar coordinates.

2 . MATHEMATICAL MODELLING OF
ACOUSTIC SENSORS

The acoustic sensor array contains m number
of sensors uniformly distributed along a straight
line as shown on Fig. 1. The array consists of m
sensors placed with a uniform distance d between
the adjacent sensors in the array. The choice d = λ /2
prevents spatial aliasing where λ is the carrier
wavelength. The sensors sense the acoustic signal
produced by the target/source. The target is assumed
to be in the far-field of the sensor array, which
means that the distance of the target from the
sensor array is much greater than the distance
between the sensors. The target is also assumed
to be narrow emiting band acoustic signal and the
target is far from the sensor array, thus, it satisfies
the plane wave assumption. The sound waves reaching
each sensor are assumed parallel to each other.
The direction perpendicular to the sensor array is
called the broadside direction. The DoA of the
target is measured wrt this direction. It is assumed
that the target is moving with constant velocity is
subjected to minor random perturbations, and emitting
narrow band signals of wavelength λ impinge on
array of acoustic sensors which are passive at an
angle of θ.

The signal from the target reaches the sensors
at different times. This is because each sound

wave has to travel a different distance to reach
the different sensors. For example, the signal incident
on sensor S

r1
 has to travel an extra distance of d sin(θ1)

as compared to the signal incident on sensor
2rS

(Fig.1). This means that the signal at sensor 
1r

S

is a time-delayed version of the signal at sensor

2rS , with the delay being –d sin(θ1)/c, where c is
the rate of propagation of the signal. This argument
can be extended to the other sensors in the sensor
array. Consider l(l<m) number of targets in the
test scenario. The array has receiver behind each
sensor element. One can express the jth sensor
output as the sum of the shifted versions of the
source signals and is mathematically represented as:

)())(()(
1

tettStX
jij aij

l

i
aa +τ+= ∑

=
(1)

mlitkz
c

t ijij ,...,2,1,...,2,1)(
1

)( ===τ

where )(tX
ja is the jth sensor output at time t;

)(tS
ia is the ith target signal waveform; )(tijτ is the

relative time delay induced by the ith target signal
in the jth sensor; )(te

ja is the additive noise at jth

sensor; )]([sin)( ttk ii θ= for ]90,...,0,...,90[ °°−∈=θ
is the ith direction vector; jz is the jth sensor position;
C is the velocity of the acoustic signal in the
medium; and τ is the time delay between any two
neighboring sensors in the array. 
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Figure 1. Acoustic sensor array geometry.
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Using the analytical representation, the array
outputs could be written as

)()()]([)( tetStAYtX aaa +θ==

             
(2)

where

[ ]Taaaa tXtXtXtX
m

)()()()(
21

= is an m
vector of complex envelopes of the sensor outputs,
superscript T stands for transpose,

[ ]Taaaa tStStStS
l

)()()()(
21

=  is an l vector
of complex envelopes of the target signals

[ ]Taaaa tetetete
m

)(),(),()(
21

= is an m
vector of complex envelopes of the additive measurement
noises which are assumed to be Gaussian zero mean.

[ ])()()()]([ 21 laaatA θθθ=θ

 

is the

m x l Vandermode matrix or steering matrix.
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is the steering vector for the ith source/target signal
and it has unit-magnitude elements.

[ ]Tl tttt )()()()( 21 θθθ=θ

 

is the unknown
DoA vector (of the l targets/objects at time t) to
be estimated.

It is assumed that θ(t) is a slowly varying
function of time t. The change in θ(t) is assumed
either zero or negligible in each interval of

,...2,1,0],)1(,[ =+ nTnnT . i.e.

)()( nTt θ≈θ for t∈ ,...2,1,0],)1(,[ =+ nTnnT   (3)

In each interval, N snapshots of sensor data
are available for signal processing. Based on the
assumptions made in Eqn (3), the N snapshots of
sensor data could be expressed as:

1,...,2,1,

),()()]([)(

−+++=
+θ≈
Nnnnnk

kekSnAkX aaa
(4)

Eqn (4) is the discretised version of Eqn (2)

with a sampling interval of 
N

T 
.

2.1 DoA Estimation

Here, the actual algorithm to determine the
DoA is presented. The multiple signal classification
(MUSIC) introduced by Schmidt is one of the popular
subspace methods used in spectral estimation to
estimate the frequency. Consider the array sensor
output data represented in Eqn (2) as:

aa eASY +=

                              

(5)

Assuming that the signals from different targets/
sources are uncorrelated, the correlation matrix of
Y could be written as

{ } { } { }T
aa

TT
aa

T
a eeEASASEYYER +==      (6)

IZIAARR T
sa

22 σ+=σ+=

where { }T
aas SSER = is l x l auto correlation matrix

with rank l, I is mm×

 

identity matrix, σ2 is noise
variance, and Z is mm×

 

signal covariance matrix.

The Eigenvalue decomposition could be done
using svd operator as:

)( a
T RsvdUDU =                         (7)
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svd() : singular value decomposition operator

The Eigenvector matrix U could be partitioned
into a matrix U

s 
with l columns corresponding to l

signal values and a matrix U
e 

with m–l columns
corresponding to the noise Eigenvalues. U

s 
defines

the signal subspace, while U
e 
defines the noise subspace

and both are orthogonal to each other.  All noise
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Eigenvectors are orthogonal to the signal steering
vectors. Pseudo-spectrum could be computed as:

AUUA
P

T
ee

TMUSIC

1
)( =θ                    (8)

If θ is equal to DoA, then the denominator

would become zero causing peaks in function )(θMUSICP .

The accuracy is limited by the discretisation at

which the )(θMUSICP is computed. It requires either

human interaction or ample search algorithm to
determine the largest  peaks. Search algorithm is
a computationally exhaustive process, and hence,
estimation of DoA from the pseudo-spectrum would
not be very practical. These limitations will be
overcome by using Root-MUSIC algorithm. Root-
MUSIC is a model-based parameter estimation
technique. It uses a model (steering vector) of the
received signal as a function of the DoA which is
a parameter in the model. DoA, i.e., θ would be
estimated based on the model and the received
signal.  Root-MUSIC algorithm is described as
follows:

Let  θ= cosjkdez
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The inner product of the eigenvector and the
steering vector is equivalent to a polynomial in z.
The DoA would be obtained where

mllpAu p ,...,2,1],[ ++=θ⊥

 

i.e. roots of the
polynomial. To find the polynomial:
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The double summation could be rewritten as
a single sum by setting r = q–p. Then, Eqn (11)
can be written as

∑
+

−−=

− =θ
1

)1(

1 )(
m

mr

r
r zCPMUSIC (12)

where ∑
=−

=
rpq

pqr CC (13)

C
r 

is the sum of the elements of C on the  qth

diagonal. Since z and *

1

z 
have the same phase

and reciprocal magnitude, one zero is within unit
circle and the other outside the unit circle. From
the definition of z [Eqn (9)], only the phase carries
the desired information. Without noise, the roots
would fall on the unit circle and these roots are
used to estimate the DoA. The steps involved in
estimation of DoA using Root-MUSIC are as follows:

Step 1. Estimate the correlation matrix R
a

Step 2. Find the Eigenvector and Eigenvalues using
singular value decomposition, i.e.,

[ ] )( a
T RsvdUDU =

Step 3. Partition U to obtain U
e 

that corresponds
to m–l smallest Eigenvalues

Step 4. Compute C
r

Step 5. Find the zeros of the resulting polynomial

Step 6. From m–1 roots within the unit circle, choose
the l roots closest to the unit circle
( lqzq ,...,2,1, = )

Step 7. Obtain the DoA as

π





π

=θ − 1802
sin 1

d

zq
q (14)

3 . TARGET TRACKING ARCHITECTURE

Three target tracking architectures are evaluated.
In first architecture [Fig. 2(a)], second-order digital
filter is used to remove the noise where the
measurements are in polar coordinate and least
square estimation is used to compute the target
position in Cartesian coordinates. In second architecture
[Fig. 2(b)], linear Kalman filter is used to estimate
the state of the target in polar frame where the
acoustic sensor provides measurements in the same
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plane, and least square estimation algorithm is used
to compute the position of the target in Cartesian
coordinate. In third architecture [Fig. 2(c)], extended
Kalman filter is used to estimate the target state
in Cartesian coordinates while the measurements
are available in polar coordinates.

3.1 Digital Filter

The acoustic array sensor provides noisy
measurements in polar coordinates. Second-order
low-pass digital Butterworth filter with normalised
cut off frequency of 0.5 is used to remove the
noise. The transfer function H(z) of the filter is

n
n

n
n

zaza

zbzbb
zH −−

−−

+++
+++

=
1

1

1
10

1
)(            (15)

where n is order of the filter; b
i  

are numerator
coefficients and ni ...,,2,1,0= ; a

i 
are denominator

coefficients, and z is discrete time operator.

Figure 2(a). Information flow diagram of target tracker.
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Figure 2(c). Information flow diagram of target tracker. 

y

 

x

 

1ASA

  

y

 

x

 

2ASA

 

1θ

 

2θ

 

DoA 
ESTIMATION

 

DoA 
ESTIMATION

 

EXTENDED KALMAN FILTER 

ESTIMATED TRAJECTORY

 

1θ

 

2θ

 

TARGET  

y

 
x

 

1ASA

  
y

 
x

 

2ASA

 
TARGET 

1θ

 
2θ

 

DoA 
ESTIMATION

 

DoA 
ESTIMATION

 

KALMAN 
FILTER 

KALMAN 
FILTER 

LEAST SQUARE ESTIMATION 

ESTIMATED 
TRAJECTORY

 

1̂θ

 

2θ̂

 

Figure 2(b). Information flow diagram of target tracker.
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3.1.1 Least Square Estimation

The filtered measurements in first architecture
are in polar coordinates. To get the target position
in Cartesian coordinate, least square estimation11

is used. The procedure is as follows. Let the true

target position in Cartesian coordinates ),( trtr yx

be and the locations of two sensors 
1rS and 

2rS
be ),(

11 yx rr SS and ),(
22 yx rr SS . Let the target be at

an angle of θ1 and θ2 w.r.t. 
1rS and 

2rS , respectively..

x

y

rtr

rtr

Sx

Sy

1

1)tan( 1 −

−
=θ and 

x

y

rtr

rtr

Sx

Sy

2

2)tan( 2 −

−
=θ (16)

By rearranging the elements, one can get
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
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1)tan(
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2

1

2

1

22
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(17)

This can be represented in the form of

Bgf = (18)

In this Eqn, B and f are known and g is
unknown. The vector g, which shows the target
position, can be computed as g=B-1f.

3.2 Liner Kalman Filter

A general motion model used in discrete Kalman
filter for target tracking is8,9,10

)1()1()( −+−= kGwkFXkX             (19)

)()()( kvkHXkzm +=

                    

(20)

where X(k) is the state vector, F is the state
transition matrix, G is the process noise gain matrix,
and H is the measurement matrix. The process
noise w(k) and the measurement noise v(k) are
zero-mean, mutually independent, white, Gaussian
with covariance Q and R respectively. z

m
(k) is the

measurement vector at time k . The Kalman filtering
is done in two steps, viz., time propagation and
measurement updation.

3.2.1 Time Propagation

The state and the state error covariance matrix
at time k-1 are predicted to time k as follows

ˆ( | 1) ( 1| 1)

ˆ( | 1) ( 1| 1) T T

X k k FX k k

P k k FP k k F GQG

−=−−

−=−−+

%

% (21)

where X̂

 
is the estimated state vector, P̂ is the

estimated state error covariance matrix, X% is the
predicted state and %P

 

is the predicted state error
covariance matrix.

3.2.2 Measurement update

Innovation: )1|(~)( −−= kkzkze m        (22)

Innovation covariance:

RHkkPHS T +−= )1|(
~ (23)

where ( | 1)z k k −% is the predicted measurement.

The measurement update part consists of the
following equations:

Filter gain: 1)1|(
~ −−= SHkkPK T         (24)

Updated state: KekkXkkX +−= )1|(
~

)|(ˆ  (25)

Updated state covariance:

)1|(
~

][)|(ˆ −−= kkPKHIkkP                   (26)

where I is the identity matrix of order of state
vector.

The state estimation in this architecture is in
polar coordinates. To get the target position in
Cartesian coordinate, least square estimation
(Section 3.1.1) is used.

3.3 Extended Kalman Filter

A general motion model used in discrete extended
Kalman filter for target tracking is8,9,10



DEF SCI J, VOL. 57, NO. 3, MAY 2007

296

)1()1()( −+−= kGwkFXkX              (27)

)())(()( kvkXhkzm += (28)

where h[X(k)] is a nonlinear function of the states
computed at time.

Equation (28) is nonlinear and it needs to be
linearised to fit into the Kalman filter framework
entailing the use of extended Kalman filter (EKF).

3.3.1 Time Propagation

The state and the state error covariance matrix
at time k-1 are predicted to time k as follows:

ˆ( | 1) ( 1| 1)

ˆ( | 1) ( 1| 1) T T

X k k FX k k

P k k FP k k F GQG

−=−−

−=−−+

%

%  (29)

3.3.2 Measurement Update

Innovation: )1|(~)( −−= kkzkze m         (30)

Innovation covariance:

( ) ( | 1) ( )TS H k P k k H k R=−+ %           (31)

where H(k) is the linearised measurement matrix.

The measurement update part consists of the
following equations

Filter gain: 1( ) ( | 1) ( )TK k P k k H k S −=−%  (32)

Updated state: KekkXkkX +−= )1|(
~

)|(ˆ  (33)

Updated state covariance:     

)1|(
~

)]([)|(ˆ −−= kkPkkHIkkP               (34)

3.3.3 Predicted Measurement and Linearised
Measurement Matrix

Finite difference method is used to compute
the linearised measurement matrix. Consider the
state vector consisting of position and velocity
components of the target in x- and y-axis as

[ ]yyxx

                                

(35)

Acoustic sensor measurement is of the form

[ ]21)( θθ=kzm                         (36)

The predicted state is in the form

[ ] )1|(
~~~~~ −= kkXyyxx

                
(37)

The predicted measurement is:

[ ]21
~~

)]1|(
~

[)1|(~ θθ=−=− kkXhkkz           (38)

Components in the predicted measurement are
computed from the predicted state vector given in
Eqn (37).
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−
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r

r
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2

2

~

~
tan

~ 1
2 (39)

Calculation of linearised measurement matrix
can be accomplished by the finite difference method.
This method is generalised and is flexible.

( | 1)

( )

( ) ( )
=−

∂==
∂

+∆−
=

∆

%

i
ij

j x X k k

i j j i j

j

h
H k H

x

h x x h x

x

(40)

where i=1,2,..., length of the measurement vector;
j=1,2..., length of the state vector, and ∆x

j
=perturbation

step size.

For small perturbation  in each of the unknown

variables, the perturbed value ( )i j jh x x+∆  is computed.

The corresponding elements of H
ij 

are given by
the finite difference in the function h [Eqn (28)]
to changes in that state. In general, a perturbation
step size of 10-7 is considered to be adequate.

4 . PERFORMANCE CHECK METRICS

The target tracker performance is checked by
computing7,10 the following:
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(i) The percentage fit error (PFE) in x and y
positions:

It is computed as the norm of the difference
between the true and estimated positions to
the norm of the true positions.  This will be
zero when both true and estimated positions
are exactly alike and it will increase when the
estimated positions deviate from the true positions.
In general, up to 5 per cent will be acceptable.
The algorithm that gives the least PFE is preferable.

PFE
x 

= )(

)ˆ(
*100

t

t

xnorm

xxnorm −

              

(41)

PFE
y 

= )(

)ˆ(
*100

t

t

ynorm

yynorm −

              

(42)

where x
t 

is the true x-position and x̂ is the
estimated x-position, y

t 
is the true y-position

and ŷ is the estimated y-position, and norm is

the operator to find the Euclidean length of the
vector.

(ii) Root mean square error in position (RMSPE):

It is computed as the root mean square error
of the true and estimated x- and y-positions.
It produces a single number and it will be zero
when the true and estimated positions are alike.
This value will increase when the estimated
positions deviate from the true positions. The
algorithm that gives minimum value is preferable.

∑
=

−+−
=

M

i

tt iyiyixix

M
RMSPE

1

22

2

))(ˆ)(())(ˆ)((1
,

i = 1,2....., M                            (43)

where M is number samples in the trajectory

(iii) Root sum square error in position (RSSPE):

It is computed as the root sum square error of
the true and estimated x- and y-positions. It
produces a sequence of numbers and these
numbers will be zero when the corresponding
true and estimated positions are alike. These
values will increase when the corresponding

estimated positions deviate from the true positions.
The algorithm that gives minimum values is
highly preferable.

22 ))(ˆ)(())(ˆ)(()( iyiyixixiRSSPE tt −+−= ,

i = 1,2....., M                           (44)

(iv) Absolute error (AE) in x and y positions:

It is computed as the absolute error of the true
and estimated positions. It produces a sequence
of numbers and it will be zero when the true
and estimated positions are alike. This value
will grow when the estimated positions deviate
from the true positions.  When comparing different
algorithms, the algorithm that produces minimum
value would be highly preferable.

)(ˆ)()( ixixiAEx t −=                       (45)

)(ˆ)()( iyiyiAEy t −= ,  i = 1,2....., M         (46)

(v) Mean absolute error (MAE) in x and y positions:

It is computed as the mean absolute error of
the true and estimated positions. It produces
a single number and it will be zero when the
true and estimated positions are alike. This
value will grow when the estimated positions
deviate from the true positions.  When comparing
different algorithms, the algorithm that produces
minimum value will be preferable.
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, i = 1,2..., M (48)

5. RESULTS AND DISCUSSION

Performance of the DoA estimation against
the following parameters, viz., the noise variance
level, number of snapshots, number of sensors in
the array, and the direction of the impinging wave
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front is presented. Then, the three architectures
for target state estimation in Cartesian coordinates
are validated with the DoA measurements using
numerical simulation.

5.1 Performance of DoA Algorithm

Performance of the DoA estimation algorithm
is evaluated using the parameters shown in Table 1.
The results are obtained from the average of 50 Monte
Carlo simulations. The effect of noise variance
level on the DoA estimation is shown in Fig. 3. It
is obtained by varying the variance level from
0 to 0.1 and keeping the other parameters constant
as shown in Table 1.

It is observed that the absolute error in DoA
estimation increases with increase in noise level.
The effect of number of snapshots on DoA estimation
is shown in Fig. 4 by keeping the other parameters
as constant. As expected, the absolute error decreases
with increase in the number of snapshots. Figure
5(a) and 5(b) show the effect of direction of incoming
signal to the array on DoA estimation. It is observed
that when the impinging wave is perpendicular to
the sensor array, the algorithm fails to give accurate
DoA estimation. It is due to the same signal received
by the sensors in the array without time delay.
Since the DoA estimation algorithm requires the
delayed version of the signal, the algorithm produces
more error at 90o. In Fig. 5(b), the upper window
shows the estimated and true DoAs, and the
corresponding error is shown in the lower window.
It is clear from Fig. 5(b) that the error is very less
except at 90o.

The effect of number of sensors in the array
on DoA estimation is shown in Fig. 6. It is observed

Figure 3. Effect of noise variance level on DoA estimation. 
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Figure 4. Effect of number of snapshots on DoA estimation. 
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Parameter Value 

No. of sensors (m) 5 

No. of snapshots (N) 50 

Noise variance (σ2) 0.00001 

No. of targets (l) 1 

Theta (θ) 30° 

Spacing between the sensors (d) 0.5 λ 

 

Table 1. Parameters used in evaluation of DoA estimation
algorithm performance

that the absolute error decreases with increase in
the number of sensors. The number of signals
provides the average effect that nullifies the noise
effect.

5.2 Target Tracking

The 2-DOFs kinematic model, with position
and velocity components in each of the two Cartesian
coordinates x and y, has the following transition
and process noise gain matrices:

[ ]ΦΦ= diagF and [ ]ςς= diagG



NAIDU & RAOL: TARGET TRACKING WITH MULTI ACOUSTIC ARRAY SENSORS DATA

299

Sensor locations: [ ] [ ]00
111 ==

yx rrr SSS   and

[ ] [ ]050
222 ==

yx rrr SSS

The target trajectory in Cartesian coordinate
is shown in Fig. 7(a). The trajectory of the target
in Cartesian coordinates is converted into polar
coordinates using Eqn (16) and array sensor output
is generated for each sample. The sensor array
contains five sensors and produces 100 snapshots
with noise variance of 0.00001. Root-MUSIC algorithm
is used to estimate DoA at each interval. Measurement
noise with variance of 0.001 is added to the estimated
DoA's. The simulated DoA's data is shown in Fig. 7(b)
and enlarged view of a portion is shown in Fig. 7(c).

The initial state vector for both linear and
extended Kalman filters is computed with the first
two measurements. Identifying matrices of the order
of state vector and multiplying with 0.01 are taken
as initial state error covariance matrices for both
the filters. True and estimated x- and y-positions
are shown in Fig. 8(a) and enlarged view of a
portion is shown in Fig. 8(b). The estimated trajectories
show good agreement with the true trajectories.
The metrics to evaluate the performance of the
tracking algorithm are shown in Table 2. These
metrics are within the acceptable limits. Absolute
errors in x- and y-position are shown in Fig. 9(a)
and enlarged view of a portion is shown in Fig.

Figure 5(b). Effect of magnitude of 
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Figure 5(a). Effect of magnitude of 
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θ (deg) 

Α
E

 (
de

g)
 

Figure 6. Effect of number of sensors on DoA estimation. 
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where  





=Φ 10
1 T and 



=ς

T
T 2/2

The algorithm is validated using the simulated
data. The simulation utilises the following parameters.

Sampling interval: T = 0.1 s

Process noise variance: 0.001

Duration of simulation: 100 s

Initial state vector is [ ] [ ]01010=yyxx



DEF SCI J, VOL. 57, NO. 3, MAY 2007

300

Figure 7(a). Target trajectory in Cartesian coordinates. 
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Figure 7(c). Enlarged view of some portion in Fig. 7(b).
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errors and enlarged view of a portion is shown in
Figs 10(a) and 10(b). It is observed that the errors
are minimal when the target moves between the
sensors and these are increasing when the target
moves away from the sensors.

Figure 7(b). True and noisy DoA measurements.
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Figure 8(b). Enlarged view of some portions in Fig. 8(a).
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Figure 8(a). True and estimated x- and y-position.

Table 2. Performance check metrics 

PFEx PFEy MAEx

 

MAEy

 

RMSPE

 

Execution 
time 
(s) 

DF

 

2.43 5.349 0.67 0.251

 

1.06 0.04 

KF

 

0.98 1.503 0.29 0.101

 

0.41 0.15 

EKF

 

0.06 0.173 0.03 0.013

 

0.03 0.18 
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5.3 Observations

It is observed that good DoA estimation can
be achieved with increased number of snapshots
and more number of sensors in the array. The
effect of noise on DoA estimation would be minimised
using number of snapshots. The effect of impinging
wave at 90o would be avoided by using recursive
target state estimator.

Digital filter along with least square estimation
showed bad performance when the target moves
in between the sensors and it is worse when the
target moves away from the sensors. This shortcoming
may be due the lack of target model in the state
estimation process. Linear Kalman filter along with

Figure 9(b). Enlarged view of some portion in Fig. 9(a).

Figure 9(a). Absolute error in x- and y-positions.
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Figure 10(a). Root sum square position error.
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least square estimation showed some degraded
performance when the target moves away from
the sensors. The degraded performance may be
due the nonlinear transformation involved in the
estimation process. Extended Kalman filter is not
much degraded as compared to the previous
architectures. From the Table 2, it is observed that
the execution time for first architecture is the lest
among the three.  In overall estimation, EKF showed
superior performance among the three architectures
albeit at the cost of execution time.

6. CONCLUSION

Mathematical model of acoustic sensor array
has been used to produce uniform linear array
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4. Johnson, D.H. & Dudgeon, D.E. Array signal
processing: Concepts and techniques. Prentice
Hall Signal Processing Series, 1993.

5. Wijk, Olle & Christensen, Henrik I. Triangulation-
based fusion of sonar data with application in
Robot pose tracking. IEEE Trans. Robotics
Automation, 2000, 16(6), 740-52.

6. Dufour, Francois & Mariton, Michel. Tracking
a 3D maneuvering target with passive sensors.
IEEE Trans. Aero. Elec. Sys., 1991, 27(4),
725-38.

7. Naidu, V.P.S. & Raol, J.R. Evaluation of data
association and fusion algorithms for tracking
in the presence of measurement loss. AIAA
Conference on Navigation, Guidance and Control,
Austin, USA, 11-14 August 2003.

8. Blackman, Samuel & Popoli, Robert. Design
and analysis of modern tracking systems. Artech
House, London, 1999.

9. Bar-Shalam, Yaakov & Li, X. Estimation and
tracking: Principles, techniques, and softwares.
Artech House, London, 1993.

10. Naidu, V.P.S. & Raol, J.R. Fusion of radar and
infrared search and track data using Kalman
filter. NAL PD FC 0517, 2005.

11. Raol, J.R.; Girija G. & Singh, Jatinder. Modelling
and parameter estimation of dynamic system.
IEE Control Engineering Series Book, 65, IEE,
London, August 2004.

data. Root-MUSIC algorithm has been used for
DoA estimation. The performance of DoA estimator
against various parameters is presented. It is concluded
that more number of snapshots and more number
of sensors in the array would improve the DoA
estimation.

Three architectures based on digital filter along
with least square estimation, linear Kalman filter
along with least square estimation and extended
Kalman filter have been evaluated to track the
target with only angle measurements obtained by
two uniform linear array data obtained from two
acoustic array sensors. From the results it is concluded
that EKF showed better results than linear Kalman
filter along with least square estimation and digital
filter with least square estimation at the cost of
execution time.
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