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ABSTRACT

System identification methods have extensive application in the aerospace industry’s experimental stability 
and control studies. Accurate aerodynamic modeling and system identification are necessary because they enable 
performance evaluation, flight simulation, control system design, fault detection, and model aircraft’s complex 
non-linear behavior. Various estimation methods yield different levels of accuracies with varying complexity and 
computational time requirements. The primary motivation of such studies is the accurate quantification of process 
noise. This research evaluates the performance of two recursive parameter estimation methods, viz.; First is the 
Fourier Transform Regression (FTR). The second approach describes the Extended version of Recursive Least Square 
(EFRLS), where E.F. refers to the Extended Forgetting factor. Also, the computational viability of these methods 
was analyzed for real-time application in aerodynamic parameter estimation for both linear and non-linear systems. 
While the first method utilizes the frequency domain to evaluate aerodynamic parameters, the second method works 
when noise covariances are unknown. The performance of both methods was assessed by benchmarking against 
parameter estimates from established methods like Extended Kalman Filter (EKF), Unscented Kalman Filter (UNKF), 
and Output Error Method (OEM).

Keywords: Parameter estimation; System identification; Extended Forgetting Factor Recursive Least Square (EFRLS); 
FTR (Frequency Transform Regression); Aerodynamic derivatives

Defence Science Journal, Vol. 72, No. 5, September 2022, pp. 665-678, DOI : 10.14429/dsj.72.17663 
 2022, DESIDOC

Received : 12 November 2021, Revised : 16 May 2022 
Accepted : 19 July 2022, Online published : 1 November 2022

1. INTRoDuCTIoN
System identification in the aerospace industry is 

usually associated with estimating the aircraft mathematical 
model, where unknown parameters are calculated from the 
experimental data. Such unknown parameters include stability 
and control derivatives, moments and forces, angle of attack 
(A-o-a), sideslip angle (S-s-a), etc. An aircraft’s condition and 
control input variables are measured to create a mathematical 
model. Measuring both state and control input variables 
of the aircraft in the desired flight maneuvers results in the 
mathematical model. Accurate mathematical modeling enables 
design, development, maintenance, capability enhancement, 
and system upgrade.

Further for flight controller design, stability determination, 
building simulated environmental scenarios, determining 
impact on control when aircraft configuration changes, flight 
envelope expansion, quality studies, and fault monitoring.1–4 
Parameter identification, which incorporates the nonlinearity 
in the model equations, is the most commonly used subset 
of system identification. A presumed mathematical model is 
built using phenomenological considerations to predict the 
properties of the dynamic system.5–7 

Parameter estimation techniques are broadly classified 
into two, viz., (i) Online estimation techniques and (ii) offline 

estimation techniques. Offline techniques require a complete 
dataset from various flight regimes that are further processed 
through recursive methods, whereas online estimation 
techniques process data in real-time (during collection). Thus, 
the online parameter/system identification heavily depends on 
the onboard processor’s computational power, the efficiency of 
the recursive parameter identification technique, and available 
computational time.8-9

Pesonen, et al.10 and Pedro and Kantue11 advocated using 
neural networks and self-learning neural networks as highly 
efficient techniques for real-time modeling of an unmanned 
vehicle since no initial values are required. Problems with 
N.N. implementation in practical systems include selecting 
training data, online convergence, resilience and reliability, 
and real-time execution. Online modeling and model-based 
control have shown positive results in recent years, thanks to 
sequential estimation.12 

For online parameter estimation, the essential aerodynamic 
derivatives are measured using various onboard sensors 
mounted on the aircraft/UAV, which are then used for recursive 
system identification in real-time.13–15 To ensure flight stability 
and high performance in an unpredictable environment, an 
autonomous controller relies on online modeling, a vital 
technique that incorporates process and measurement noise, 
such as zero shift biases and scaling factors. Hence, filtering 
techniques are employed to make data error-free, known as a 
data compatibility check. Filtering mainly includes predicting 
or updating time and correcting or updating measurement. A 
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widely used filter, the Kalman Filter,16-17 presumes Gaussian 
distribution’s uncertainties in the system dynamics. The 
Extended Kalman Filter (EKF) linearizes the system about some 
suitable point, after which the Kalman filter is implemented. 
Generally, the first-order estimate of the covariance propagation 
is accurate for flight data analysis because it is applied for a short 
sampling time. EKF needs the adaptation of noise covariances 
if there is a significant change in the system parameter for the 
observation period, especially in the case of malfunction or 
failure.18-19 Such adaptation increases the computational task, 
making it unfavorable for real-time applications. Still, the EKF 
solves the combined state and parameter estimation problems 
to estimate aerodynamic derivatives for stable and unstable 
aircraft.20–22 Instead of linearizing the non-linear model, the 
unscented Kalman filter (UNKF) utilizes it directly.

The UNKF was built on the notion that replicating a 
Gaussian distribution is simpler than estimating a non-linear 
transformation.23 The UNKF utilizes deterministic sampling 
to approximate the state distribution as a Gaussian random 
variable (GRV). The UNKF and the EKF are of the order of O 
(L3) in computational complexity.23 

The Unscented Kalman Filter (UNKF) trounces those 
limitations posed by EKF by promulgating a set of fixed 
points (also known as the sigma points) over the non-linear 
system dynamics and approximates the mean as well as the 
covariance in terms of the weighted sum of the propagated 
points24 and their cross product. While implementing UNKF, 
special attention is required when initializing the covariance 
matrix because these fixed points are produced from initially 
specified augmented states that can cause significant deviation 
in a few data points. because the non-linear models are 
employed without linearization, the UNKF can reach second-
order precision, whereas the EKF can only manage first-order 
accuracy because of the absence of the necessity to compute 
Jacobians or Hessians25. For linear Kalman Filter, both EKF and 
UNKF produce similar results. Celso-braga et al.26 developed 
an adaptive stochastic filtering technique based on the Kalman 
filter-based adaptive stochastic filtering approach for online 
aircraft flight path reconstruction (FPR) with noise statistics 
estimates. Song and Hang27 (2008) created an adaptive UNKF 
method based on MIT rules to update the covariance of process 
uncertainty online while reducing the cost function. However, 
it imposes a significant computational overhead. 

both imprecise cross-correlated noise and noise statistics 
reduce the performance of Kalman Filter algorithms. A new 
approach, viz., (EFRLS), which is an extension of Recursive 
Least Square (RLS), does not require noise covariances 
knowledge.28 This approach exhibits asymptotic properties 
similar to a full-state Kalman Filter estimator. Further, for 
situations where the noise variance is not defined, EFRLS 
demonstrates superior performance compared to existing 
filtering techniques. EFRLS performs well when cross-
correlation or temporal dependencies exist among the process 
and measurement noise streams. A convex optimization 
strategy29 was used to examine a problem of identity fusion 
for a multisensory target tracking when the sensor reports are 
incomplete; for example, the precise covariances of sensor 
noises are unknown, save for their limits. Y Zhu30-31 suggested 

an efficient recursive state estimator for dynamic systems by 
incorporating the dynamic matrix and forgetting factor into the 
least square to compensate for the lack of knowledge of noises. 
EKF performance depends on the process and measurement 
noise matrices, whereas EFRLS depends on a single adaptation 
parameter.32 

So far, system identification techniques using time domain 
data have been discussed. However, it offers certain inherent 
advantages when data is transformed from the time domain to 
the frequency domain.33 Fourier Transform Regression (FTR) 
method is one such approach. When both input and output signals 
are analyzed for specific frequencies, computational time and 
data volume are significantly reduced. The time domain filtering 
becomes straightforward data multiplication with a weighting 
function in the frequency domain. Detection of non-linear behavior 
from the output signal can be made simpler by using a set of well-
defined frequencies in the input signal. Finally, frequency domain 
identification methods can handle both time continuous and 
time discrete models34,35. Since aircraft dynamics are non-linear, 
combined with the added complication of noise and biases in the 
measurement, non-linear filtering techniques are preferred. 

In this paper, we have investigated the applicability of the 
two recursive methods, viz. EFRLS and FTR for aerodynamic 
parameter estimation in real-time. The article compares non-
linear recursive filtering algorithms for estimating aerodynamic 
parameters using actual flight data. The results obtained by 
EFRLS & FTR are compared with EKF and UNKF. Initially, all 
the methods were applied to the offline data gathered from the 
flight tests. We further compared parameter estimates to establish 
the feasibility and advantages of using both EFRLS and FTR 
against EKF and UNKF for aircraft system identification. A good 
match between the measured and the estimated values shows 
the method’s efficacy. As a reference, the values of parameters 
are obtained using the Maximum Likelihood Method (MLE-
OEM), to which estimated parameters are compared along 
with the required computational time. The required flight 
data were generated by conducting desired maneuvers 
(3-2-1-1). The control surface is moved in a specific pattern of 
3-2-1-1 second in the positive (+), negative (-), positive (+), and 
negative (-) directions, respectively, that excite all modes using 
in-house HANSA-336–38 aircraft with linearized state model. 
The longitudinal aerodynamic parameter to be estimated is 

e e

T

0 q 0 qZ   Z   Z   Z   M   M   M   Mlon α δ α δ Θ =    and the lateral parameter 

is 
a r a r

T

p r 0 p r 0L   L   L   L   L  L   N   N   N   N   N  Nlat δ δ β δ δ β Θ =   .
The remainder of the paper is structured as follows: Section 

2 discusses the theory and mathematical construction of the 
(EFRLS) and (FTR). Section 3 discusses the instrumentation 
required for flight data acquisition, data compatibility test, and 
theory of flight dynamics, and the proposed methodologies are 
discussed in depth. Section IV shows the verification procedure 
and the results of the proposed methods using several sets 
of real flight data. Finally, in Section V, the conclusions are 
drawn.

2.  RECuRSIVE PARAMETER ESTIMATIoN METHoD
This section presents the theory and mathematical 

formulation for estimation in the frequency domain via 
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Fourier Transform Regression (FTR) and Extended Forgetting 
Recursive Least Square (EFRLS). 

2.1 Frequency Domain Estimation
Conversion of the acquired flight data (time series) into 

the frequency domain is the first step, which is accomplished 
using the finite Fourier transform. Mathematically, the finite 
Fourier transform for an arbitrary scalar signal x(t) on the time 
interval [0,T] is defined by,

  ( ) ( ) ( )
T j t

0
F x t x x t e dt− ω= ω =   ∫            (1)

where ~ symbolizes the variable’s discrete Fourier transform. 
Euler approximation of (1) yields (2), where m  signifies the 
discrete time index, t∆ , t∆  and N  represents the total data 
points. Summation of (2) is expressed as the discrete Fourier 

transform ( )X w , which relates to ( )x w  as shown by (3)39 

  ( )
N 1

j m t
m

m 0

x t x e Ä
−

− ω

=

ω ≈ ∆ ∑
         

 (2)

  ( ) ( )x X t ω ≈ ω ∆             (3)

Morelli40 proposed appropriate corrections to remove 
inaccuracy from (3), given the sampling rate is lower than 
the frequency of interest. Usually, the higher sampling rate of 
recorded flight data results in minor corrections that often get 
neglected. We chose the Least Squares (L.S.) method (4) for 
parametric modeling, and process noise was ignored. Thus, (5) 
defines the least square cost function for the mth state;

  ( ) ( ) ( )j x Ax buω ω = ω + ω            (4)

 ( ) ( ) ( )
k

2
m n m m m

n 1

1J j x n A x n b u n
2 =

= ω − −∑              (5)

where  k is the number of frequencies, Am and Bm are the mth 

rows of A and B and matrices, respectively, and ( )mx n  is the mth 
element of the vector x  for frequency nω . Also, the state vector 

( )x n  and the control vector ( )u n  are represented as Fourier 
transform for frequency 

nω . The cost function, Jm is assessed 
across a range of frequencies here; rigid body frequencies from 
0.01 to 1.5 Hz is considered.

First, the forces and moments, both non-dimensional, were 
computed from the measured time-series data, and then Fourier 
Transform converted them into the frequency domain. A similar 
process was followed for non-linear terms also. A high pass filter 
was used to remove all biases and drift in the measured states and 
controls. Then, a break frequency is chosen in such a way that it is 
below the lowest frequency used for modeling. At each N discrete 
time, when measurements are available to output, the equation 
can be written as (6), where  m = 1, 2, …, N.

 

                            ( ) ( ) ( )Ty m x m m= θ+ ∈                           
(6) 

 
In standard matrix notation, a typical regression problem 
with a complicated dataset can be represented as (7) where ∈  

represents the error in the frequency domain, and ∈  represents 
the unknown parameter. Then the independent and dependent 
vectors are represented by (8)

                      Y X= Θ+ ∈                                                (7) 

( ) ( )
( ) ( )

( ) ( )

( )
( )

( )

T T
1 m

T T
2 m

T T
n m

j x 1x 1 u 1
j x 2x 2 u 2

X  and Y
.. .

j x nx n u n

   ω 
   ω   = =   
   

ω     

 

  

 
                 

(8)

The cost minimization function in terms of X  and Y  is 
shown in (9), where the superscript '  represents the transpose 
of complex conjugate41.

                     
( )( )'1J Y X Y X

2
= − Θ − Θ   

                       
(9) 

The cost function in (9) contains the ‘M’ number of 
squared error terms that correspond to M interest frequencies. 
The vector parameter estimation that minimizes the cost 
of least squares is calculated using (10). The square root of 
the transverse parameter error covariance matrix given in 
(11) estimates the standard deviation (StdDev). The variance 
can be approximated from the residuals formulated in (12), 
where nq  is the total number of unknown parameters 

{ }*  Θ  . 

                  
( ) ( )1' 'ˆ Re X X Re X Y

−
 Θ =  

   
                       

(10) 

          
( ) ( ) 12 'ˆP cov Re X X

−
 = Θ = σ  

 

                        

 (11) 

          
( ) ( )( )'2

q

1 ˆ ˆY X Y X
n n

 σ = − Θ − Θ  −
   

               
(12) 

Also, it should be noted that Eqn. (12) provides a single-
pass solution to the least-squares problem as a recursive 
solution, for which we used the Recursive Fourier Transform.

2.2 Recursive Fourier Transform  
The discrete Fourier transform42 in (2) & (3) at time i t,∆   

symbolized by ( )i X ω , is associated to the discrete Fourier 

transform at time ( )i 1 t− ∆  by (13) for a selected frequency.

                   ( ) ( ) ( ) j t t
i i 1X X x i e Ä− ω

−ω = ω +                  (13) 
where,

                           ( )j i 1 tj i j te e et − ω − ∆− ω ∆ − ω∆=                       (14) 

The quantity j te− ω∆  is constant at a given frequency ω , 
and the constant sampling interval t∆ . Hence, by performing 
one addition in Eqn. (13) and one multiplication each in Eqn. 
(13) & (14) using the stored constant j te− ω∆  for frequency ω  for 
a specified frequency results in the discrete Fourier transform. 
This immediate processing eliminates the requirement of 
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storing the time-domain data in memory. In any subsequent 
analysis, historical time-domain records can be applied merely 
by pursuing the recursive Fourier Transformation Calculation, 
thereby acting as a memory of the information in the data. This 
implies that in the frequency domain, additional data created 
from additional operations improves the data quality without 
increasing storage requirements (or memory). FTR requires the 
inverse of the matrix along with a linear algebraic solution like 
either Cholesky factorization or singular value decomposition, 
thereby increasing the computational effort. This requirement 
of high computational effort can be reduced by updating 
FTR at some predefined interval instead at all discrete time 
points. both sampling frequencies and frequencies of interest 
in Fourier transform together determines the number of points 
that can be skipped.  Past experiences suggest that performance 
degradation is not observed until the update rate falls below 
five times the highest frequency. Also, linearized aerodynamic 
characteristics do not change drastically, except for strong 
nonlinearity, mal-functions, and extreme maneuvering. For such 
cases, a higher updating rate is suggested, thereby increasing the 
computational effort. Uncertainty in the predicted parameters 
is computed using covariance matrix P  as shown by Eqns. (11) 
and (12). 

2.3 Extended Forgetting Recursive Least Squares 
(EFRLS)
The need for knowing process noise and measurement 

noise covariance matrix in both EKF and UNKF hinders the 
accurate calculation of the covariance matrix, resulting in the 
performance degradation of Kalman filters. An applicable 
recursive state estimator is proposed for dynamic systems 
which do not require noise covariance knowledge. The 
fundamental concept is to incorporate the dynamic matrix and 
the forgetting factor into the least square (L.S.) approach to 
solve the deficiency of noise knowledge, thereby calling it the 
Extended Forgetting factor Recursive Least Squares (EFRLS) 
estimator.43–46 The performance of the EFRLS estimator exceeds 
that of the completely specified Kalman filter state estimator 
for situations where noise covariance information is absent. 
EFRLS is defined for a linear dynamic system as (15-17).

          x( 1) ( )x( ) w( )ξ + = φ ξ ξ + ξ                                 (15) 

        
  y( ) C( )x( )ξ = ξ ξ                                                (16) 

       

  z( ) y( ) v( )ξ = ξ + ξ                                               (17)

where, ξ represents the discrete time series index, φ  the system 
matrix, w and v are random variables with a mean zero. Eqns. 
(18 - 20) give the recursive estimates of the states of the above 
discrete system.  

      x( 1) ( )x( ) ( )L( 1)M( )ξ + = φ ξ ξ + φ ξ ξ + ξ                 (18) 

      

T T 1L( 1) P( ) ( )C ( 1)[T]−ξ + = ξ φ ξ ξ +                        (19) 

              
T1P( 1) ( )[G]P( ) ( )ξ + = φ ξ ξ φ ξ

λ                            
  (20)

where, 

 M( ) [z( 1) C( 1) ( )x( )]ξ = ξ + − ξ + φ ξ ξ

 
T TT I C( 1) ( )P( ) ( )C ( 1)= λ + ξ + φ ξ ξ φ ξ ξ +

 G I L( 1)C( 1) ( )= − ξ + ξ + φ ξ

 λ  is the tuning factor (typically lies in the range of 0.98 
and 0.995). EFRLS can be expanded to a state-space model 
of the type ( ) ( ) ( )x t Ax t w= + ξ ; by replacing ( ) ( )xφ ξ ξ  
in (18) by states acquired by numerical integration and φ  in 
(18-20) by transition matrix A te ∆φ = . For the Kalman filter 
and its variants, StdDev is calculated using the root of the 
diagonal terms in the error covariance matrix. However, direct 
computation of standard deviation is not possible in EFRLS.

2.4 Aircraft Dynamics and Flight Data Acquisition
An experimental flight testing program employing 

Hansa-3 (Fig. 1) aircraft 47–49 is being developed at IIT Kanpur 
Flight Laboratory to collect the flight data in real-time using the 
Flight Data Recorder. The physical and inertial specifications 
of Hansa-3 aircraft are given in Table I. The flight test was 

Mean Aerodynamic Chord, c 1.211 m 

Wingspan, b 10.47 m 

Aspect Ratio, AR 8.8

Wing Area, S 12.47 m2 

Mass, m 750 kg 

Moment of Inertia,Ixx 873 kg-m2 

Moment of Inertia,Iyy 907 kg-m2 

Moment of Inertia,Izz 1680 kg-m2 

Moment of Inertia,Ixz 1144 kg-m2 

Engine Thrust, T 1136 N

Table 1. Geometry, mass, and inertia characteristics of 
Hansa-3

Figure 1. HANSA-3 aircraft.

performed at an altitude of 3000 ft, with an airspeed of 100 
knots in clear weather with calm wind conditions conducted 
in a calm. An onboard measurement system used dedicated 
sensors to measure many inputs such as aircraft states, weather, 
control surface deflections, and vanes attached to air boom data 
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for flow angles ( ),α β .  All the measurement was carried out on 
board at a sampling rate of 50 Hz. The three sets of longitudinal 
flight data sets, namely HLN1, HLN2, & HLN3, and two sets 
of lateral-directional flight data, namely HLT1 & HLT2, were 
acquired.

2.4.1 Flight Data Acquisition
The flight data from Hansa-3 is generated by generating 

continuous control surface inputs, which is similar to the 3-2-
1-1 input. It is pretty evident that the exact input may not be 
precisely 3-2-1-1 input, as the ongoing inputs will be used for 
device testing and approximation methods. The instrumentation 
system on the aircraft consists of –
1. Transducers, to calculate the physical quantity and 

transform it into suitable electrical signals.
2. The data acquisition process, which involves analog 

to digital converter signal conditioner (for removing 
unwanted noise, amplifying weak signals, etc.) and related 
electronic circuits.

3. The flight data recording/storage devices, viz, a laptop 
computer.
Presently, the aircraft is instrumented for the acquisition 

of various parameters, viz, accelerations (ax,ay,az), rates (p,q,r), 
A-o-a ( )α , S-s-a ( )β  Static pressure, total pressure, aileron, 
elevator, and rudder deflection Fig. 2. and Fig. 3 show the 
instrumentation and data acquisition system of the experimental 
aircraft HANSA-3. 

2.4.2 Data Compatibility Check
The measured data required for parameter estimation 

methods should be devoid of systematic errors, as mentioned 
in the previous section. The data compatibility check, often 
called FPR50–52, is vital to aircraft parameter estimation, which 
ensures that measurements needed to identify subsequent 
aerodynamic models are reliable and error-free. The FPR was 
conducted on both flight data sets using observation equations 
and the Maximum Likelihood method. Three sets of equations 
(21)-(23) describe the mathematical model used for the data 
compatibility check. The following equations describe the 
entire set of kinematic relations describing the mathematical 
model utilized for data compatibility.

Translational kinematics:

  ( )x z y xU U U gS â= − + − θ +                          21(a)

  
( ) ( )y x z yU U U gC S â= − +℘ + θ φ +           21(b)

       ( ) ( )z y x zU U U gC C â= −℘ + + θ φ +               21(c) 
               Rotational kinematics:

        ( ) ( ) ( ) ( )S T C Tφ =℘+ φ θ + φ θ                     22(a) 

                ( ) ( )C Sθ = φ − φ                                            22(b) 

                ( )
( )

( )
( )

S C
C C

φ φ
ψ = +

θ θ
  

                                   
   22(c)

 

Position kinematics: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

I x y

z

x U C C U C S S S C

U C S C S S

= ψ θ + ψ θ φ − ψ φ

+ ψ θ φ + ψ φ



  

 

                                                                                                                                               

23(a)
  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

I x y

z

y U S C U S S S C C

U S S C C S

= ψ θ + ψ θ φ + ψ φ

+ ψ θ φ − ψ φ



  23(b)

( ) ( ) ( ) ( ) ( )I x y zz U S U C S U C C= θ − θ φ − θ φ                     23(c)
 

where, ( )S *  is ( )sin * , ( )C *  is ( )cos *  and ( )T *  is ( )tan * .

The state variables ( )x y z I I IU , U , U , , , , x , y , zφ θ ψ  are 
predicted by utilizing the recorded linear accelerations 

( )x y za , aˆ , ̂aˆ  and angular rates ( ), ,℘    using Eqns. 21-
23. Once the states are determined, it’s fairly easy to derive 
Velocity (V), A-o-a ( )α , S-s-a ( )β  as shown below, 40,51

              

             
2 2 2
x y zV U U U= + +

                                     
 (24)

 

                     ( )1
z xtan U / U−α =                                        (25)       

                     ( )1
ysin U / V−β =

                                          
(26) 

Using a simplistic sensor model with scaling factor, sensor 

Figure 2. Instrumentation of Hansa-3 aircraft: (a) Control surface 
potentiometer, and (b) A-o-a and S-s-a sensors.

Figure 3. HANSA-3 Data acquisition system
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biasing, and delay time, any basic determined value, say Ym, 
may be represented as follows.

          ( ) ( )m YY t K Y t Y= − τ + ∆  
                                     (27)

where YK , Y∆ and τ  are calibration constant, sensor 
bias, and delay time in the measured signal, respectively. 
The subscript ‘m’ denotes the measured value. Often 
these sensors are not exactly placed at the aircraft’s center 
of gravity (C.G); therefore, the linear acceleration is 
translated to C.G using the following relationship. 

( ) ( ) ( )CG AS 2 2
x xm ASCG ASCG ASCG xˆ ˆ ˆa a x y z aÄ= + + − − − ℘ + −        

           28(a)
 

( ) ( ) ( )CG AS 2 2
y ym ASCG ASCG ASCG yâ a x y zˆ âÄ= − ℘ + + ℘ + − −℘ −      

   

                                                                                  
 28(b)

( ) ( ) ( )CG AS 2 2
z zm ASCG ASCG ASCG za a x y z aˆ ˆ ˆÄ= − ℘ − − −℘ + ℘ + −    

 

                                                                                           28(c)

where, ( )AS AS AS
xm ym zma ,  a ,  aˆ ˆ ˆ  is the measured acceleration at a point 

away from C.G. The terms ASCGx , ASCGy , and  ASCGz  signify 
the position of accelerometers in respect to C.G. of aircraft in 
body fixed frame. The terms ( )x y za , a , aˆ ˆ ˆÄ Ä Ä  represents the 
biases in measurements. The angular rates ( ), and℘   , 

given by Äm℘ − ℘, m − ∆   and m Ä−   are derived 

using the measured ( )m m mrates ,  and ℘    adjusted for the 
biases ( ), and .∆℘ ∆ ∆   Rewriting Equations 21 and 22 with 
biases, we get

 
( ) ( ) ( )

ÿ

x m z m y x x 0 x0U U U gsin a   ; ˆ   U t U= − − ∆ + − ∆ − θ + =   
 

                                                                                                                                                       
     29(a)

 ( ) ( ) ( )y m x m z y y 0 y0U U U g cos sin a   ;   Uˆ t UR= − − ∆ + ℘ − ∆℘ + θ φ + = 
 

                                                                                                                                                         
   29(b)

 ( ) ( ) ( )
ÿ

z m y m z z z 0 z0U U Q U g cos cos a   ;   U Uˆ tQ= − ℘ − ∆℘ + − ∆ + θ φ + =
 

                                                                                                                                                         

   29(c)
 

( ) ( ) ( ) ( )m m m 0 0sin tan cos tan  ;  tφ = ℘ − ∆℘ + − ∆ φ θ + − ∆ φ θ φ = φ      

                                                                                                                                                            30(a)

( ) ( )m mcos sin ;θ = − ∆ φ − − ∆ φ       ( )0 0 tθ = θ  

                                                                                                                                                            30(b)
 
( ) ( ) ( )m m 0 0sin sec cos sec ;   tψ = − ∆ φ θ + − ∆ φ θ ψ = ψ               

           

                 

The following equations describe the flow angles ( )Nb,Mα  

and  ( )Nb,Mβ   at the nose boom (subscript N.b.) as a function 
that is the function of the scaling and bias factors

 

                       

1 zNb
Nb,M Nb

x Nb

U
K tan

U
−

α

 
α = + ∆α 

                
31(a)

     

yNb1
Nb,M Nb2 2 2

x Nb yNb zNb

U
K sin

U U U
−

β

 
 β = ∆β
 + +    

31(b)

The parameters Kα  and Kβ  signifies the scaling factors 

while Nb∆α and Nb∆β  denotes the offsets in A-o-a and S-s-a, 
respectively. Along the three body fixed axes, the velocity 
vectors at the nose boom (off-CG position) are calculated as 
follows

( ) ( )x Nb x m NbCG m NbCGU U y z= − − ∆ + − ∆     32(a) 

        ( ) ( )yNb y m NbCG m NbCGU U z x= − ℘ − ∆℘ + − ∆    32(b) 

        ( ) ( )zNb z m NbCG m NbCGU U x y= − − ∆ + ℘ − ∆℘    33(c) 

where, ( ), , NBCG NBCG NBCGx y Z  are the offset distances of the 
sensor at nose boom from C.G.

Equation 34 denotes the vector to be determined. This 
vector includes scaling and biasing factors, which is considered 
acceptable for recreating longitudinal and lateral-directional 
dynamics of the Hansa-3 aircraft.  

T

x y za  a  a     K   K  α β Θ = ∆ ∆ ∆ ∆℘∆ ∆ ∆α ∆β  
           

(34) 

Table 2 summarizes the approximated values of the 

accelerations ( )x y za , aˆ ˆ , â  , scale factors ( K ,α
 K )β

, and biases 

( )   ∆℘∆ ∆ ∆α ∆β   of the compatibility factors given in 
Equation 34 using the ML method. Also, each row of Table II 
contains the Cramer-Rao bounds in parenthesis. These corrections 
are applied to those equations that calculate the acceleration at 
C.G., necessitated by the usual mounting of accelerometers at a 
small distance from the C.G.

This requires the calculation of the linear acceleration at C.G., 
after which the body fixed accelerations at C.G. are calculated 
from translational accelerations recorded by the accelerometer 
sensor placed at position xASCG, yASCG , and yASCG ZASCG . 

2.4.3 Aircraft Dynamics
A state space model of the aircraft is required to employ 

parameter estimation techniques like EKF and FTR so that both 
measured and predicted data can be compared. Estimation of 
aerodynamic parameters requires rigid body equations of motion 
known as Six Degree of Freedom (6-DOF) equations. Eqns. 22-24 
provide the state equations of the second order linear longitudinal 
short period model. The A-o-a ( )α  and the pitch rate q represents 
the state output variables. The two output variables, namely 

mα  and mq  are called observation equations, and the elevator 
deflection 

eδ  is the control input. Inputs of by aileron and rudder 
capture the motion of lateral dynamics, which is provided in the 
state Eqns. (25-27) where p, r &  β  are the roll rate, yaw rate, and 
the side slip angle, respectively, 

aδ  and rδ  are aileron and rudder 
deflection.  

30(c)
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Longitudinal Motion:                        

          ( )
e0 q eZ Z 1 Z q Zα δα = + α + + + δ        (35) 

                       
e0 q eq M M M q Mα δ= + α + + δ

  
       (36)                       

e e

T

0 q 0 qZ   Z   Z   Z   M   M   M   Mlon α δ α δ Θ =    (37)

Lateral Motion:     

                       
a rp r a r 0p L p L r L L L Lδ δ β= + + δ + δ + β +      (38)

               
a rp r a r 0r N p N r N N N Nδ δ β= + + δ + δ + β +   (39) 

   
a r a r

T

p r 0 p r 0L , L , L , L , L ,L , N , N , N , N , N , Nlat δ δ β δ δ β Θ =   (40)

The unknown parameter vector denoted by ( )lon,latΘ consists 
of the dimensional parameters for longitudinal and lateral motion 
of the aircraft.

4. AERoDYNAMIC PARAMETER ESTIMATIoN
The five-flight test dataset (HLN1, HLN2, and HLN3) and 

(HLT1 and HLT2) contain information about aircraft motion and 
control variables ( )a r e V, , , , , ,  &,  α θ φ ψ δ δ δ . After conducting 
a data compatibility check on the datasets to remove systematic 
errors, linear models are extracted using OEM and FEM analysis, 
with parameters being updated using Gauss-Newton (G.N.) 
method. The model given in (35)-(40) was used to estimate 
aerodynamics parameters. Table III compares the estimated 
parameter values by applying OEM, EKF, UNKF, and the 
proposed EFRLS and FTR approach to the concatenated flight 
dataset HLN1, HLN2, and HLN3. Similarly, Table IV allows a 
comparison of parameter estimations to the concatenated dataset 
of HLT1 and HLT2. both tables also list standard deviations as an 
estimate of the precision along with the required computational 
effort to achieve those results.

There are several ways that may be used to deal with the 
initial data point. Depending on whether we treat the supplied 
initial, x0and p0 as those for the corrected states, x̂  or those for the 

projected states, x  somewhat different implementations result. 
The precise process is immaterial to recursive estimating since 
the estimates are automatically updated; the overall performance 
in terms of convergence and final estimations is unaffected. 
For simplicity, we will assume that the initial provided values 
correspond to the expected states. This maximizes the use of the 
information available at the initial discrete point. In our analysis for 
both the cases, i.e., EKF and UNKF, the initial state propagation 
error covariance (p0), measurement noise covariance matrix (R)  
and process noise covariance matrix (Q) are given below.

Longitudinal: 

[ ] [ ] [ ]T
0 diag

P 10 10 ;R 4.103E 07 7.967E 07 ;Q 1.0E 7 11 = … = − − = − ×
 

[ ]lon initial
0.0025, 0.21, 0.028, 0.16, 0.27, 2.73, 1.08, 3.19Θ = − − − − −

Lateral: 

[ ] [ ] [ ]T
0 diag

P 10 10 ;R 1.36e 051 .05e 06 ;Q 1.0E 7 11 = … = − − = − ×
 

[ ]lat initial
4.92, 0.67, 4.93, 0.73, 4.34, 0.0065, 0.087, 0.17, 0.19, 0.75, 2.05, 0.019= − − − − − − −Θ

OEM was run with G.N. for optimization of cost function 
w.r.t parameters. Comparing estimates obtained using these 
methods suggests that parameter estimates provided by them are of 
a similar order of magnitude, and both the measured and simulated 
outputs match. Data enumerated in Table III and Table 4 suggest 
that parameter estimates obtained by EFRLS and FTR methods 
match the estimates of standard methods; OEM, EKF, and UNKF. 
A strong correlation between some parameters is evident from the 
tabulated data, with variation among them between 10-15%. Fig. 4 
depicts the validation of the identified longitudinal derivative model 
from HLN1, HLN2, and HLN3, whereas Fig. 5 accomplishes the 
same for the lateral derivative model. Fig. 6 & Fig. 7 display the 
convergence of the estimates for longitudinal and lateral-directional 
derivatives, respectively.  Equations of motions were solved using 

Factors
→

 xâ∆
 

( )2/m s

 yâ∆
 

( )2/m s

 zâ∆
 

( )2/m s

 ∆℘
 

( )/rad s

 ∆
 

( )/rad s

 ∆

 
( )/rad s

Kα
 ∆α
 

  
( )rad

Kβ
 ∆β

 
( )rad

I n p u t s 
↓

HLN1 0.5782 
(0.0034)

0.3753 
(0.0011)

-0.0699 
(0.0021)

-0.0008 
(0.0000)

0.0026 
(0.0000)

0.0029
(0.0000)

1.5503 
(0.0082)

-0.0322 
(0.0005)

1.4165 
(0.0146)

0.0038 
(0.0002)

HLN2 0.5702 
(0.0068)

0.2290 
(0.0018)

-0.0579 
(0.0018)

-0.0024 
(0.0000)

0.0018 
(0.0000)

0.0082 
(0.0000)

1.4540 
(0.0098)

-0.0259 
(0.0006)

1.1619 
(0.0240)

0.0014 
(0.0002)

HLN3 0.2572 
(0.0044)

-0.0189 
(0.0021)

0.0223 
(0.0013)

-0.0006 
(0.0000)

-0.0009 
(0.0000)

0.0030 
(0.0000)

1.3919 
(0.0061)

-0.0302 
(0.0005)

1.1843 
(0.0115)

0.0024 
(0.0002)

HLT1 -3.3720 
(0.0023)

0.2013 
(0.0007)

0.0620 
(0.0017)

-0.0004 
(0.0000)

-0.0014 
(0.0000)

0.0030 
(0.0000)

0.8480 
(0.0121)

0.0348 
(0.0032)

1.0230 
(0.0039)

-0.0006 
(0.0002)

HLT2 -2.7167 
(0.0040)

0.3445 
(0.0054)

0.1498 
(0.0060)

0.0010 
(0.0000)

-0.0008 
(0.0000)

-0.0026 
(0.0001)

0.9455 
(0.0250)

0.0115 
(0.0056)

0.9976 
(0.0048)

-0.0079 
(0.0006)

Table 2. Data compatibility check: Longitudinal and lateral flight data

Note: (.) represent Cramer-Rao bound
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(.)
 re

pr
es

en
t C

ra
m

er
-R

ao
 b

ou
nd

    Parameter Reference Values  
(oEM)

Estimates
EKF uNKF EFRLS FTR

 0Z 0.105
(.0062)

0.168
(.0046)

0.166
(.0044) 0.082 --

 Zα
-2.812
(.0339)

-2.052
(.0288)

-2.072
(.0277) -2.526 -2.315

(.1648)

 qZ 0.374
(.0226)

-0.179
(.0179)

-0.163
(.0172) 0.373 0.892

(.1036)

 
e

Zδ

0.903
(.0324)

-0.457
(.0555)

-0.413
(.0536) 1.071 -0.542

(.3156)

 0M 1.662
(.0103)

1.765
(.0049)

1.746
(.0047) 1.628 --

 Mα
-8.351
(.0847)

-7.319
(.0304)

-7.356
(.0292) -7.694 -8.284

(.5311)

 qM -1.587
(.0485)

-2.348
(.0192)

-2.274
(.0185) -1.775 -1.848

(.3331)

 
e

Mδ

-1.383
(.1264)

-1.589
(.0597)

-1.563
(.0577) -1.376 -1.486

(1.018)

                Time (s) 5.81 9.04 4.95 0.140

Table 3. Comparison of longitudinal parameter estimates for HANSA 3 aircraft: Concatenated HLN1, HLN2 & HLN3

Figure 4. Validation: Parameter estimated from HLN1, HLN2 and HLN3.

the estimated longitudinal aerodynamic parameters through Table 3 
to obtain eδ  input and similar initial conditions used in generating 
the concatenated data using HLN1, HLN2, and HLN3. As a whole, 
the predicted response using parameter estimates by EKF, UNKF & 
EFRLS is found to be closer to the actual flight data. All algorithms 

were tested on an Intel i5 5th generation CPU at 2.20 GHz clock 
speed.

Although there exits significant closeness among the 
estimated parameters by various methods, a great difference is 
observed among them in the required computational time.
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Figure 5. Validation: Parameter estimated from HLT1 and HLT2.

Param Ref. values (oEM)
Estimates

              EKF              uNKF     EFRLS   FTR

 pL
-4.066
(.0433)

-3.814
(.0182)

-3.788
(.0177) -4.165 -3.305

(.2432)

 rL
1.337

(.0290)
1.161
(.0131)

1.154
(.0126) 1.171 1.161

(.2437)

 
a

Lδ

-11.011
(.0966)

-10.778
(.0405)

-10.713
(.0399) -10.755 -11.252

(.5106)

 
r

Lδ

0.369
(.0324)

0.231
(.0148)

0.201
(.0143) 0.324 0.474

(.2159)

 Lβ

-2.672
(.0428)

-2.386
(.0190)

-2.359
(.0185) -2.622 -1.914

(.4388)

 0L
-0.036
(.0034)

-0.049
(.0016)

-0.0511
(.0015) -0.042 --

 pN
-1.092
(.0416)

-1.001
(.0124)

-1.004
(.0118) -1.559 -0.760

(.2067)

 rN
-0.729
(.0226)

-0.501
(.0091)

-0.499
(.0089) -0.408 -0.541

(.2087)

 
a

Nδ

-1.784
(.0104)

-1.329
(.0267)

-1.318
(.0256) -2.980 -0.828

(.4372)

 
r

Nδ

-2.324
(.0296)

-2.389
(.0096)

-2.382
(.0094) -2.075 -2.374

(.1822)

 Nβ

1.806
(.0401)

2.018
(.0130)

2.015
(.0127) 1.435 2.771

(.3916)

 0N
-0.268
(.0029)

-0.268
(.0107)

-0.268
(.0010) -0.245 --

Time (s) 5.81   8.93   5.18   0.20

Table 4. Comparison of lateral parameter estimates for HANSA 3 aircraft: Concatenated HLT1 & HLT2
(.)

 re
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Figure 6. EKF, FTR, EFRLS, and oEM convergence of longitudinal parameter estimates.
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Figure 7. EKF, FTR, EFRLS, and oEM convergence of lateral-directional parameter estimates.
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5. CoNCLuSIoN
This paper compares two recursive parameter estimation 

algorithms, viz., (i) EFRLS and (ii) FTR, for estimating 
the aerodynamic parameters of HANSA 3 aircraft in terms 
of accuracy, required computational time, and algorithm 
complexity. Results suggest that both methods provide 
excellent estimates during the identification process. The 
parameter estimates of EFRLS depend on the forgetting factor 
that de-emphasizes older data. For this research problem, this 
model exhibits good performance by including only states 
and those states that have been linear. In FTR, the tuning 
parameter is absent, thereby requiring us to remove trim values 
before calculating the discrete Fourier transform so that zero 
aerodynamic values are not estimated. With the absence of 
tuning parameters, as in the case of EFRLS, combined with 
lesser computational requirements, the FTR method is more 
suitable for online parameter estimation in comparison with 
EFRLS, EKF, and UNKF.
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