
Revised 18 November 2005

Defence Science Journal, Vol. 57, No. 2, March 2007, pp. 279-286
2007, DESIDOC

279

Implementing Secure Group Communications using Key Graphs

Ch. Aswani Kumar, R. Sri Lakshmi, and M. Preethi
Vellore Institute of Technology, Vellore–632 014

ABSTRACT

While the technical issues of securing unicast communications for client-server computing
are fairly well-understood, the technical issues of securing group communications are not. The
existing approach to improve the scalability is to decompose a large group of clients into many
subgroups and employ a hierarchy of group security agents. In this paper, the secure group
communications using key graphs and the implementation of a different hierarchical approach
to improve the scalability and secure group communication using key graphs has been presented.

 Keywords: Data encryption, group communication, key graphs, scalability of secure group
communication

1 . INTRODUCTION

Many emerging network applications are based
on group communication models. In particular,
these require packet delivery from one or more
authorised senders to a large number of authorised
receivers. In the internet, multicast has been
used effectively to provide an efficient, delivery
service to large groups. In the near future,
providing confidentiality, authenticity, and integrity
of messages delivered among group members,
will become a critical networking issue1. Wong1,
et a l . , presented the issues in secure group
communications using key graphs.

Since every point-to-multipoint communication
can be represented as a set of point-to-point
communication, the current technology base for
securing unicast communications can be extended
in a straightforward manner to securing group
communications. However such an extension is
not scalable to large groups.

For group communications, the server distributes
to each member a group key to be shared by all
the members of the group1. For a group of n members,
distributing the group key securely to all members
requires n messages encrypted with individual keys2.
Each such message may be sent separately via
unicast. Alternatively, the n messages may be sent
as a combined message to all group members via
multicast. Either way, there is a communication
cost proportional to the group size, n. In a point-
to-point session, the cost of session establishment
and key distribution are incurred just once, at the
beginning of the session. But a group session may
persist for a relatively longer time with members
joining and leaving the session. Consequently, the
group key should be changed frequently. To achieve
a high level of security, the group key should be
changed after every join and leave so that a former
group member has no access to the current
communications and a new member has no access
to the previous communications1.

SHORT COMMUNICATION

280

DEF SCI J, VOL. 57, NO. 2, MARCH 2007

A trusted server creates a new group key
after every join and leave. After a join, the new
group key can be sent via unicast to the new
member encrypted with its individual key and
via multicast to existing group members encrypted
with the previous group key. Thus, changing the
group key securely after a join does not involve
much work. After a leave, however, the previous
group key can no longer be used and the new
group key must be encrypted for each or the
remaining group members using their individual
keys. Changing the group key securely after a
leave incurs computation and communication costs
proportional to n, the same as initial group key
distribution1. That is, large groups whose members
join and leave frequently pose a scalability problem.
In this paper, implementat ion of the secure
group communicat ions using key graphs has
been presented.

2. SECURE GROUPS AND KEY GRAPHS

A secure group is a triple (U, K, R),
where U is a finite and non-empty set of users;
K is a finite and non-empty set of keys; R is a
binary relation between U and K, R

U

K,
called the user-key relation of the secure group.
User u, has key k if and only if (u, k) is in R.
A key graph is a directed acyclic graph G, with
two types of nodes: U-nodes representing users
and K-nodes representing keys1,3. Each u-node
has one or more outgoing edges but no incoming
edge. Each k-node has one or more incoming
edges. If a k-node has incoming edges only and
no outgoing edge, then this k-node is called a
root. Figure 1 shows a key graph. Given a key
graph G, it specifies a secure group (U, K, R)
as follows3.

• There is a one-to-one correspondence between
U and the set of u-nodes in G.

• There is a one-to-one correspondence between
K and the set of k-nodes in G.

• (u, k) is in R if and only if G has a directed
path from the u-node that corresponds to U to
the k-node that corresponds to K.

2.1 Re-keying Strategies and Protocols

A user who wants to join or leave a secure
group sends a join or leave request to the key
server, denoted by s. For a join request from user
u, it is assumed that group access control is performed
by server s using an access control list provided
by the initiator of the secure group1,3. A join request
initiates an authentication exchange between u and
s. If user u is not authorised to join the group,
server s sends a join-denied reply to u. If the join
request is granted, it is assumed that the session
key distributed as a result of the authentication
exchange will be used as the individual key k

u
of u.

After each join or leave, a new secure group
is formed. Server s has to update the group's key
graph by replacing the keys of some existing k-nodes,
deleting some nodes (in the case of a leave), and
adding some k-nodes (in the case of a join). It then
securely sends rekey messages containing new
group/subgroup keys to users of the new secure
group1,4.

2.2 Encryption and Decryption Cost

An approximate measure of the computational
costs of the server and users is the number of key
encryptions and decryptions required by a join/
leave request. Let n be the number of users in a
secure group. For each join/leave request, the user
that requests the join/leave is called the requesting
user, and the other users in the group are nonrequesting
users. For a key tree, d and h denote the degree
and height of the tree, respectively. In this case,
for a nonrequesting user u, the average cost of u

Figure 1. Key graph.

281

ASWANI, et al.: SECURE GROUP COMMUNICATION USING KEY GRAPHS

for a join or a leave is less than d/(d-1), which is
independent of the size of the tree4,5. Assuming
that a request is equally likely to be a join or a
leave, and the group size n is large, the average
cost per request is given in Table 1 for the server
and a user in the group. An approximate measure
of the computational costs of the server and users
is the number of key encryptions and decryptions
required by a join/leave request1,2. From Table 1,
it is obvious that complete key graphs should not
be used. On the other hand, scalable group key
management can be achieved using tree key graphs.

3. IMPLEMENTATION

The existing approach to improve scalability is
to decompose a large group of clients into many
subgroups and employ a hierarchy of group security
agents. In this work, a different hierarchical approach
was implanted to improve the scalability1. Instead
of a hierarchy of group security agents, a hierarchy
of key was employed. The process began by formalising
the notion of a secure group as a triple (U, K, R),
where U denotes a set of users, K denotes a set
of keys, and R

U K denotes a user-key relation,
which specifies keys held by each user in U. In
particular, each user is given a subset of keys,
which includes the user's individual key, and a group
key. It was then illustrated how organising the keys
in K into a hierarchy and giving the users additional
keys can improve scalability of group key management5,6.

Let there be a trusted server responsible for
group access control and key management. In particular,
the server securely distributes keys to group members
and maintains the user-key relation. To illustrate
the approach, the following simple example of a
secure group with nine members partitioned into
three subgroups has been considered: {u

1
, u

2
, u

3
},

{u
4
, u

5
, u

6
}, and {u

7
, u

8
, u

9
}. Each member is

given three keys: Its individual key, a key for the
entire group, and a key for its subgroup. Suppose

that u
1
 leaves the group; the remaining eight members

form a new secure group and require a new group
key; also, u

2
and u

3
form a new subgroup and

require a new subgroup key. To send the new
subgroup key securely to u

2
 (u

3
), the server encrypts

it with the individual key of u
2

(u
3
). Subsequently,

the server can send the new group key securely
to members of each subgroup by encrypting it with
the subgroup key. Thus, by giving each user three
keys instead of two, the server performs five encryptions
instead of eight. As a more general example, suppose
the number n of users is a power of d, and the
keys in K are organised as the nodes of a full and
balanced d-array tree. When a user leaves the
secure group, to distribute new keys, the server
needs to perform approximately dlogd(n) encryptions
(rather than n-1 encryptions). For a large group,
say, 100 000, the savings can be substantial.

With a hierarchy of keys, there are different
ways to construct rekey messages and securely
distribute these to the users7. Three rekeying strategies:
User-oriented, key-oriented, and group-oriented were
investigated.

The idea of user-oriented rekeying is that for
each user, the server constructs a rekey message
that contains precisely the new keys needed by the
user and encrypts these using a key held by the
user. In key-oriented approach, each new key is
encrypted individually (except keys for the joining
user). For each k-node x whose key has been
changed, say, from k to k', the server constructs
two rekey messages. First, the server encrypts the
new key k' with the old key k and sends it to
userset (k), which is the set of users that share
k. All of the original users that need the new key
k' can get it from this rekey message. The other
rekey message contains the new key k' encrypted
by the individual key of the joining user and is sent
to the joining user. In group-oriented approach, the
server constructs a single rekey message containing
all the new keys. This rekey message is then
multicasted to the entire group. Clearly, such a
rekey message is relatively large and contains
information not needed by individual users. The
join/leave protocols have been designed and specified
based upon these rekeying strategies.

Star Tree Complete

Cost of server n/2 (d+2)(h-1)/2 2n

Cost of a user 1 d/(d-1) 2n

Table 1. Average cost per request

282

DEF SCI J, VOL. 57, NO. 2, MARCH 2007

3.1 Key Server

Each secure group has a trusted key server
responsible for generating and securely distributing
keys in K to users in the group. Specifically, the
key server knows the user set U and the key set
K and maintains the user-key relation R. Every
user in U has a key in K, called its individual key,
which is shared only with the key server and is
used for pairwise confidential communication with
the key server. There is a group key in K, shared
by the key server and all users in U. Each user
if wants to send messages confidentially to other
members of the group can use the group key8, 9.
Figures 2 and 3 present implementation of a key
server and client. The key server performs the
following actions.

(a) Creates a new u_node for the new user. It
also creates a new k_node to represent the
user's individual key ku. It then finds an existing
k_node in the key tree, generates k_nodes
from that level to the current level and attaches
k_node ku to the last node in that path as its
child. All the keys from the joining point to the
root are changed.

(b) Upgrades the key tree by deleting the u-node
for user u and the k-node for its individual key
from the key tree. If all the users in the subgroups
to which the deleted user belongs, have already
left the group, then the k_nodes denoting those
subgroups are also deleted. The parent of the
recently deleted k_node is the leaving point.
All the keys from the leaving point to the root
are changed. Figure 4 presents the key server
changing the keys after each client joins and
leaves. Figure 5 shows the messages sent by
the key server to a client.

(c) Places the number of recently deleted u_node
in a queue so that when a new user joins the
group, this location can be allotted. Also allocates
nodes (both u_node and k_nodes) at that position
to the new user, when a new user joins the
group and if there are any holes in the key
tree, the keys from the joining point to the root
are changed.

(d) Constructs user set of all the keys in the key
tree, the key set of all the users holding a
particular key, a message containing the individual
key of a particular user.

(e) Generates two seeds for random number generation
using the current time of the machine in which
the server application is running. It selects one
random number and then manipulates it as a
64-bit number. Also it divides the message into
64-bit blocks.

Figure 2. Key server.

Figure 3. Client window.

283

ASWANI, et al.: SECURE GROUP COMMUNICATION USING KEY GRAPHS

(f) It receives incoming connections. Creates a
new socket for new user in the group and
accepts the user in the group. Receives all the
messages sent by the users. If the user is new,
then it interprets the "NEW" message, adds
the user information to the end of a linked list,
adds the user name to a list of names maintained
by the server, and sends the KEYSET and
USERSET messages to all the current users
in the group. If the message sent by a client
is for the entire group, it creates copies of the
message and sends to all the users in the
group. If the message is only for a particular
subgroup, it sends the message only to users
of that particular subgroup.

(g) Sends messages from the server to all the
clients in the group by encrypting, using the
group key. When a user joins or leaves the
group, it sends the current list of users to all
the members in the group. Sends messages to
users of a particular subgroup by encrypting
it using the subgroup key.

(h) Deletes the socket held by the deleted user,
removes the user's information from the linked
list, and also deletes the name from the list

maintained by the server. It then sends the
KEYSET and USERSET messages to the
remaining users in the group.

3.2 Network Communication

The network communication was implemented
using socket program. The client receives messages
from the server and all other users in the
group 10, 11. Also the client sends messages to the
server and all other users in the group by encrypting
using the group key. If the message is to be sent
to a particular subgroup the group number is obtained
and it is encrypted using that particular subgroup,
key and then it sends the messages to users in that
particular subgroup. Sockets will be either in listen
mode or connect mode12.

In our prototype implementation, rekey messages
have additional fields, such as, subgroup labels for
new keys, server digital signature, message integrity
check, etc. Using common values generation, a
prime q, another much larger prime p = 2nq+1,
(where n is random) and a generator g have been
generated. Each individual user randomly generates
its own private key x < q and makes available a
public key y = gx mod p. Figure 6 presents generation

Figure 4. Key server changes the keys after each client joins
or leaves.

Figure 5. Messages sent by the key server to a client.

284

DEF SCI J, VOL. 57, NO. 2, MARCH 2007

of public and private keys for DSA algorithm. The
security of the system depends on the sizes of p
and q (at least 512-bit and 160-bit respectively).
On the client side, the message digest of the received
message is computed13-15. From this digest, the
verification function is computed using the public
key. If the user is verified, then the identity of the
message is established.

The system has been implemented using Microsoft
Visual C++, MIRACL (multiprocessing integer and
real arithmetic C/C++ Library) and on the platform
Windows 2000. The visual aspect of Visual C++
is used for designing the user interface of a program.
MIRACL is a big number library, which implements
all of the primitives necessary to design big number
cryptography into the real-world application. It is
primarily a tool for cryptographic system implementers.

4 . CONCLUSIONS

To address the scalability problem of group
key management, key trees or graphs were used.
On the server side, group-oriented rekeying provides
the best performance. On the client side, user-
oriented rekeying provides the best performance,
with key-oriented rekeying in the second place,
and group-oriented rekeying in the third place. To
simplify protocol design, key distribution by a central
server is used in the work. However, centralised

approaches may not be suitable for many applications,
where participants wish to generate group keys by
themselves so that they can be sure of the freshness
and randomness of the group keys.

REFERENCES

1. Wong, C.K.; Gouda, M. & Lam, S.S. Secure
group communications using key graphs. IEEE/
ACM Trans. Networking, Feb. 2000, 8, 16-30.

2. Wong C.K. & Lam, S.S. Digital signatures for
flows and multicasts. In Proceedings of the
IEEE ICNP'98, October 1998. Revised version
in IEEE/ACM Trans. Networking, August 1999,
7, 502-13.

3. Bird, R.; Gopal, I.; Herzberg, A.; Janson, P.;
Kutten, S.; Molva, R. & Yung, M. The kryptoknight
family of lightweight protocols for authentication
and key distribution. IEEE/ACM Trans. Networking,
February 1995, 3, 31-41.

4. Mittra, S. Iolus: A framework for scalable secure
multicasting. In Proceedings of the ACM
SIGCOMM'97, 1997, pp. 277-88.

5. Cormen, T.H.; Leiserson, C.E. & Rivest, R.L.
Introduction to algorithms. Cambridge, MA, MIT
Press, 1989.

Figure 6. Generation of public and private keys for DSA algorithm.

285

ASWANI, et al.: SECURE GROUP COMMUNICATION USING KEY GRAPHS

6. Harney H. & Muckenhirn, C. Group key
management protocol (GKMP) architecture.
RFC 2094, July 1997.

7. Yang, Wen-Her & Shich, Shiuh-Pyng. Secure
key agreement for group communications.
Department of Computer Science and Information
Engineering, National Chiao Tung University,
Hsinchu, Taiwan.

8. Wallner, D.; Harder, E. & Agee, R. Key
management for multicast: Issues and architectures.
RFC 2627, June 1999.

9. Poovendran, R. Key management for secure
multicast communications. University of Maryland,
1999, (PhD Thesis).

10. Ezzell, Ben. Windows 2000 programming with
Visual C++. Publications, 2000.

11. Chapman, Davis. Visual C++ in 21 days. Techmedia
Publications, 1998.

12. Tanenbaum, Andrew S. Computer networks.
Prentice Hall of India Pvt Ltd, 2001.

13. Rhee, Man Young. Cryptography and secure
communications. McGraw Hill Publications, 1994.

14. Stallings, William. Cryptography and network
security: Principles and Practice. Prentice Hall
Inc, 2000.

15. Davis, Carlton R. IPSec securing VPNs. RSA
Press, Tata McGraw-Hill Edition, 2001.

Mr Aswani Kumar is a Lecturer in the Dept of Information Technology, Vellore
Institute of Technology, Deemed University, Vellore. He received Masters in Computer
Science from Nagarjuna University and presently pursuing his PhD. He has published
10 research papers in various international and national journals and conferences.
His research interests include Information retrieval, and computational intelligence.

Ms R. Sri Lakshmi received BTech (Information Technology) from the Madras
University. Presently, she is working as Assistant System Engineer, at the Tata
Consultancy Services, Chennai. Her research interests include: Computer networks,
network security and cryptography.

Ms M. Preethi received BTech (Information Technology) from the Madras University.
Presently, she is doing MS (Computer Science) from the California State University,
Los Angles, USA. Her research interests include: Security, and object-oriented
aided designing.

Contributors

286

DEF SCI J, VOL. 57, NO. 2, MARCH 2007

