
836

Solution of Large Sparse System of Linear Equations over GF(2) on a Multi-Node
Multi-GPU Platform

Shruti Rawal* and Indivar Gupta
 DRDO - Scientific Analysis Group (SAG), Metcalfe House, Delhi – 110 054, India

*E-mail: shrutirawalhans@gmail.com

AbStrAct

 We provide an efficient multi-node, multi-GPU implementation of the Block Wiedemann Algorithm (BWA)
to find the solution of a large sparse system of linear equations over GF(2). One of the important applications of
solving such systems arises in most integer factorization algorithms like Number Field Sieve. In this paper, we
describe how hybrid parallelization can be adapted to speed up the most time-consuming sequence generation stage
of BWA. This stage involves generating a sequence of matrix-matrix products and matrix transpose-matrix products
where the matrices are very large, highly sparse, and have entries over GF(2). We describe a GPU-accelerated parallel
method for the computation of these matrix-matrix products using techniques like row-wise parallel distribution of
the first matrix over multi-node multi-GPU platform using MPI and CUDA and word-wise XORing of rows of the
second matrix. We also describe the hybrid parallelization of matrix transpose-matrix product computation, where
we divide both the matrices row-wise into equal-sized blocks using MPI. Then after a GPU-accelerated matrix
transpose-matrix product generation, we combine all those blocks using MPI_BXOR operation in MPI_Reduce
to obtain the result. The performance of hybrid parallelization of the sequence generation step on a hybrid cluster
using multiple GPUs has been compared with parallelization on only multiple MPI processors. We have used this
hybrid parallel sequence generation tool for the benchmarking of an HPC cluster. Detailed timings of the complete
solution of number field sieve matrices of RSA-130, RSA-140, and RSA-170 are also compared in this paper using
up to 4 NVidia V100 GPUs of a DGX station. We got a speedup of 2.8 after parallelization on 4 V100 GPUs
compared to that over 1 GPU.

Keywords: GF(2); GPGPU computing; MPI; CUDA; Block Wiedemann Algorithm; NVidia V100 GPU; NVidia
DGX station; HPC cluster

Received : 12 November 2021, Revised : 24August 2022
Accepted : 3 November 2022, Online published : 6 December 2022

1. INtrodUctIoN
We propose here to solve a large sparse system of linear

equations over GF(2) which arises in most of the integer
factorization algorithms like a quadratic sieve or General
Number Field Sieve (GNFS)1 where we need to select those
rows of the matrix whose linear combinations will result in
a zero row modulo 2. These integer factorization algorithms
have great importance in cryptanalysis because the security of
one of the widely used cryptosystems, namely RSA,2 relies on
the hardness of factoring large integers. There are numerous
other scientific and engineering problems that involve solution
of large sparse linear systems, such as analysis of electric
power systems and study of many real-world multi-physics
problems.3

We cannot use general matrix-solving methods like
Structured Gaussian Elimination4 to solve such matrices because
the sparsity of the matrix will get lost in the intermediate stages
of such methods, and we will need larger memory storage to
store these large size denser matrices. Thus, using Iterative
Solvers like Wiedemann5 or Lanczos6 Methods is better.

However, for a matrix with elements over GF(2), two more
optimised algorithms with lesser iterations exist, namely, Block
Wiedemann and Block Lanczos.7 We chose the former method
to solve our problem because it is highly parallelizable.

Block Wiedemann Algorithm (BWA) is a well-researched
topic. However, parallel BWA is relatively less studied.
Coppersmith8 proposes in the Block form of the Wiedemann
algorithm to use the capability of computers to do multiple
bit-level operations in one clock cycle. Unlike the Wiedemann
algorithm, which considers single vectors, he considers blocks
of vectors or matrices to do simultaneous computations. Thus,
the number of iterations required to compute the solution
decreases with the column size of these block vectors.

Gilles Villard9 analyses the probability of success of the
block algorithm proposed by Coppersmith for solving large
sparse systems Aw 0= of linear equations over a field K. He
proves that the input parameters of the algorithm may be tuned
such that, for any input system, a solution is computed with
high probability for any field. He10 also studies the algorithm
using matrix polynomials. Emmanuel Thomé11 describes how
the half-gcd algorithm can be adapted to speed up the sequential
linear generator computation stage of Coppersmith’s BWA
for solving large sparse linear systems over any finite field.
He later also describes a new algorithm,12 where he provides

Defence Science Journal, Vol. 72, No. 6, November 2022, pp. 836-845, DOI : 10.14429/dsj.72.17656
© 2022, DESIDOC

RAWAL & GUPTA: SOLUTION OF LARGE SPARSE SySTEM OF LINEAR EqUATIONS OVER GF(2) ON A MULTI-NODE MULTI-GPU

837

a subquadratic variant of Coppersmith’s “matrix Berlekamp-
Massey.” Pascal Giorgi and Romain Lebreton13 propose an
online algorithm for order basis, which allows for both early
termination and minimal input requirement while keeping
quasi-optimal complexity in the order.

Erich Kaltofen14 analyzes Coppersmith’s BWA for the
parallel solution of sparse linear systems. The author proves
that by using certain randomizations on the input system, the
parallel speedup is roughly by the number of vectors in the
blocks when using as many processors. Erich Kaltofen and
Austin Lobo15 describe a coarse-grain parallel approach for
the homogeneous solution of linear systems. They solve a
252,222 252,222× system with about 11.04 million nonzero
entries over the Galois field with two elements using four
processors of an SP-2 multiprocessor in about 26.5 hours of
CPU time. Bastien Vialla16 provides an efficient implementation
of BWA on NUMA multicore architecture using the tbb/MPI.

Allan K. Steel17 shows how some very large multivariate
polynomial systems over finite fields can be solved by
Grobner basis techniques coupled with the BWA. They have
implemented a dense variant of the Faug re F4 Grobner basis
algorithm and the BWA within the Magma Computer Algebra
System.

Our contribution: In this paper, we use the Block
Wiedemann Algorithm to solve very large sparse square
matrices with entries over the Galois field with two elements
whose size may be as large as hundreds of millions of rows.
To solve such large systems in a considerable amount of time,
it becomes necessary to exploit larger degrees of parallelism.
Therefore, this paper proposes a multi-node multi-GPU
scalable implementation of a sparse linear solver over GF(2)
based on the Block Wiedemann Algorithm. The solver is
implemented using Nvidia CUDA (Compute Unified Device
Architecture),18-19 which is a parallel computing architecture
and application programming interface(API) developed by
Nvidia for general computing on its graphical processing
units (GPUs). We use the Message Passing Interface (MPI)20
to distribute the implementation of the sparse solver across
multiple multi-GPU nodes. To the best of our knowledge, this
is the first work that describes the scalable implementation of
the Block Wiedemann algorithm to solve a large sparse system
of linear equations over GF(2) that scales efficiently over
a hybrid cluster where each node is equipped with graphics
processing units (GPUs). We could not compare any earlier
results with our findings because we could not find any other
latest work on multi-node multi-GPU parallel implementation
of the Block Wiedemann Algorithm for the solution of large
sparse linear systems, especially over GF(2). The last parallel
approach for the homogeneous solution of linear systems over
GF(2) was done in 1999.15 However, it will not be justified to
compare our implementation with theirs because of significant
advancements in hardware in these many years.

We use the sparse linear solver’s parallel module to
benchmark an HPC cluster. The performance and scalability of
this parallel module are compared in this paper by performing
its parallelization in two ways. In the first method, we parallelize
the solver over multiple CPU ranks of multiple cluster nodes

using MPI. In the second method, we parallelize it over
multiple GPUs spread over multiple nodes. Our experimental
results show that the performance of multi-node multi-GPU
parallelization is much better than that of parallelization over
just multiple MPI processors of multiple CPU nodes. We
observe that only 4, 8, or 12 GPUs spread over multiple nodes
solve a given large sparse system in approximately less than
half time as compared to the least time taken to solve the same
system by 512, 1024, or 2048 number of CPU ranks spread
over multiple nodes. The GPU architecture is Volta, on which
the solver shows a parallel efficiency of 94.4 % on up to 8
V100 GPUs (spread over two nodes), which drops to 72.7 %
and 49.4 % on 12 (spread over three nodes) and 16 (spread
over four nodes) V100 GPUs, respectively. Thus, we can say
that the solver can effectively scale across multiple GPUs on
multiple nodes, and by scaling the problem size, we can further
saturate a larger number of GPUs.

The rest of this paper is organized as follows. The next
section overviews the Block Wiedemann Algorithm (BWA)
and explains the sequential approach to compute a minimal
polynomial matrix. The hybrid parallel implementation of
matrix-matrix products and matrix transpose-matrix products
computation for the sequence generation and solution
evaluation parts of BWA is described in section III. Detailed
timings of the complete solution of some number field sieve
matrices are compared in section IV using up to 4 NVidia
V100 GPUs of a DGX station. Section IV further compares the
scalability and performance of the parallel implementation of
the sequence generation part of the sparse linear solver across
multiple GPUs of multiple nodes with that across only multiple
CPU ranks of multiple nodes. Section V concludes the paper.

2. bLocK WIEdEMANN ALGorItHM
Coppersmith’s Block Wiedemann Algorithm (BWA)8

is useful when we need to find a homogeneous solution for
a singular, square matrix over GF(2). It uses the ability to
simultaneously perform multiple operations in GF(2) on
blocks of vectors using complete word size. Let us first briefly
go through the Wiedemann algorithm to understand this
algorithm.

2.1 Wiedemann Algorithm
Wiedemann Algorithm,5,8 when applied to a singular

square matrix A of size N N× gives a nonzero solution vector
w, such that

 Aw 0= (1)

Let there be two random vectors, N
2u, v F .∈ These vectors

u, v are then used to compute

(i) t i a u A v,1 i 2N 1= ≤ ≤ + (2)

and let

(i) i

ia() aλ = ∑ λ (3)

Suppose f ()λ is a least degree monic polynomial such

that f (A) 0= , then f ()λ is called the minimal polynomial15 of

DEF. SCI. J., VOL. 72, NO. 6, NOVEMBER 2022

838

A . If l l 1
l 1 0f () c ... c−
−λ = λ + λ + + , then we know that

 f (A)v 0= (4)

Then

l l 1

l 1A (A v c A v ... c v) 0δ −δ −δ−
− δ+ + + = (5)

where 0δ ≥ is the minimum value for which cδ remains
nonzero.15 If A is nonsingular, then δ becomes 0 . This
minimal polynomial is found using Berlekamp-Massey
Algorithm.21 Assume that the vector in parenthesis in (5) is w
and suppose w is nonzero. Thus it implies that A w 0δ = and,
therefore,

1w A w 0δ−= ≠ (6)

Thus Aw 0= .

2.2 block Wiedemann Algorithm
A block version of the Wiedemann algorithm is proposed

by Coppersmith8 which works with matrices N m
2U,V F ×∈

instead of vectors u and v . Here, m is a multiple of word
size. Thus, we can solve for AW 0= using this algorithm,
where A is a singular, square matrix such that N N

2A F ×∈
and W is a matrix such that N m

2W F ×∈ . This algorithm can be
divided into four steps described here in the subsections.

2.2.1 Random Block Vector Generation
In this part of the algorithm, we get as input the singular,

square matrix N N
2A F ×∈ and we generate two matrices

N m
2U, V F ×∈ randomly in such a manner that TU AV becomes

a nonsingular matrix with entries over GF(2) of size m x m.
Here, m is chosen to be a multiple of word size, i.e., 64 or
128. If we cannot satisfy the non-singularity condition, we
keep finding another set of random matrices U and V until the
product UTAV becomes nonsingular.

2.2.2 Sequence Generation
Using the block vectors or matrices generated in the

previous step, a sequence of matrix-matrix and matrix

transpose-matrix products iη are computed such that:

i T i 2NU A V,1 i

m
η = ≤ ≤ + ε

 (7)

In our implementation, we consider 6ε = . The result is a
sequence of matrices with entries in GF(2) of size m m× , and
we consider them as coefficients of a polynomial matrix, ()η λ
such that

(i) i

i()η λ = ∑ η λ (8)

2.2.3 Minimal Polynomial Matrix Computation

In this step of the algorithm, ()η λ , the sequence of m m×
matrices, is the input, and ()ψ λ , the linear generator or the

minimal polynomial matrix of sequence ()η λ is the output.
Assume that the length of the linear generator ()ψ λ is K 1+
then

K K 1

K 1 1 0() c ... c ... c−
−ψ λ = λ + λ + + λ + + (9)

where, m m
i 2c F ×∈ for 0 i K 1≤ ≤ − .15 ()ψ λ is generated

using a generalized block version of the Berlekamp-Massey
algorithm,8,22 which is explained further in a subsequent
section. This computation is highly sequential.

2.2.4 Solution Evaluation:
We know that ()ψ λ , as defined in Eqn. (9), is the minimal

polynomial matrix of A . Thus with reference to Eqn. (4), it
implies that (A)V 0ψ = . The only difference here is that the
coefficients of this polynomial are matrices. With reference to
(6), we get

1W A w 0δ−= ≠ (10)

where, K K 1
K 1w A V C A V ... C V−δ −δ−
− δ= + + + and δ is the

minimum positive value for which Cδ remains nonzero. It is
to be noted that N m

2W, w F ×∈ in Eqn. (10) are matrices unlike
w and w in Eqn. (6), which are vectors of size N . Thus, W
gives m number of candidate solution vectors of size N in a
single invocation simultaneously. All these solution vectors
may or may not be different or nonzero. The nonzero, unique
solutions can also be verified after multiplication with matrix
A .

2.3 Sequential Approach for Minimal Polynomial
Matrix computation

The minimal polynomial matrix, ()ψ λ as in Eqn. (9) of

sequence, ()η λ as in Eqn. (8), is generated using a generalized
block version of the Berlekamp-Massey algorithm.8-22 This
algorithm is purely sequential and iteratively calls three
functions 2N / m + ε times. Before understanding these
functions, let us review the matrices, polynomial matrices, and
other data elements involved.

Algorithm 1. Minimal polynomial matrix computation.
Input•	

()η λ : sequence of m m× matrices of length L ,

where 2NL
m

= + ε

output•	

()ψ λ : linear generator of (),η λ
d: vector of size 2m which stores the degrees of each

row of ()ψ λ and ()β λ , where ()ψ λ , ()β λ are m m×

polynomial matrices. Here, ()ψ λ is the polynomial
matrix which stores the required Minimal Polynomial
Matrix, and ()β λ stores that previous value of ()ψ λ for

RAWAL & GUPTA: SOLUTION OF LARGE SPARSE SySTEM OF LINEAR EqUATIONS OVER GF(2) ON A MULTI-NODE MULTI-GPU

839

which the length of the polynomial matrix ()ψ λ was last
updated.
discrepancy Matrix•	

 ∆ : 2m m× discrepancy matrix
 where, ∆ is the discrepancy matrix used to calculate

discrepancy in this algorithm. ∆ is the combination of

the highest degree coefficients in ()ψ λ and ()β λ such
that the first m rows of ∆ represent the highest degree

coefficient in ()ψ λ and the next m rows represent the

highest degree coefficient in ()β λ . It is to be noted that
these coefficients are matrices of size m m× .
Linear transformation matrix•	

 τ : 2m 2m× linear transformation matrix where τ is a
matrix that is set to be an identity matrix in each iteration
and then updated based on values of ∆ and d .
Initialization•	

() I, () Ix,d[1,.., 2m] 1, 0, i 1,L 2N / m 6ψ λ = β λ = = τ = = = +

i 0←
while i L< do

 DiscrepancyFinder(, i, (), (), ())∆ η λ ψ λ β λ
 /* find coefficient of iλ */

 Triangulation(, ,d,m)τ ∆
 /* compute τ using ∆ */

 UpdatePolyMatrix((), (), ,m)ψ λ β λ τ

 /* update (), ()ψ λ β λ using τ */
End•	

2.3.2 Triangulation
This function takes the discrepancy matrix ∆ and the

degree vector d as inputs. In every iteration, it first initializes
the transformation matrix τ to be an identity matrix. Then it
updates τ with respect to ∆ such that product of τ and ∆
gives a matrix that has nonzero values in only the first m rows,
and all the values in the following m rows of the resultant

product are zero, i.e., *
0
 τ∆ =   

.

2.3.3 UpdatePolyMatrix
In this function, polynomial matrices ()ψ λ , ()β λ , and the

transformation matrix τ are the inputs. Here, each coefficient
of ()ψ λ and ()β λ is updated using values in τ as shown in
Fig. 2. For ease of computation, τ is divided into four parts.

Figure	1.	 Data	flow	between	functions	of	a	block	version	of	the	
berlekamp-Massey algorithm.

The three functions invoked L times in algorithm 1 are
described as follows. Figure 1 shows the data flow between
these three algorithm functions.

2.3.1 Discrepancy Finder
This function takes the polynomial matrices (), (),η λ ψ λ

and ()β λ as inputs. It first finds the coefficient of iλ from
the product of ()ψ λ and ()η λ . The resulting coefficient is a
matrix of size m m× . This coefficient forms the first m rows
of the discrepancy matrix ∆ . Similarly, the coefficient of iλ

from the product of ()β λ and ()η λ is stored in the following
m rows of ∆ . Hence, ∆ is the output of this function.

Figure 2. Updation of polynomial matrices ()ψ λ , ()β λ using
τ

3. HYbrId PArALLEL SEQUENcE GENErAtIoN
ANd SoLUtIoN EVALUAtIoN
The sequence generation part of the algorithm is highly

compute-intensive as it involves multiple matrix-matrix
and matrix transpose-matrix multiplications to generate the
sequence

i T i 2NU A V,1 i

m
η = ≤ ≤ + ε (11)

where, N m
2U,V F ×∈ and N N

2A F ×∈ . Here, the sheer size of
matrix A raises the primary difficulty. With reference to the data
from the factorization of RSA-768, it is known that the matrix
generated after the Sieving step had 48 billion rows and 35 billion
columns which, after filtering, got reduced to 193 million rows
and columns with only 144 nonzero entries per row in average.
Also, from the RSA-130 challenge, we know that matrix had 3.5
million rows and columns with an average of 39.4 nonzero entries
per row. It is a waste of memory if we store such large matrices in
their standard form, so we store them in a compressed format, as
described in the following subsection.

3.1 Sparse Matrix representation
We chose a modified Compressed Sparse Row (CSR) format

to store our large sparse matrix A. In Fig. 3, we have taken the
example of a small, sparse square matrix with elements over GF(2)
to understand this format. In this modified CSR format, the first
element in each row represents the number of nonzero values (1s
in our case) in the respective sparse row. After the first element, the
column indices of those nonzero values are stored. We store all
these values in hexadecimal. Unlike the normal CSR format,
we do not need to store any values because the only nonzero
value in GF(2) is 1. Thus, the amount of memory required to
store large sparse matrices in these formats directly depends
on the number of nonzero values in these matrices. The larger
the sparsity of a matrix, the lesser the memory required to save
such a matrix.

DEF. SCI. J., VOL. 72, NO. 6, NOVEMBER 2022

840

3.2 Sparse Matrix-Matrix Multiplication
The matrices U and V are stored in chunks or blocks of

64-bits in hexadecimal format, as shown in Fig. 4. Thus, to find
the Sparse Matrix-Matrix (SpMM) product AV , which will be
a matrix of size N m× (where m is a multiple of word size, i.e.,
64 or 128), we first read the elements of matrix A in each row.
Each of these elements signifies the column indices of nonzero
values. Then only the corresponding rows of each word-size
block of matrix V are XORed to generate corresponding word-
size blocks of matrix AV . Figure 5 shows an example of an

SpMM multiplication where m 128= and i ix , y are 64-bit

words in GF(2) where i [1, N]∈ . This implies that XORing
one 64-bit size block of V generates the results for 64 columns
of each row of matrix AV in just one operation cycle.

requirement is that those computational operations should be
independent of each other. In SpMM multiplication explained
above, we can easily identify that the computation of all rows
of AV are independent operations; therefore, they can be
computed in parallel. Thus, we first scatter the rows of matrix
A among the chosen number of MPI processes of multiple
cluster nodes using MPI_Scatter. Matrix V is broadcasted
to all the MPI processes using MPI_Bcast, and further, its
memory allocation is done at each of the GPUs using CUDA_
Malloc and CUDA_Memcpy. Then using a CUDA kernel, we
further distribute the rows of matrix A available with each MPI
process among the GPU cores of the GPU associated with it to
compute respective rows of AV . Figure 6 shows the parallel
distribution of rows of matrix A for parallel computation of
AV among three cluster nodes, each of which has 4 GPUs;
thus, 12 MPI processors are launched.

Figure	3.	Modified	CSR	format	to	store	sparse	matrices.

Figure 4. An example of matrix V of size N 128×

3.3	 Hybrid	Parallel	Sparse	Matrix-Matrix	Multiplication
We have parallelized this SpMM multiplication on a

multinode multi-GPU platform. The number of MPI processors
launched on each node is chosen to equal the number of
GPUs available on each node. By doing this, we can equally
distribute the load among all the GPUs available on a node.
Thus, with each GPU, we associate one MPI processor. The
MPI node local rank of each process on each node is used to
bind that process to the appropriate GPU of that node. We pass
the node’s local rank to the cudaSetDevice() function to set the
device (GPU) on which the active host thread should execute
the device code.

To parallelize any operations, the most important

Figure 5. Word-wise Xoring of rows of V based	 on	 column	
indices of A

3.4 Matrix transpose-Matrix Multiplication
To obtain UTAV, we word-wise XOR all those rows of

matrix AV, for which the corresponding values in the transposed
matrix UT are 1. The challenging part in this implementation is
to read the transpose of matrix U of size Nxm. To form the first
row of UT, we read the leftmost bit of each row of matrix U by
masking. Subsequently, we read the second leftmost bit of each
row and so on. Thus, we read a non-transposed matrix so that it
will be equivalent to its transposed matrix, as shown in Fig. 7.

Figure	 6.	 Equal	Distribution	 of	 rows	 of	 A among 3 Nodes,
each having 4 GPUs: A total of 12 MPI processors
are launched.

Figure 7. Matrix transpose-Matrix Multiplication

3.5 Parallel Matrix transpose-Matrix Multiplication
Matrix U is stored in memory, just like in Fig. 4. To

parallelize this matrix transpose-matrix multiplication, we equally

distribute matrices m m hl hr

m m ll lr

I 0() ()
() 0 I ()

τ τψ λ ψ λ      
=       β λ λ τ τ β λ      

and AV row-wise and scatter it across all MPI processors
using MPI_Scatter. We use these Uis and AVis (where i is

RAWAL & GUPTA: SOLUTION OF LARGE SPARSE SySTEM OF LINEAR EqUATIONS OVER GF(2) ON A MULTI-NODE MULTI-GPU

841

equal to the MPI process rank) to generate T
i iU AVs at each

MPI processor, as shown in Fig. 8. Each MPI processor
invokes a CUDA kernel, which further distributes U and
AV by assigning the indices of rows of U to the GPU cores
using their threadId and blockId. Each T

i iU AVs are XORed
using MPI_BXOR operation in MPI_Reduce to give the final
required product TU AV.

and performance of the parallel sequence generation part of
the sparse linear solver across multiple multi-GPU nodes. We
have used this tool for benchmarking an HPC cluster, which is
a hybrid CPU-GPU cluster where each node is embedded with
4 Tesla V100 GPUs.

4.1 complete Solver Performance on dGX Station
In our experiment, the input matrices are the filtered

matrices obtained after the Sieving step of the Number Field
Sieve for cryptanalysis of RSA-130, RSA-140, and RSA-170.
Table 1 shows the detailed timings of all three steps of our
sparse solver for the three input matrices over an NVidia DGX
station. The DGX station in this experiment has 4 NVidia Tesla
V100 GPUs and 256 GB system memory with 500 TFlops of
supercomputing performance. Its clock speed is 2.20 GHz.
Each V100 GPU has 5120 CUDA cores with 16 GB device
memory and a peak memory bandwidth of 900 GB/s. The
versions of the software used are OpenMPI 2.1.1 and CUDA
10.1.

We distributed the implementation of the sequence
generation step of BWA over 1, 2, and 4 V100 GPUs using
both MPI and CUDA. It can be noted from Table 1 that the
time for the parallel solution evaluation step is approximately
half of the time for the parallel sequence generation step. So we
executed the parallel solution evaluation step on only 4 V100
GPUs of the DGX station. Both these steps involve multiple
matrix-matrix and matrix transpose-matrix multiplications
with some additional tasks. The cost of these matrix-matrix
and matrix transpose-matrix multiplications dominates over all
other tasks. Thus, the intense parallelization of these tasks gives
us even better results with the increase in the matrix size.

Our experimental results show good speedup and parallel
efficiency of the highly parallelizable sequence generation step
after parallelization over up to 4 V100 GPUs. Table 1 shows
the parallel efficiency and speedup on GPUs for three input
matrices such that

1

x

TPE(x)
x T

=
×

(12)

1

x

TSpeedup(x)
T

= (13)

where, PE(x) is the parallel efficiency on x GPUs for the

given matrix and 1 xT ,T are the execution times on 1 and x
number of GPUs, respectively. As seen in table 1, the speedup
compared to parallelization over 1 GPU goes from 1.6 to 2.8
when we parallelize the sequence generation step of BWA on
2 and 4 V100 GPUs, respectively. The parallel efficiency drops
from 82% to 71% when using 2 and 4 V100 GPUs, respectively,
for the cryptanalysis of RSA-170.

The minimal polynomial matrix computation in BWA
requires large system memory, which is available on the DGX
station. This step is executed sequentially, and the time required
to find the minimal polynomial matrix grows quadratically
with the dimensions of the matrix. The time complexity of the
complete algorithm is 2O(N)+ε where 0 1< ε ≤ .15

Figure	8.	 Equal	Distribution	of	rows	of	U	and	AV	among	3	MPI	
processors. Each T

i iU AVs computed in corresponding

GPUs where i = MPI process rank. the 3 T
i iU AVs

are	then	XORed	to	compute	final	 TU AV.

3.6 Iterative Sequence Generation
We have described how two types of multiplications

involved in generating sequence (11) can be parallelized.
However, we need to iteratively call these two multiplication
CUDA kernels L times to generate the complete sequence.
The only difference in each iteration is that the matrix AV
computed in the earlier iteration becomes matrix V for the
next iteration. Thus after every iteration, we gather all AVis
(where i is equal to the MPI process rank) generated with
each MPI process to a single MPI process using MPI_Gather
and then broadcast it as matrix V for the next iteration using
MPI_Bcast.

3.7	 Hybrid	 Parallel	 Solution	 Evaluation	
The solution evaluation step in BWA also involves

repetitive sparse matrix-matrix multiplications. Thus, we
compute all these products in a hybrid parallel manner using
MPI and CUDA on a multi-node multi-GPU platform as
described in the previous subsection 3.3.

4. EXPErIMENtAL ANALYSIS
As described previously, the sparse linear solver comprises

three main steps: (a) Sequence Generation, (b) Minimal
Polynomial Matrix (MPM) Computation, and (c) Solution
Evaluation. All the matrix-matrix and matrix transpose-
matrix multiplications involved in the first and third steps
are parallelized. As the first step involves the most number of
such product computations, therefore it is highly scalable and
gives the best results after parallelization. Detailed timings of
the complete solution of some NFS matrices are compared in
subsection 4.2 using up to 4 NVidia V100 GPUs of a DGX
station. In subsection IV-B, we further discuss the scalability

DEF. SCI. J., VOL. 72, NO. 6, NOVEMBER 2022

842

4.2	 Performance	of	Hybrid	Parallel	Sequence	Generation	
on HPc cluster
We have parallelized the sparse linear solver over GF(2)

in two ways to compare its performance and scalability. In
the first method, we parallelize the system over multiple CPU
ranks on multiple cluster nodes using only MPI. In the second
method, we parallelize it over multiple GPUs available on
multiple cluster nodes using CUDA and MPI. Each cluster
node is embedded with 4 Tesla V100 GPUs, 32 CPU cores,
and 192GB DDR4 RAM. Each of these GPUs has 5120 CUDA
cores, 900 GB/sec memory bandwidth, and 16 GB VRAM. The
clock speed of the cluster is 2.00GHz, and the network used is
100Gbps EDR Infiniband Switch Fabric. The versions of the
software used are CUDA 10.1 and OpenMPI 4.0.1.

Figure 9 shows the performance and scalability comparison
between the parallelization methods of the parallel sequence
generation step for six sparse linear systems. The sizes of

chosen square matrices go from 182 to 232 rows. These sparse
matrices with entries over GF(2) are generated randomly,
where we distribute some dependent rows across the matrix
to ensure that it is always solvable. The average number of
nonzero entries per row is chosen to be 40 . The difference

in the range of timings of all six systems is so huge that we
could not plot the observations in the same graph. Hence,
natural logarithmic timings in seconds are used to plot the
bar charts. Therefore, it can be understood that even a small
difference in y-axis in figure 9 signifies significant timing
differences for the various number of CPU ranks or GPUs
as plotted on X-axis. It can also be noticed from figure 9 that
there is a point for each system when adding more processors
(GPU or CPU) does not improve the overall performance.
This means that the solver for every system is scalable for
only that many GPUs or CPU ranks for parallelism.

Let us compare both the bar charts shown in Fig. 9.
We can easily see that the least time taken to generate the

sequence iη as in Eqn. (11) for any given system on any
number of CPU ranks (as shown on the X-axis of (a)) is
approximately more than twice that of the least time taken
by GPUs as shown in (b). For instance, for matrix size

23 232 2× , the least time to generate the parallel sequence
using only MPI-level parallelization on 2048 CPU ranks
spread over 64 nodes (32 CPU cores per node) is 27,421.88
seconds. In contrast, the time taken for the same matrix using
hybrid parallelism over 12 GPUs spread across three nodes

Square Matrix
Size (N as in (Eqn. 7))

Average
nonzero
entries
per row

Parallel Sequence Generation (s) MPM
computation (s)

Parallel Solution
Evaluation (s)

 1 V100
 GPUSs

 2 V100
 GPUs

 4 V100
 GPUs

 cPU 4 V100
 GPUs

rSA-130 2,097,152 92 10, 625 6,627
Speedup=1.6
PE = 80 %

3,968
Speedup=2.7
PE= 67 %

 29,673
 = 8h15m

 1,926

rSA-140 4,194,304 82 38, 528 24,168
Speedup=1.6
PE = 80 %

14,336
Speedup=2.7
PE= 67 %

 111,933
 = 31h5m

 7,056

rSA-170 8,388,608 117 206,336 125,888
Speedup=1.6
PE = 82 %

72,832
Speedup=2.8
PE= 71 %

 398, 998
 = 110h50m

 36,216

Table	1.	 Detailed	timings	of	sparse	solver	over	an	nvidia	dgx	v100	station.	The	results	are	with	 m 128= such that N m
2U,V F ×∈ as

in Eqn. (7)

Figure	9.	 Solver	Performance	with:	 (a)	CPU-level	 Parallelization	 (b)	Multi-node	Multi-GPU	Parallelization	 (Natural	Logarithmic	
timings).

	 	 	 	 	 	 	 	 	 (a)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)

RAWAL & GUPTA: SOLUTION OF LARGE SPARSE SySTEM OF LINEAR EqUATIONS OVER GF(2) ON A MULTI-NODE MULTI-GPU

843

(each having 4 V100 GPUs) is only 13,075.2 seconds. Figure
10 and Fig. 11 show the exact timings for the parallel sequence
generation step of the solver for the six square sparse systems
of linear equations using both parallelization methods on the
HPC cluster.

Figure 12 plots the parallel efficiency on GPUs for square
matrices with 218 to 222 rows as in Eqn. (12). As discussed
earlier, each node of the GPU cluster has 4 V100 GPUs;
therefore, we use a single node to work on up to 4 GPUs, while
two nodes for up to 8 GPUs, and for up to 12 GPUs, we use
three nodes and for 16 GPUs we use four nodes of the cluster.
It can be seen from figure 12 that for a matrix with 218 rows,
we obtain a parallel efficiency of 94.07 % on 2 V100 GPUs,
which drops to 72.29 % and to 52.28 % on using 4 and 8 V100
GPUs, respectively.

Also, from Fig.12, it can be seen that for a matrix with

Figure 10. Solver Performance with cPU-level Parallelization for square matrices of size: (a) 218 and 219 (b)	 220 and 221 and
(c)222 and 223.

 	(a)																																																																																																									(b)

 (c)

222 rows, we obtain a parallel efficiency of 94.4 % on 2 V100
GPUs, which is maintained to be 94 % and 94.4 % at 4 and
8 V100 GPUs, respectively. This parallel efficiency drops to
72.74% at 12 V100s and further drops to just 49.34% at 16
GPUs. This proves that if we increase the problem size, we
can saturate more GPUs, i.e., 12 or 16 V100s. We could not

calculate the parallel efficiency for 232 problem size because
it took considerable time to solve on a single GPU.

The hybrid parallel sequence generation using both
parallel implementation methods can be later verified by using
those output sequences as inputs for the subsequent modules
of the Block Wiedemann Algorithm. If the solution of the
input matrix is obtained, then we can say that the parallel
implementation is verified. Hence, we could use this parallel
sequence generation tool for the benchmarking of the given
hybrid cluster.

DEF. SCI. J., VOL. 72, NO. 6, NOVEMBER 2022

844

 	(a)																																																																																																									(b)

 (c)
Figure 11. Solver Performance with multi-node multi-GPU (V100) parallelization for square matrices of size: (a) 218 and 219	 (b)	220

and 221, and (c) 222 and 223.

Figure	12.	Parallel	 efficiency	 on	GPUs	 for	 square	matrices	 of	
size 218 to 222.

5. coNcLUSIoNS
This paper demonstrates the step-wise hybrid parallel

implementation of the Block-Wiedemann Algorithm(BWA) to
find the solution of a large sparse system of linear equations
over GF(2). This linear solver can be used in cryptanalysis

applications like cryptanalysis of RSA using Number Field
Sieve. The solver exploits multiple levels of parallelism on a
multi-node, multi-GPU hybrid cluster. CUDA and MPI are used
for the parallelization of the solver. The experimental results
compare the parallelization of the solver over multiple CPU
ranks spread over multiple nodes with its parallelization over
multiple GPUs (V100s) spread over multiple cluster nodes.
The timings and performance obtained by GPU-accelerated
parallelization of the solver are much better than the other
parallelization method. It is observed that the least time taken
by GPUs to parallelize a task is less than half of the time taken
by any number of CPU ranks. The proposed solver shows a
parallel efficiency of around 94 % on 2, 4, and 8 Volta V100
GPUs. This parallel efficiency drops to 72.74% and 49.34%
at 12 V100s and 16 V100 GPUs, respectively. Thus, we can
say that the solver is highly scalable over multiple GPUs
spread across multiple cluster nodes and effectively utilizes the
device’s memory bandwidth.

We also show the solution of three sparse systems for
cryptanalysis of RSA-130, RSA-140, and RSA-170, where the
highly parallelizable modules of Block Wiedemann algorithm
give a speedup of 2.8 after parallelization on 4 V100 GPUs of
NVidia DGX station as compared to that over 1 GPU. Our future

RAWAL & GUPTA: SOLUTION OF LARGE SPARSE SySTEM OF LINEAR EqUATIONS OVER GF(2) ON A MULTI-NODE MULTI-GPU

845

work includes investigating methods to offload those steps of
the Block Wiedemann Algorithm (Minimal Polynomial Matrix
Computation) to the GPU, which have not been parallelized
before.

rEFErENcES
Briggs, M. An introduction to general number field sieve. 1.
M.S. Thesis, Virginia Polytechnic Institute, Blacksburg,
Virginia, 1998.
Rivest, R.L.; Shamir, A. & Adleman, L. A method for 2.
obtaining digital signatures and public-key cryptosystems.
Commun. of ACM, 1978, 21(2),120-126.
Fevgas, A.; Daloukas, K.; Tsompanopoulou, P. & 3.
Bozanis, P. Efficient solution of large sparse linear
systems in modern hardware. 6th International Conference
on Information, Intelligence, Systems, and Applications
(IISA), 2015.
Pomerance, C. & Smith, J.W. Reduction of huge, 4.
sparse matrices of finite fields via created catastrophes.
Experiment. Math., 1992, 1(2), 89-94.
Wiedemann, D. Solving sparse linear equations over finite 5.
fields. IEEE Trans. Inform. Theory, 32, 1986, 54-62.
LaMacchia, B. A., & Odlyzko, A. M. Solving large sparse 6.
linear systems over finite fields. Adv. in Cryptology —
CRyPTO ’90, 1990, vol. 537 of Lecture Notes in Comput.
Sci., Springer-Verlag, 109–133.
Coppersmith, D. Solving Linear Equations over GF(2): 7.
Block Lanczos Algorithm. Linear algebra and its Appl.,
1993, 192, 33-60.
Coppersmith, D. Solving homogeneous linear equations 8.
over GF(2) via block Wiedemann algorithm. Math.
Comput., 1994, 62/205, 333-350.
Villard, Gilles. Further analysis of coppersmith’s block 9.
wiedemann algorithm for the solution of sparse linear
systems. ISSAC 1997.
Villard, Gilles. A study of coppersmith’s block wiedemann 10.
algorithm using matrix polynomials. Technical report,
LMC-IMAG, 1997, REPORT 975 IM.
Thomé, Emmanuel. Fast computation of linear 11.
generators for matrix sequences and application to the
block Wiedemann algorithm. Proceedings of the 2001
international symposium on Symbolic and algebraic
computation, London, Ontario, Canada, July 2001, p.323-
333.
Thome ́, Emmanuel. Subquadratic computation of vector 12.
generating polynomials and improvement of the block
wiedemann algorithm. J. of Symbolic Comput., 2002,
33(5), 757-775.
Giorgi, Pascal & Lebreton, Romain. Online order basis 13.
algorithm and its impact on the block Wiedemann

algorithm. Proceedings of the 39th International symposium
on symbolic and algebraic computation, Kobe, Japan,
July 23-25, 2014.
Kaltofen, Erich. Analysis of coppersmith’s block 14.
wiedemann algorithm for the parallel solution of sparse
linear systems. Mathematics of Computation, April 1995,
vol. 64, nr. 210, pp. 777-806.
Kaltofen, E., & Lobo, A. Distributed matrix-free 15.
solution of large sparse linear systems over finite fields.
algorithmica, 1999, 24, pp. 331-348.
Vialla, Bastein. Block Wiedemann algorithm on multicore 16.
architectures. ACM communications in computer algebra,
Association for Computing Machinery (ACM), 2014, 47
(3/4), pp.102 –103.
Steel, Allan K. Direct solution of the (11,9,8)-MinRank 17.
problem by the block Wiedemann algorithm in Magma
with a Tesla GPU. In PASCO’15, ACM. Pp. 2-6, 2015.
Nickolls, J., Buck, I., Garland, M. & Skadron, M. Scalable 18.
parallel programming with Cuda. queue, Mar. 2008, 6(2),
pp. 40–53.
Nvidia gpudirect. https://developer.nvidia.com/gpudirect. 19.
Accessed on 25 October 2021
Forum, M.P. Mpi: A message-passing interface standard. 20.
Knoxville, TN, USA, 1994, Tech. Rep.
Massey, J.L. Shift-register synthesis and BCH decoding. 21.
IEEE Trans. Inf. Theory IT-15, 1969,122-127.
Kaltofen, E. & yuhasz, G. On the matrix Berlekamp-22.
Massey algorithm. ACM Trans, September 2013, Algor.
9, 4, Article 33, 24 pages.

coNtrIbUtorS

Ms Shruti rawal joined DRDO as a Scientist at DEAL, Dehradun
in 2010. She is currently working in Scientific Analysis Group, New
Delhi since 2012. She has received her BE in Computer Science and
Engineering from Delhi College of Engineering, India in the year
2010. At present, her areas of research include cryptology, linear
algebra, algorithms, high performance computing and AI, ML, DL in
system security.
In the current study, she carried out the development of initial concept,
implementation and generation of results. She also carried out the
manuscript preparation and review.

dr Indivar Gupta completed his PhD from IIT Delhi, India. He
has been working as a scientist in Scientific Analysis Group, DRDO
since 2000, and has research contributions in various areas related
to cryptography and information security. Presently, his areas of
research include computational algebra, number theory, cryptography,
information security, and high-performance computing.
His contributions in the current study involve the initial concept and
manuscript review.

