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AbStrAct

 We provide an efficient multi-node, multi-GPU implementation of the Block Wiedemann Algorithm (BWA) 
to find the solution of a large sparse system of linear equations over GF(2). One of the important applications of 
solving such systems arises in most integer factorization algorithms like Number Field Sieve. In this paper, we 
describe how hybrid parallelization can be adapted to speed up the most time-consuming sequence generation stage 
of BWA. This stage involves generating a sequence of matrix-matrix products and matrix transpose-matrix products 
where the matrices are very large, highly sparse, and have entries over GF(2). We describe a GPU-accelerated parallel 
method for the computation of these matrix-matrix products using techniques like row-wise parallel distribution of 
the first matrix over multi-node multi-GPU platform using MPI and CUDA and word-wise XORing of rows of the 
second matrix. We also describe the hybrid parallelization of matrix transpose-matrix product computation, where 
we divide both the matrices row-wise into equal-sized blocks using MPI. Then after a GPU-accelerated matrix 
transpose-matrix product generation, we combine all those blocks using MPI_BXOR operation in MPI_Reduce 
to obtain the result. The performance of hybrid parallelization of the sequence generation step on a hybrid cluster 
using multiple GPUs has been compared with parallelization on only multiple MPI processors. We have used this 
hybrid parallel sequence generation tool for the benchmarking of an HPC cluster. Detailed timings of the complete 
solution of number field sieve matrices of RSA-130, RSA-140, and RSA-170 are also compared in this paper using 
up to 4 NVidia V100 GPUs of a DGX station. We got a speedup of 2.8 after parallelization on 4 V100 GPUs 
compared to that over 1 GPU. 
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1. INtrodUctIoN 
We propose here to solve a large sparse system of linear 

equations over GF(2) which arises in most of the integer 
factorization algorithms like a quadratic sieve or General 
Number Field Sieve (GNFS)1 where we need to select those 
rows of the matrix whose linear combinations will result in 
a zero row modulo 2. These integer factorization algorithms 
have great importance in cryptanalysis because the security of 
one of the widely used cryptosystems, namely RSA,2 relies on 
the hardness of factoring large integers. There are numerous 
other scientific and engineering problems that involve solution 
of large sparse linear systems, such as analysis of electric 
power systems and study of many real-world multi-physics 
problems.3 

We cannot use general matrix-solving methods like 
Structured Gaussian Elimination4 to solve such matrices because 
the sparsity of the matrix will get lost in the intermediate stages 
of such methods, and we will need larger memory storage to 
store these large size denser matrices. Thus, using Iterative 
Solvers like Wiedemann5 or Lanczos6 Methods is better. 

However, for a matrix with elements over GF(2), two more 
optimised algorithms with lesser iterations exist, namely, Block 
Wiedemann and Block Lanczos.7 We chose the former method 
to solve our problem because it is highly parallelizable.

Block Wiedemann Algorithm (BWA) is a well-researched 
topic. However, parallel BWA is relatively less studied. 
Coppersmith8 proposes in the Block form of the Wiedemann 
algorithm to use the capability of computers to do multiple 
bit-level operations in one clock cycle. Unlike the Wiedemann 
algorithm, which considers single vectors, he considers blocks 
of vectors or matrices to do simultaneous computations. Thus, 
the number of iterations required to compute the solution 
decreases with the column size of these block vectors.

Gilles Villard9 analyses the probability of success of the 
block algorithm proposed by Coppersmith for solving large 
sparse systems Aw 0= of linear equations over a field K. He 
proves that the input parameters of the algorithm may be tuned 
such that, for any input system, a solution is computed with 
high probability for any field. He10 also studies the algorithm 
using matrix polynomials. Emmanuel Thomé11 describes how 
the half-gcd algorithm can be adapted to speed up the sequential 
linear generator computation stage of Coppersmith’s BWA 
for solving large sparse linear systems over any finite field. 
He later also describes a new algorithm,12 where he provides 
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a subquadratic variant of Coppersmith’s “matrix Berlekamp-
Massey.” Pascal Giorgi and Romain Lebreton13 propose an 
online algorithm for order basis, which allows for both early 
termination and minimal input requirement while keeping 
quasi-optimal complexity in the order.

Erich Kaltofen14 analyzes Coppersmith’s BWA for the 
parallel solution of sparse linear systems. The author proves 
that by using certain randomizations on the input system, the 
parallel speedup is roughly by the number of vectors in the 
blocks when using as many processors. Erich Kaltofen and 
Austin Lobo15 describe a coarse-grain parallel approach for 
the homogeneous solution of linear systems. They solve a 
252,222 252,222×  system with about 11.04 million nonzero 
entries over the Galois field with two elements using four 
processors of an SP-2 multiprocessor in about 26.5 hours of 
CPU time. Bastien Vialla16 provides an efficient implementation 
of BWA on NUMA multicore architecture using the tbb/MPI.

Allan K. Steel17 shows how some very large multivariate 
polynomial systems over finite fields can be solved by 
Grobner basis techniques coupled with the BWA. They have 
implemented a dense variant of the Faug re F4 Grobner basis 
algorithm and the BWA within the Magma Computer Algebra 
System.

Our contribution: In this paper, we use the Block 
Wiedemann Algorithm to solve very large sparse square 
matrices with entries over the Galois field with two elements 
whose size may be as large as hundreds of millions of rows. 
To solve such large systems in a considerable amount of time, 
it becomes necessary to exploit larger degrees of parallelism. 
Therefore, this paper proposes a multi-node multi-GPU 
scalable implementation of a sparse linear solver over GF(2) 
based on the Block Wiedemann Algorithm. The solver is 
implemented using Nvidia CUDA (Compute Unified Device 
Architecture),18-19 which is a parallel computing architecture 
and application programming interface(API) developed by 
Nvidia for general computing on its graphical processing 
units (GPUs). We use the Message Passing Interface (MPI)20 
to distribute the implementation of the sparse solver across 
multiple multi-GPU nodes. To the best of our knowledge, this 
is the first work that describes the scalable implementation of 
the Block Wiedemann algorithm to solve a large sparse system 
of linear equations over GF(2) that scales efficiently over 
a hybrid cluster where each node is equipped with graphics 
processing units (GPUs). We could not compare any earlier 
results with our findings because we could not find any other 
latest work on multi-node multi-GPU parallel implementation 
of the Block Wiedemann Algorithm for the solution of large 
sparse linear systems, especially over GF(2). The last parallel 
approach for the homogeneous solution of linear systems over 
GF(2) was done in 1999.15 However, it will not be justified to 
compare our implementation with theirs because of significant 
advancements in hardware in these many years. 

We use the sparse linear solver’s parallel module to 
benchmark an HPC cluster. The performance and scalability of 
this parallel module are compared in this paper by performing 
its parallelization in two ways. In the first method, we parallelize 
the solver over multiple CPU ranks of multiple cluster nodes 

using MPI. In the second method, we parallelize it over 
multiple GPUs spread over multiple nodes. Our experimental 
results show that the performance of multi-node multi-GPU 
parallelization is much better than that of parallelization over 
just multiple MPI processors of multiple CPU nodes. We 
observe that only 4, 8, or 12 GPUs spread over multiple nodes 
solve a given large sparse system in approximately less than 
half time as compared to the least time taken to solve the same 
system by 512, 1024, or 2048 number of CPU ranks spread 
over multiple nodes. The GPU architecture is Volta, on which 
the solver shows a parallel efficiency of 94.4 % on up to 8 
V100 GPUs (spread over two nodes), which drops to 72.7 %  
and 49.4 % on 12 (spread over three nodes) and 16 (spread 
over four nodes) V100 GPUs, respectively. Thus, we can say 
that the solver can effectively scale across multiple GPUs on 
multiple nodes, and by scaling the problem size, we can further 
saturate a larger number of GPUs.

The rest of this paper is organized as follows. The next 
section overviews the Block Wiedemann Algorithm (BWA) 
and explains the sequential approach to compute a minimal 
polynomial matrix. The hybrid parallel implementation of 
matrix-matrix products and matrix transpose-matrix products 
computation for the sequence generation and solution 
evaluation parts of BWA is described in section III. Detailed 
timings of the complete solution of some number field sieve 
matrices are compared in section IV using up to 4 NVidia 
V100 GPUs of a DGX station. Section IV further compares the 
scalability and performance of the parallel implementation of 
the sequence generation part of the sparse linear solver across 
multiple GPUs of multiple nodes with that across only multiple 
CPU ranks of multiple nodes. Section V concludes the paper.

2. bLocK WIEdEMANN ALGorItHM
Coppersmith’s Block Wiedemann Algorithm (BWA)8 

is useful when we need to find a homogeneous solution for 
a singular, square matrix over GF(2). It uses the ability to 
simultaneously perform multiple operations in GF(2) on 
blocks of vectors using complete word size. Let us first briefly 
go through the Wiedemann algorithm to understand this 
algorithm.

2.1 Wiedemann Algorithm
Wiedemann Algorithm,5,8 when applied to a singular 

square matrix A  of size N N×  gives a nonzero solution vector 
w, such that

                             Aw 0=                                             (1)                                                                         

Let there be two random vectors, N
2u, v F .∈  These vectors 

u, v  are then used to compute 

                   
(i) t i a u A v,1 i 2N 1= ≤ ≤ +                          (2)              

  
and let

                   
(i) i

ia( ) aλ = ∑ λ                                            (3) 

Suppose f ( )λ  is a least degree monic polynomial such 

that f (A) 0= , then f ( )λ  is called the minimal polynomial15 of 
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A . If l l 1
l 1 0f ( ) c ... c−
−λ = λ + λ + + , then we know that

                       f (A)v 0=                                               (4) 
     
Then

              
l l 1

l 1A (A v c A v ... c v) 0δ −δ −δ−
− δ+ + + =              (5)          

 

where 0δ ≥  is the minimum value for which cδ  remains 
nonzero.15 If A  is nonsingular, then δ  becomes 0 . This 
minimal polynomial is found using Berlekamp-Massey 
Algorithm.21 Assume that the vector in parenthesis in (5) is w  
and suppose w  is nonzero. Thus it implies that A w 0δ =  and, 
therefore,

                   
1w A w 0δ−= ≠                                       (6)   

Thus Aw 0= .

2.2 block Wiedemann Algorithm
A block version of the Wiedemann algorithm is proposed 

by Coppersmith8 which works with matrices N m
2U,V F ×∈

instead of vectors u  and v . Here, m  is a multiple of word 
size. Thus, we can solve for AW 0=  using this algorithm, 
where A  is a singular, square matrix such that N N

2A F ×∈
and  W is a matrix such that N m

2W F ×∈ . This algorithm can be 
divided into four steps described here in the subsections.

2.2.1 Random Block Vector Generation
In this part of the algorithm, we get as input the singular, 

square matrix N N
2A F ×∈ and we generate two matrices 

N m
2U, V F ×∈ randomly in such a manner that TU AV  becomes 

a nonsingular matrix with entries over GF(2) of size m x m. 
Here, m  is chosen to be a multiple of word size, i.e., 64 or 
128. If we cannot satisfy the non-singularity condition, we 
keep finding another set of random matrices U and V until the 
product UTAV becomes nonsingular.

2.2.2 Sequence Generation
Using the block vectors or matrices generated in the 

previous step, a sequence of matrix-matrix and matrix 

transpose-matrix products iη are computed such that:

                  
i T i 2NU A V,1 i

m
η = ≤ ≤ + ε

                
 (7)

In our implementation, we consider 6ε = . The result is a 
sequence of matrices with entries in GF(2) of size m m× , and 
we consider them as coefficients of a polynomial matrix, ( )η λ  
such that

                        
(i) i

i( )η λ = ∑ η λ           (8) 
  
2.2.3 Minimal Polynomial Matrix Computation

In this step of the algorithm, ( )η λ , the sequence of m m×  
matrices, is the input, and ( )ψ λ , the linear generator or the 

minimal polynomial matrix of sequence ( )η λ  is the output. 
Assume that the length of the linear generator ( )ψ λ  is K 1+  
then

    
K K 1

K 1 1 0( ) c ... c ... c−
−ψ λ = λ + λ + + λ + +                     (9) 

                 

where, m m
i 2c F ×∈  for 0 i K 1≤ ≤ − .15 ( )ψ λ  is generated 

using a generalized block version of the Berlekamp-Massey 
algorithm,8,22 which is explained further in a subsequent 
section. This computation is highly sequential.

2.2.4 Solution Evaluation: 
We know that ( )ψ λ , as defined in Eqn. (9), is the minimal 

polynomial matrix of A . Thus with reference to Eqn. (4), it 
implies that (A)V 0ψ = . The only difference here is that the 
coefficients of this polynomial are matrices. With reference to 
(6), we get

                        
1W A w 0δ−= ≠                                    (10) 

    

where, K K 1
K 1w A V C A V ... C V−δ −δ−
− δ= + + +  and δ  is the 

minimum positive value for which Cδ  remains nonzero. It is 
to be noted that N m

2W, w F ×∈ in Eqn. (10) are matrices unlike 
w and w in Eqn. (6), which are vectors of size N . Thus, W  
gives m number of candidate solution vectors of size N in a 
single invocation simultaneously. All these solution vectors 
may or may not be different or nonzero. The nonzero, unique 
solutions can also be verified after multiplication with matrix 
A .

2.3 Sequential Approach for Minimal Polynomial 
Matrix computation

The minimal polynomial matrix, ( )ψ λ  as in Eqn. (9) of 

sequence, ( )η λ  as in Eqn. (8), is generated using a generalized 
block version of the Berlekamp-Massey algorithm.8-22 This 
algorithm is purely sequential and iteratively calls three 
functions 2N / m + ε  times. Before understanding these 
functions, let us review the matrices, polynomial matrices, and 
other data elements involved.

Algorithm 1. Minimal polynomial matrix computation.
Input•	

( )η λ : sequence of m m×  matrices of length L , 

where 2NL
m

= + ε

output•	

( )ψ λ : linear generator of ( ),η λ  
d: vector of size 2m  which stores the degrees of each 

row of ( )ψ λ  and ( )β λ , where ( )ψ λ , ( )β λ  are m m×  

polynomial matrices. Here, ( )ψ λ  is the polynomial 
matrix which stores the required Minimal Polynomial 
Matrix, and ( )β λ  stores that previous value of ( )ψ λ  for 
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which the length of the polynomial matrix ( )ψ λ  was last 
updated.
discrepancy Matrix•	

 ∆ : 2m m×  discrepancy matrix
 where, ∆  is the discrepancy matrix used to calculate 

discrepancy in this algorithm. ∆  is the combination of 

the highest degree coefficients in ( )ψ λ  and ( )β λ  such 
that the first m rows of ∆  represent the highest degree 

coefficient in ( )ψ λ  and the next m rows represent the 

highest degree coefficient in ( )β λ . It is to be noted that 
these coefficients are matrices of size m m× .
Linear transformation matrix•	

 τ : 2m 2m×  linear transformation matrix where τ  is a 
matrix that is set to be an identity matrix in each iteration 
and then updated based on values of ∆  and d .
Initialization•	

( ) I, ( ) Ix,d[1,.., 2m] 1, 0, i 1,L 2N / m 6ψ λ = β λ = = τ = = = +

i 0←
while i L< do

     DiscrepancyFinder( , i, ( ), ( ), ( ))∆ η λ ψ λ β λ  
        /* find coefficient of iλ */ 

     Triangulation( , ,d,m)τ ∆
        /* compute τ using ∆ */ 

     UpdatePolyMatrix( ( ), ( ), ,m)ψ λ β λ τ

       /* update ( ), ( )ψ λ β λ using τ */ 
End•	

2.3.2 Triangulation 
This function takes the discrepancy matrix ∆  and the 

degree vector d as inputs. In every iteration, it first initializes 
the transformation matrix τ  to be an identity matrix. Then it 
updates τ  with respect to ∆  such that product of τ  and ∆  
gives a matrix that has nonzero values in only the first m rows, 
and all the values in the following m rows of the resultant 

product are zero, i.e., *
0
 τ∆ =   

.

2.3.3 UpdatePolyMatrix 
In this function, polynomial matrices ( )ψ λ , ( )β λ , and the 

transformation matrix τ are the inputs. Here, each coefficient 
of ( )ψ λ  and ( )β λ  is updated using values in τ  as shown in  
Fig. 2. For ease of computation, τ  is divided into four parts.

Figure	1.	 Data	flow	between	functions	of	a	block	version	of	the	
berlekamp-Massey algorithm.

The three functions invoked L times in algorithm 1 are 
described as follows. Figure 1 shows the data flow between 
these three algorithm functions.

2.3.1 Discrepancy Finder
This function takes the polynomial matrices ( ), ( ),η λ ψ λ  

and ( )β λ  as inputs. It first finds the coefficient of iλ  from 
the product of ( )ψ λ  and ( )η λ . The resulting coefficient is a 
matrix of size m m× . This coefficient forms the first m rows 
of the discrepancy matrix ∆ . Similarly, the coefficient of iλ  

from the product of ( )β λ  and ( )η λ  is stored in the following 
m rows of ∆ . Hence, ∆  is the output of this function.

Figure 2. Updation of polynomial matrices ( )ψ λ , ( )β λ  using 
τ

3. HYbrId PArALLEL SEQUENcE GENErAtIoN 
ANd SoLUtIoN EVALUAtIoN
The sequence generation part of the algorithm is highly 

compute-intensive as it involves multiple matrix-matrix 
and matrix transpose-matrix multiplications to generate the 
sequence

              
i T i 2NU A V,1 i

m
η = ≤ ≤ + ε                       (11) 

  

where, N m
2U,V F ×∈  and N N

2A F ×∈ . Here, the sheer size of 
matrix A  raises the primary difficulty. With reference to the data 
from the factorization of RSA-768, it is known that the matrix 
generated after the Sieving step had 48 billion rows and 35 billion 
columns which, after filtering, got reduced to 193 million rows 
and columns with only 144 nonzero entries per row in average. 
Also, from the RSA-130 challenge, we know that matrix had 3.5 
million rows and columns with an average of 39.4 nonzero entries 
per row. It is a waste of memory if we store such large matrices in 
their standard form, so we store them in a compressed format, as 
described in the following subsection.

3.1 Sparse Matrix representation
We chose a modified Compressed Sparse Row (CSR) format 

to store our large sparse matrix A. In Fig. 3, we have taken the 
example of a small, sparse square matrix with elements over GF(2) 
to understand this format. In this modified CSR format, the first 
element in each row represents the number of nonzero values (1s 
in our case) in the respective sparse row. After the first element, the 
column indices of those nonzero values are stored. We store all 
these values in hexadecimal. Unlike the normal CSR format, 
we do not need to store any values because the only nonzero 
value in GF(2) is 1. Thus, the amount of memory required to 
store large sparse matrices in these formats directly depends 
on the number of nonzero values in these matrices. The larger 
the sparsity of a matrix, the lesser the memory required to save 
such a matrix.
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3.2 Sparse Matrix-Matrix Multiplication
The matrices U  and V  are stored in chunks or blocks of 

64-bits in hexadecimal format, as shown in Fig. 4. Thus, to find 
the Sparse Matrix-Matrix (SpMM) product AV , which will be 
a matrix of size N m×  (where m  is a multiple of word size, i.e., 
64 or 128), we first read the elements of matrix A  in each row. 
Each of these elements signifies the column indices of nonzero 
values. Then only the corresponding rows of each word-size 
block of matrix V are XORed to generate corresponding word-
size blocks of matrix AV . Figure 5 shows an example of an 

SpMM multiplication where m 128=  and i ix , y  are 64-bit 

words in GF(2) where i [1, N]∈ . This implies that XORing 
one 64-bit size block of V generates the results for 64 columns 
of each row of matrix AV in just one operation cycle.

requirement is that those computational operations should be 
independent of each other. In SpMM multiplication explained 
above, we can easily identify that the computation of all rows 
of AV are independent operations; therefore, they can be 
computed in parallel. Thus, we first scatter the rows of matrix 
A among the chosen number of MPI processes of multiple 
cluster nodes using MPI_Scatter. Matrix V is broadcasted 
to all the MPI processes using MPI_Bcast, and further, its 
memory allocation is done at each of the GPUs using CUDA_
Malloc and CUDA_Memcpy. Then using a CUDA kernel, we 
further distribute the rows of matrix A available with each MPI 
process among the GPU cores of the GPU associated with it to 
compute respective rows of AV . Figure 6 shows the parallel 
distribution of rows of matrix A for parallel computation of 
AV among three cluster nodes, each of which has 4 GPUs; 
thus, 12 MPI processors are launched.

Figure	3.	Modified	CSR	format	to	store	sparse	matrices.

Figure 4. An example of matrix V  of size N 128×

3.3	 Hybrid	Parallel	Sparse	Matrix-Matrix	Multiplication
We have parallelized this SpMM multiplication on a 

multinode multi-GPU platform. The number of MPI processors 
launched on each node is chosen to equal the number of 
GPUs available on each node. By doing this, we can equally 
distribute the load among all the GPUs available on a node. 
Thus, with each GPU, we associate one MPI processor. The 
MPI node local rank of each process on each node is used to 
bind that process to the appropriate GPU of that node. We pass 
the node’s local rank to the cudaSetDevice() function to set the 
device (GPU) on which the active host thread should execute 
the device code.

To parallelize any operations, the most important 

Figure 5. Word-wise Xoring of rows of V based	 on	 column	
indices of A

3.4 Matrix transpose-Matrix Multiplication
To obtain UTAV, we word-wise XOR all those rows of 

matrix AV, for which the corresponding values in the transposed 
matrix UT are 1. The challenging part in this implementation is 
to read the transpose of matrix U of size Nxm. To form the first 
row of UT, we read the leftmost bit of each row of matrix U by 
masking. Subsequently, we read the second leftmost bit of each 
row and so on. Thus, we read a non-transposed matrix so that it 
will be equivalent to its transposed matrix, as shown in Fig. 7.

Figure	 6.	 Equal	Distribution	 of	 rows	 of	 A  among 3 Nodes, 
each having 4 GPUs: A total of 12 MPI processors 
are launched.

Figure 7. Matrix transpose-Matrix Multiplication

3.5 Parallel Matrix transpose-Matrix Multiplication
Matrix U is  stored in memory, just like in Fig. 4. To    

parallelize  this  matrix  transpose-matrix multiplication, we  equally 

distribute matrices m m hl hr

m m ll lr

I 0( ) ( )
( ) 0 I ( )

τ τψ λ ψ λ      
=       β λ λ τ τ β λ      

  
 
and AV  row-wise and scatter it across all MPI processors 
using MPI_Scatter. We use these Uis and AVis  (where i  is 
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equal to the MPI process rank) to generate T
i iU AVs  at each 

MPI processor, as shown in Fig. 8. Each MPI processor 
invokes a CUDA kernel, which further distributes U  and 
AV by assigning the indices of rows of U  to the GPU cores 
using their threadId and blockId. Each T

i iU AVs  are XORed 
using MPI_BXOR operation in MPI_Reduce to give the final 
required product TU AV.

and performance of the parallel sequence generation part of 
the sparse linear solver across multiple multi-GPU nodes. We 
have used this tool for benchmarking an HPC cluster, which is 
a hybrid CPU-GPU cluster where each node is embedded with 
4 Tesla V100 GPUs. 

4.1 complete Solver Performance on dGX Station
In our experiment, the input matrices are the filtered 

matrices obtained after the Sieving step of the Number Field 
Sieve for cryptanalysis of RSA-130, RSA-140, and RSA-170. 
Table 1 shows the detailed timings of all three steps of our 
sparse solver for the three input matrices over an NVidia DGX 
station. The DGX station in this experiment has 4 NVidia Tesla 
V100 GPUs and 256 GB system memory with 500 TFlops of 
supercomputing performance. Its clock speed is 2.20 GHz. 
Each V100 GPU has 5120 CUDA cores with 16 GB device 
memory and a peak memory bandwidth of 900 GB/s. The 
versions of the software used are OpenMPI 2.1.1 and CUDA 
10.1. 

We distributed the implementation of the sequence 
generation step of BWA over 1, 2, and 4 V100 GPUs using 
both MPI and CUDA. It can be noted from Table 1 that the 
time for the parallel solution evaluation step is approximately 
half of the time for the parallel sequence generation step. So we 
executed the parallel solution evaluation step on only 4 V100 
GPUs of the DGX station. Both these steps involve multiple 
matrix-matrix and matrix transpose-matrix multiplications 
with some additional tasks. The cost of these matrix-matrix 
and matrix transpose-matrix multiplications dominates over all 
other tasks. Thus, the intense parallelization of these tasks gives 
us even better results with the increase in the matrix size. 

Our experimental results show good speedup and parallel 
efficiency of the highly parallelizable sequence generation step 
after parallelization over up to 4 V100 GPUs. Table 1 shows 
the parallel efficiency and speedup on GPUs for three input 
matrices such that

                  

1

x

TPE(x)
x T

=
×                                          

(12) 
    

                  

1

x

TSpeedup(x)
T

=                        (13) 
  

where, PE(x)  is the parallel efficiency on x  GPUs for the 

given matrix and 1 xT ,T  are the execution times on 1  and x  
number of GPUs, respectively. As seen in table 1, the speedup 
compared to parallelization over 1 GPU goes from 1.6 to 2.8 
when we parallelize the sequence generation step of BWA on 
2 and 4 V100 GPUs, respectively. The parallel efficiency drops 
from 82% to 71% when using 2 and 4 V100 GPUs, respectively, 
for the cryptanalysis of RSA-170. 

The minimal polynomial matrix computation in BWA 
requires large system memory, which is available on the DGX 
station. This step is executed sequentially, and the time required 
to find the minimal polynomial matrix grows quadratically 
with the dimensions of the matrix. The time complexity of the 
complete algorithm is 2O(N )+ε  where 0 1< ε ≤ .15

Figure	8.	 Equal	Distribution	of	rows	of	U	and	AV	among	3	MPI	
processors. Each T

i iU AVs  computed in corresponding 

GPUs where i =  MPI process rank. the 3 T
i iU AVs  

are	then	XORed	to	compute	final	 TU AV.

3.6 Iterative Sequence Generation
We have described how two types of multiplications 

involved in generating sequence (11) can be parallelized. 
However, we need to iteratively call these two multiplication 
CUDA kernels L  times to generate the complete sequence. 
The only difference in each iteration is that the matrix AV  
computed in the earlier iteration becomes matrix V for the 
next iteration. Thus after every iteration, we gather all AVis  
(where i  is equal to the MPI process rank) generated with 
each MPI process to a single MPI process using MPI_Gather 
and then broadcast it as matrix V  for the next iteration using 
MPI_Bcast. 

3.7	 Hybrid	 Parallel	 Solution	 Evaluation	
The solution evaluation step in BWA also involves 

repetitive sparse matrix-matrix multiplications. Thus, we 
compute all these products in a hybrid parallel manner using 
MPI and CUDA on a multi-node multi-GPU platform as 
described in the previous subsection 3.3.

4. EXPErIMENtAL ANALYSIS
As described previously, the sparse linear solver comprises 

three main steps: (a) Sequence Generation, (b) Minimal 
Polynomial Matrix (MPM) Computation, and (c) Solution 
Evaluation. All the matrix-matrix and matrix transpose-
matrix multiplications involved in the first and third steps 
are parallelized. As the first step involves the most number of 
such product computations, therefore it is highly scalable and 
gives the best results after parallelization. Detailed timings of 
the complete solution of some NFS matrices are compared in 
subsection 4.2 using up to 4 NVidia V100 GPUs of a DGX 
station. In subsection IV-B, we further discuss the scalability 
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4.2	 Performance	of	Hybrid	Parallel	Sequence	Generation	
on HPc cluster
We have parallelized the sparse linear solver over GF(2) 

in two ways to compare its performance and scalability. In 
the first method, we parallelize the system over multiple CPU 
ranks on multiple cluster nodes using only MPI. In the second 
method, we parallelize it over multiple GPUs available on 
multiple cluster nodes using CUDA and MPI. Each cluster 
node is embedded with 4 Tesla V100 GPUs, 32 CPU cores, 
and 192GB DDR4 RAM. Each of these GPUs has 5120 CUDA 
cores, 900 GB/sec memory bandwidth, and 16 GB VRAM. The 
clock speed of the cluster is 2.00GHz, and the network used is 
100Gbps EDR Infiniband Switch Fabric. The versions of the 
software used are CUDA 10.1 and OpenMPI 4.0.1. 

Figure 9 shows the performance and scalability comparison 
between the parallelization methods of the parallel sequence 
generation step for six sparse linear systems. The sizes of 

chosen square matrices go from 182  to 232  rows. These sparse 
matrices with entries over GF(2) are generated randomly, 
where we distribute some dependent rows across the matrix 
to ensure that it is always solvable. The average number of 
nonzero entries per row is chosen to be 40 . The difference 

in the range of timings of all six systems is so huge that we 
could not plot the observations in the same graph. Hence, 
natural logarithmic timings in seconds are used to plot the 
bar charts. Therefore, it can be understood that even a small 
difference in y-axis in figure 9 signifies significant timing 
differences for the various number of CPU ranks or GPUs 
as plotted on X-axis. It can also be noticed from figure 9 that 
there is a point for each system when adding more processors 
(GPU or CPU) does not improve the overall performance. 
This means that the solver for every system is scalable for 
only that many GPUs or CPU ranks for parallelism. 

Let us compare both the bar charts shown in Fig. 9. 
We can easily see that the least time taken to generate the 

sequence  iη  as in Eqn. (11) for any given system on any 
number of CPU ranks (as shown on the X-axis of (a)) is 
approximately more than twice that of the least time taken 
by GPUs as shown in (b). For instance, for matrix size 

23 232 2× , the least time to generate the parallel sequence 
using only MPI-level parallelization on 2048 CPU ranks 
spread over 64 nodes (32 CPU cores per node) is 27,421.88 
seconds. In contrast, the time taken for the same matrix using 
hybrid parallelism over 12 GPUs spread across three nodes 

Square Matrix
Size (N as in (Eqn. 7))

Average 
nonzero 
entries 
per row

Parallel Sequence Generation (s) MPM 
computation (s)

Parallel Solution
Evaluation (s)

  1 V100                 
  GPUSs

   2 V100
   GPUs

  4 V100
  GPUs

    cPU        4 V100
       GPUs

rSA-130 2,097,152 92 10, 625 6,627
Speedup=1.6
PE = 80 %

3,968
Speedup=2.7
PE= 67 %

   29,673
   = 8h15m

    1,926

rSA-140 4,194,304 82 38, 528 24,168
Speedup=1.6
PE = 80 %

14,336
Speedup=2.7
PE= 67 %

   111,933
   = 31h5m

    7,056

rSA-170 8,388,608 117 206,336 125,888
Speedup=1.6
PE = 82 %

72,832
Speedup=2.8
PE= 71 %

   398, 998
   = 110h50m

    36,216

Table	1.	 Detailed	timings	of	sparse	solver	over	an	nvidia	dgx	v100	station.	The	results	are	with	 m 128=  such that N m
2U,V F ×∈  as 

in Eqn. (7)

Figure	9.	 Solver	Performance	with:	 (a)	CPU-level	 Parallelization	 (b)	Multi-node	Multi-GPU	Parallelization	 (Natural	Logarithmic	
timings).

	 	 	 	 	 	 	 	 	 (a)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)
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(each having 4 V100 GPUs) is only 13,075.2 seconds. Figure 
10 and Fig. 11 show the exact timings for the parallel sequence 
generation step of the solver for the six square sparse systems 
of linear equations using both parallelization methods on the 
HPC cluster.

Figure 12 plots the parallel efficiency on GPUs for square 
matrices with 218 to 222 rows as in Eqn. (12). As discussed 
earlier, each node of the GPU cluster has 4 V100 GPUs; 
therefore, we use a single node to work on up to 4 GPUs, while 
two nodes for up to 8 GPUs, and for up to 12 GPUs, we use 
three nodes and for 16 GPUs we use four nodes of the cluster. 
It can be seen from figure 12 that for a matrix with 218  rows, 
we obtain a parallel efficiency of 94.07 % on 2 V100 GPUs, 
which drops to 72.29 % and to 52.28 % on using 4 and 8 V100 
GPUs, respectively. 

Also, from Fig.12, it can be seen that for a matrix with 

Figure 10. Solver Performance with cPU-level Parallelization for square matrices of size: (a) 218 and 219 (b)	 220 and 221 and  
(c)222 and 223.

                                        	(a)																																																																																																									(b)

                                                                                                      (c)

222 rows, we obtain a parallel efficiency of 94.4 % on 2 V100 
GPUs, which is maintained to be 94 % and 94.4 % at 4 and 
8 V100 GPUs, respectively. This parallel efficiency drops to 
72.74% at 12 V100s and further drops to just 49.34% at 16 
GPUs. This proves that if we increase the problem size, we 
can saturate more GPUs, i.e., 12 or 16 V100s. We could not 

calculate the parallel efficiency for 232  problem size because 
it took considerable time to solve on a single GPU. 

The hybrid parallel sequence generation using both 
parallel implementation methods can be later verified by using 
those output sequences as inputs for the subsequent modules 
of the Block Wiedemann Algorithm. If the solution of the 
input matrix is obtained, then we can say that the parallel 
implementation is verified. Hence, we could use this parallel 
sequence generation tool for the benchmarking of the given 
hybrid cluster.
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                                        	(a)																																																																																																									(b)

                                                                                                      (c)
Figure 11. Solver Performance with multi-node multi-GPU (V100) parallelization for square matrices of size: (a) 218 and 219	 (b)	220 

and 221, and (c) 222 and 223.

Figure	12.	Parallel	 efficiency	 on	GPUs	 for	 square	matrices	 of	
size 218 to 222.

5. coNcLUSIoNS
This paper demonstrates the step-wise hybrid parallel 

implementation of the Block-Wiedemann Algorithm(BWA) to 
find the solution of a large sparse system of linear equations 
over GF(2). This linear solver can be used in cryptanalysis 

applications like cryptanalysis of RSA using Number Field 
Sieve. The solver exploits multiple levels of parallelism on a 
multi-node, multi-GPU hybrid cluster. CUDA and MPI are used 
for the parallelization of the solver. The experimental results 
compare the parallelization of the solver over multiple CPU 
ranks spread over multiple nodes with its parallelization over 
multiple GPUs (V100s) spread over multiple cluster nodes. 
The timings and performance obtained by GPU-accelerated 
parallelization of the solver are much better than the other 
parallelization method. It is observed that the least time taken 
by GPUs to parallelize a task is less than half of the time taken 
by any number of CPU ranks. The proposed solver shows a 
parallel efficiency of around 94 % on 2, 4, and 8 Volta V100 
GPUs. This parallel efficiency drops to 72.74% and 49.34% 
at 12 V100s and 16 V100 GPUs, respectively. Thus, we can 
say that the solver is highly scalable over multiple GPUs 
spread across multiple cluster nodes and effectively utilizes the 
device’s memory bandwidth.

We also show the solution of three sparse systems for 
cryptanalysis of RSA-130, RSA-140, and RSA-170, where the 
highly parallelizable modules of Block Wiedemann algorithm 
give a speedup of 2.8 after parallelization on 4 V100 GPUs of 
NVidia DGX station as compared to that over 1 GPU. Our future 
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work includes investigating methods to offload those steps of 
the Block Wiedemann Algorithm (Minimal Polynomial Matrix 
Computation) to the GPU, which have not been parallelized 
before.
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