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AbStrAct

Aerodynamic parameter estimation is critical in the aviation sector, especially in design and development 
programs of defense-military aircraft. In this paper, new results of the application of Artificial Neural Networks 
(ANN) to the field of aircraft parameter estimation are presented. The performances of Feedforward Neural 
Network (FFNN) with Backpropagation and FFNN with Backpropagation using Recursive Least Square (RLS) 
are investigated for aerodynamic parameter estimation. The methods are validated on flight data simulated using 
MATLAB implementations. The normalized Lyapunov energy functional has been used to derive the convergence 
conditions for both the ANN-based estimation algorithms. The estimation results are compared on the basis of 
performance metrics and computation time. The performance of FFNN-RLS has been observed to be approximately 
10% better than FFNN-BPN. Simulation results from both algorithms have been found to be highly satisfactory 
and pave the way for further applications to real flight test data.
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 1. INtroductIoN
The process of formulating a mathematical model that 

effectively describes and represents the characteristics of a 
dynamic system by using measurements from the system is 
known as parameter estimation.1-2 Estimation of parameters 
and system identification are very important for the design 
and development of aircraft control systems.3 The practice of 
determining the optimal values of coefficients and their partial 
derivatives of an airplane is critical as these coefficients help in 
flight testing-based data analysis and evaluation of the overall 
aircraft performance.2 System performance under all regimes 
may be tested by examining an airplane prototype and also 
by performing wind tunnel tests.4-6 Improved sensors, faster 
computational power, improvements in filtering and control 
theory have further contributed to successful flight vehicle 
system identification.7-8 The Kalman filter is the optimal 
algorithm for a linear state space model with Gaussian noise 
assumption.2 However, aircraft parameter estimation is a 
nonlinear filtering challenge due to the fact that the aerodynamic 
models are nonlinear and the measurements from the sensors 
are noisy and biased.

The Extended Kalman filter (EKF) is a commonly used 
method for dealing with nonlinear filtering and is frequently 
used to estimate aircraft aerodynamic parameters.9-11 The key 
strategy used to develop EKF was to linearize the nonlinear 
process or measurement model around the current mean value. 
However, this might lead to linearization errors. Unlike EKF, 

Unscented Kalman Filter (UKF) put forward an intuitive 
method by which the Gaussian density, that represents the prior 
and posterior pdfs, is represented using a set of deterministic 
points and corresponding weights.12 Several other algorithms 
for parameter estimation, such as iterated EKF and adaptive 
UKF, have also been developed.11,13

The application of Artificial Neural Networks (ANNs) 
in parameter estimation has been receiving a great deal 
of attention in recent times.14-16 However, their usage for 
aircraft parameter estimation is relatively less. ANNs 
constitute neurons and connections between nodes/neurons 
where each connection has its own weight/coefficient. 
Appropriate choice of ANN and proper training of weights 
can help in achieving good parameter estimation. The 
training of conventional ANN is mainly based on the theory of 
optimization. The ability of ANN to estimate any given function 
to a desired level of accuracy by selecting the right number 
of hidden layers and neurons makes them a viable tool for 
parameter estimation.17-20 Feedforward Neural Network 
(FFNN) and Recurrent Neural Network (RNN) are two 
forms of neural networks that can be used for estimation of 
parameters.

The FFNN is distinguished by its unidirectional signal  
flow.21 FFNN estimates parameters by identifying the optimal 
weights that provide the best fit for a particular training data-
set.22,23 FFNN uses backpropagation, which is a technique that 
is based on the classical gradient algorithm that is used to 
minimize the mean-squared error between the estimated output 
and the actual output for a given input to the network. RNN 
can be applied on many types of data that evolve with time as 
well as ordered sequences. FFNN and RNN have been used in 
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various control and identification problems.24-27

The requirement of stability analysis of the parameter 
estimation algorithms is very important. In the case of aircraft 
parameter estimation, stability analysis is critical, especially 
if the determined aircraft mathematical models are to be used 
for fault identification and other safety-critical applications. 
There are various methods by which stability analysis can be 
performed.28 The Lyapunov method is an established technique 
for studying the stability conditions of nonlinear systems29. 

Two types of FFNNs have been discussed in this paper, 
namely (i) backpropagation and (ii) backpropagation using 
Recursive Least Square Algorithm (RLS). The method 
convergence utilising the normalised Lyapunov energy 
functional (LEF) is investigated for both the variations of 
FFNNs. MATLAB implementations have been used to analyze 
the performance of the FFNN algorithms with realistically 
simulated data for estimation of aerodynamic parameters. 
The results are found to be highly satisfactory in terms of 
performance metrics. 

2. FEEdForwArd NEurAL NEtworK
FFNN is formed by neurons that are arranged into an 

input layer, one or more hidden layers and an output layer. The 
number of input and output variables in the given estimation 
problem determines the number of neurons in the input and 
output layers. There are various algorithms proposed to decide 
on the number of neurons in the hidden layer [30].  FFNN is 
normally used along with back propagation (BPN) to train 
neural networks. The basic goal of a FFNN-BPN is to learn 
and map the input–output relationship from the presented data 
for training. The forward step involves the computation of 
input weights, whereas the backward step deals with updating 
weights and computing errors. First, the training algorithms for 
the FFNNs are presented for the sake of completion, then the 
analytical results for deriving the conditions for the stability 
using the Lyapunov energy functional are derived. The 
parameter estimation procedure is outlined in Section 4.

2.1 FFNN-bPN
Consider the state space representation of a dynamical 

system as

                     x Ax Bu= +            (1) 
      

The main objective of parameter estimation is to find the 
numerical values of the elements of matrices A and B provided 

, x x  and u  are known.
[ ]0 ,v x u=  are the known inputs. 

The estimation of parameters procedure using the FFNN-
BPN can be divided into two steps. The first step is to train 
the network and hence obtain the weights of the network. The 
second step is to perform the delta method on the responses 
from the trained network to estimate the parameters. 

Training of the network is achieved by giving the measured 
data to the network, comparing it with the predicted response 
and backpropagating the error of the output layer to estimate 
the weights. 

The series of steps involved in training the network is as 
follows:  

I.  Initialize the weights randomly.
 1 11 12 1 [ , ,   , ]nW w w w= … , and 2 21 22 2 [ , ,   , ]nW w w w= …  are 

the guesstimates of the initial weights. These weights are later 
computed based on the recursive weight update rule given as1

 ( 1) ( ) ( ( ) ( 1))tW j W j ev W j W j+ = + µ + Ω − −               (2) 
     
where µ  is the learning rate, e  is the error computed in 
each step and Ù  is the momentum constant which is used to 
expedite the convergence of the algorithm by smoothing the 
weight changes.

II.  Calculate the intermediate vectors using available data.
 1y  is an intermediate vector between the input and hidden 

layer formed by combining the weights and known inputs.

            1 1 0 1  by W v W= +            (3)
       

       ( )1 1v f y=                                                      (4)

       
      The input to the hidden layer is 1v  and the activation 
function applied on the intermediate values is ( )1f y

             
( )

1

11
1   
1  

y

y

ef y
e

−λ

−λ

−
=

+
           (5)

       
        λ   represents the sigmoid slope parameter.

The intermediate vector 2  y between the hidden and 
output layers and the vector output layer 2  v is computed as

              2 2 1 2 by W v W= +                                        (6)
       

         ( )2 2v f y=               (7)
      

III. Evaluate the error based on data from steps I and II.
Consider the quadratic cost function

                     1 
2

TE ee=             (8) 
      
where 2 e x v= −

Since, the rate of change in the values of parameters with 

respect to time , dW
dt

is in the negative direction of the gradient 

of the cost function with respect to the parameter ( )E W
W

∂
∂

  
( ) ( )

 
E WdW t

dt W
∂

=−µ
∂

                         (9) 
       
  

Using Eqns. (6), (7) and (8)

  

'
2 1

2

 TE v ev
W
∂

=−
∂

         (10) 
       
                   

'
2v  is the derivative of the activation function and can be 

computed as follows:
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  ( )
2

2

'
2 2
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1  
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y

ev
e

−λ

−λ

λ
=

+
          

(11)

The output layer error is denoted by 2  be and is given as

                     
'

2 2  be v e=           (12) 
    
IV. Update the weights.

From Eqn. (2) the weight updates for the output layer is 
expressed as

2 2 2 1 2 2( 1) ( ) ( ( ) ( 1))T
bW j W j e v W j W j+ = + µ + Ω − −      (13)

The back propagated error of the hidden layer and the 
weight update for 1W

                            
'

1 1 2 2  T
b be v W e=          (14) 

       

where '
1v  is the derivative of the activation function with 

respect to 1y

1 1 2 0 1 1( 1) ( ) ( ( ) ( 1))T
bW j W j e v W j W j+ = + µ + Ω − −       (15) 

                          
V.  The data is then presented again and the updated weights 

from the previous iteration is used. This process continues 
until convergence is reached. 

Once the network is trained, the predicted responses from 
the network are perturbed one by one in order to estimate each 
parameter. This is called the Delta method. 

2.2 FFNN-bPN using recursive Least Square Algorithm
Feedforward Neural Network with Backpropagation using 

Recursive Least Square (FFNN-RLS) uses an enhanced form 
of the backpropagation technique. The conventional approach 
(section 2.1) minimises the mean-squared error with respect to 
the weights. Here, the algorithm minimizes the mean-squared 
error between the expected output and observed output with 
respect to the summation outputs1,31; and Kalman filter gain and 
covariance are computed in each layer to update the weights.

The first two steps, I and II, in the algorithms are the same 
as FFNN-BPN. Next, the Kalman filter equations are computed 
as follows:

The updates for filter gain jK  and covariance matrix jP  
(j-for each layer) are given as:

  ( ) 1

1 1 1  j j j j j j jK P v f v P v
−

− − −= +        (16) 
                            

  

1 
 j j j j

j
j

P K v P
P

f
−−

=
       

 (17) 

        Here jf  represents the forgetting factor of the thj  layer.

The modified output error 2  be and the back propagation 

inner layer error 1be  is calculated in a similar way as FFNN-
BPN Eqns. (12) and (14).

The weight updates for the output layer is given as:

       ( ) ( ) ( )2 2 2 21 TW j W j d y K+ = + −                          (18)
       
where, d is the summation of output and is calculated by using 
the inverse function as

  

1 1 
1

xd ln
x

+
=

λ −



         (19) 

                 
Here λ  is the sigmoid slope parameter and x  is known 

as given in Eqn. (1).
The weight updates for the hidden layer is given as

           ( ) ( )1 1 1 11  T
bW j W j e K+ = +µ         (20)

       
        The updated weights are used and the algorithm is repeated 
till the desired convergence is achieved. 

As explained in section 2.1, the delta method is used to 
obtain the parameters. 

The major difference between the two algorithms is in 
the method of backpropagation of errors. As FFNN-RLS 
uses Kalman gain and covariance to update the weights, it is 
expected to achieve better network parameters in lesser number 
of iterations as compared to FFNN-BPN.

3. ASymPtotIc StAbILIty ANALySIS
Lyapunov stability provides a strong assurance on the 

convergence of the system for any state. It is well known that a 
system is Lyapunov stable if and only if there exists a Lyapunov 
energy function (LEF) that is strictly positive definite and the 
derivative of the LEF is strictly negative definite. In order to 
establish the conditions for the convergence of the algorithms, 
the Lyapunov-Krasovskii technique is used.

Let the error state be defined as follows:

  ( ) ( )1e Geκ + = κ                                      (21)
       

        A feasible normalized LEF is described as 

  ( )( ) ( ) ( ) ( )1TV e e P e−κ = κ κ κ                (22) 
                 

Equation (22) is a positive definite matrix, and Eqn. (23) is 
used to obtain the derivative of the Lyapunov energy function:

       
( )( ){ } ( )( ) ( )( )1V e V e V e∆ κ = κ + − κ                 (23)                  

               

 
( )( ){ } ( )( ) ( )( )1V e V e V e∆ κ = κ + − κ

 ( ) ( ) ( ) ( )                      1 1T Te Ye e Ye= κ + κ + − κ κ             
                                                     (24)

 ( ) ( ) ( ) ( )                    T T Te G YGe e Ye= κ κ − κ κ

       ( ) ( )                      T Te G YG Y e = κ − κ 

       
( )( ){ } ( ) ( ) ( )T TV e e G YG Y e ∆ κ = − κ − − κ 

Then, the condition for the convergence of the error 
dynamics can be stated as:
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( )T TG YG Y Y G YG− − = −

                        (25)    
                                                                                                           

         
0TY G YG− >

         
     

  
20 1TY G YG G− > ⇒ <      

  
3.1 Stability Analysis of FFNN-bPN

Let ( ) e κ represent the network error i.e., the difference 
between the actual network output and the desired output.

  ( ) ( ) ( )1 1 1e d yκ + = κ + − κ +         (26) 
                         

( )1y κ +  is the output of the neural network at the κ  +1th time 
instant. 

  ( ) 0, 11  d F vκ κ+κ + =          (27) 
       

where 0v  is the input to (the input layer) of the neural network as 
given in eqn. (27). 

  ( ) ( )2, 11y f y κ+κ + =
         

(28) 
       
         Substituting eqns. (27) and (28) in eqn. (26):

  ( )1 0, 1 2, 1     e F v f yκ+ κ κ+ κ+= −                     (29)  
                           

The function ( ).  f is a nonlinear sigmoidal activation 
function as mentioned in Eqn. (5)

  2, 1 2, 1 1, 1 y w vκ+ κ+ κ+=∑          (30) 
       

         ( )1 1v f y=  , where 1  v is the input to the hidden layer and 1y  
is a vector of intermediate values.

  1 1, 1 0, 1 y w vκ κ+ κ+=∑          (31) 
       
 Substituting Eqns. (30) and (31) in Eqn. (29)

( )( )1 0, 1 2, 1 1, 1 0, 1     e F v f w f w vκ+ κ κ+ κ+ κ+ κ+= − ∑ × ∑               (32)             
                       

Rewriting 2, 1w κ+  in terms of 2,w κ  with respect to Eqn. (13), 
we get

( )2, 1 2, 2 , 1, 2,   T
bw ew wvκ+ κ κ κ κ= +µ +Ω ∆

                    (33)                                                    
From Eqn. (12)

( )( ) ( )2 , 2, 2, be f y d y f y eκ κ κ κ κ κ′− =′=           (34) 
               
Similarly,

( )1, 1 1, 1, 0, 1,   Tw w v weκ+ κ κ κ κ= +µ +Ω ∆
              (35)

Using Eqn. (14)
( ) ( ) ( ) ( )'

1, 1, 2, 1 2, 1, 2, 2, 1, 2, 2,   
TT T

k k k ke f y w e f w e v w f yy eκ+ κ κ κ κ κ κ = = +µ +Ω ∆ ′ ′

   
 

                                  (36)

From eqn. (32)

 

                                                                                      

( )

( ) ( )

( )
( )

( )
( )

( )

'
2, 2, 1, 2,

2, 2, 1,' '
0, 1 1, 1, 2, 0,

2, 0, 1

1,

  

 
1     

 

 

T
k

T
T

k

w f y e v w

w f y e v
e F v f w f y f y e v

f w v

w

κ κ κ κ

κ κ κ κ

κ κ+ κ κ κ κ

κ κ+

κ

 + µ +Ω ∆ ×
 
   +µ
   κ + = − +µ +
   +Ω ∆   
  Ω ∆  

′

            (37)
To simplify the error dynamics, the following bounds on 

the norms of the following vectors are required. 2
0Fv e= ρ     

   ( )    ;     ;       ;     ke f y h w v≤ε ≤ ≤ ω ≤′ υ

                                                          
(38)

Substituting, 1 k+Ω =   and solving,                                                                     

 ( ) [ ]2 2 21  ( ( ))e f k h f k h k hv Geκκ + = ρε − ω + µ υε× ωυ + µ υ ε ω + µ ε =                                                                                                (39)

[ ]( )( )
2

2 2 21   1G f k h f k h k hv   ≡ ρε − ω + µ υε× ωυ + µ υ ε ω + µ ε < ε   
 

 
                                                                                             (40)

[ ]( )( ) ( )2 21 1 1f k h f k h k hv sqrtρε − ω + µ υε× ωυ + µ υ ε ω + µ ε < = ±
ε  

  
 
                                                                                              (41)

[ ]( )( )2 211  f k h f k h k hvρε < + ω + µ υε× ωυ + µ υ ε ω + µ ε
ε  

  
                                                                  (42)

By defining

 [ ]( )( )2 2
max maxf k h f k h k hv= ω + µ υε× ωυ + µ υ ε ω + µ ε

                                    
(43)

            
 1  maxf

ρε < +
ε

     
                                       

(44)

3.2 Stability Analysis of FFNN-rLS
Let the normalized LEF be defined as Eqn. (22) and the 

output error state as Eqn. (21).
The steady state solution is defined as P(∞) and this must 

be in the range:  

         l up I P p I≤ ≤                                                     (45) 
                                                                                                                                   

Here, ,u lp p > 0 are positive numbers, P is a positive definite 
matrix by definition and the bounds are specified by the 
constants.

Also, the following bounds are needed to simplify the 
derivative:

22 2; ;TG G g eκ≤ ≤ ε and 1  f is the forgetting factor         
                                                                                             (46)            

                                                                                                                                                      
                                      

( )( ){ } ( )( ) ( )( )  1V e V e V e∆ κ = κ + − κ
         

(47)
 

   ( ) ( ) ( ) ( ) ( ) ( )1 11 1 1T Te P e e P e− −= κ + κ + κ + − κ κ κ                                                  (48) 



GEORGE, et al.: AIRCRAFT PARAMETER ESTIMATION USING FEEDFORwARD NEURAL NETwORKS

659

From eqn. (17)

( ) ( ) ( ) ( ) ( )1

1

1
1

P K v P
P

f
κ − κ + κ κ

κ + =    
                                           (49) 

( ) ( ) ( ) ( ) ( ) ( )( ) 1

1 1 1 11  TK P v f v P v
−

κ + = κ κ + κ κ κ  
                                     

  (50)

1v  is the input to the hidden layer which is obtained after 
performing the nonlinear activation function on y  which is 
the summation of the product of weights and input vector.

1
1 
1  

y

y

ev
e

−λ

−λ

−
=

+
      

                      
(51)

λ  is the sigmoid slope parameter of the hidden layer.

This can be re-written as ( )1 1, 0
1

 
n

j
j

v f w v f y
=

 
= = 

 
∑  where n 

is the number of hidden nodes; 1, jw  are the weights between 

input and hidden layer; and 0v   is the input vector to the neural 
network.

                           ( ) mf y y=                         (52) 
       

( )( ){ }
( ) ( )( )

11

1
1

1

( ) ( )
    

T
k k k

T T T
k

P P f y f f y P f y f y P
V e e G Ge e P e

f

−−

κ κ κ κ κ
−

κ κ κ κ

  − +   ∆ κ = − 
  
             

                                                    (53)

After substituting the bounds defined in Eqns. (45), (46) 
and (52),

( )( ){ }

12 2

2 2
2 2 1

1

    

l m
l

m l

l

p yp
f y p

V e g
f p

−
 

− + ε ∆ κ =ε −
 
 
    

     

              

2
2 2 1 1   m l

l l

f y p
g

p p
 +

=ε − 
                

(54)

 

   ( )( ){ }   0V e∆ κ <     
                    

 (55)

  

2
2 1 1   0m l

l l

f y p
g

p p
 +

− < 
 

   
                  

  (56)

  ( )2 2
1  1m lg f y p+ <    

              
 (57)

All the coefficients appearing in Eqns. (44) and (57) 
are precisely defined as these are the constants with positive 
bounding. If the conditions of Eqns. (44) and (57) are met, the 
time derivative of the Lyapunov energy function, represented 
in Eqn. (23), will be negative definite and the FFNNs will 

converge. This is a novel approach to establishing the 
asymptotic stability of the FFNN-BPN and FFNN-RLS. If 
these conditions are met, then the aircraft parameter algorithms 
using the FFNNs would also converge and the time histories 
obtained from the converged FFNN-algorithms can be used for 
the computation of parameters as outlined in section 4.

4. AIrcrAFt PArAmEtEr EStImAtIoN
The following postulated aircraft model is used to depict 

aircraft longitudinal motion.1-2

 
sinX

qSu C qw g
m

•

= − − θ
  
    

              

 
cosZ

qSw C qu g
mV

•

= + + θ
 
                                   (58)

       

 
 

m
yy

qSc
I

q C
•

=

 q
•

θ =

In Eqn. (58), x C , z C  and mC are the non-dimensional 
aerodynamic coefficients expressed as:

        
0 ez z 2Z Zq eqZ

qcC C C C C
Vα δ= + α + + + δ

 

 
0 2x

2C
á

X X XC CC
α

= + α + α

  e
20

2
m m m m m eqm

qcC C C C C
2V

C
α α δ

= + α + + α + δ+
      

 (59)
              

Here, the state variables are the velocity components in the 
longitudinal and vertical axis represented by u  and w  respectively, 
pitch angle , θ and pitch rate  q . The various parameters used for 
aircraft data simulation are listed in Table 1. The control input to 
aircraft dynamics is elevator deflection and is denoted by e.δ β  
is the vector of unknown parameters that is to be estimated and it 
comprises of the aerodynamic derivatives:

2 20 0 0, , , , , , , , , ,x x x z z z e m m m mq m eC  C  C  C  C  C  C  C  C  C  Cα α δ α δα α
 β =     

 
                                                     (60)

5. rESuLtS ANd dIScuSSIoNS
MATLAB implementation is performed to obtain the short 

period data of a light transport aeroplane and non-dimensional 
longitudinal characteristics are computed to assess the efficacy of 
FFNN-BPN and FFNN-RLS. The Eqns. (58) and (59) are utilised 
to estimate the 4-degrees of freedom (4-DOF) longitudinal axis 
model. In order to validate the algorithms for aircraft parameter 
estimation, two datasets/examples were simulated. 

The two examples are denoted as Ex1 and Ex2. The training 
dataset for Ex1 is generated for a duration of nearly 7 seconds with 
a sampling interval of 0.03 seconds by giving a doublet input 
to the elevator control surface. The second dataset (for Ex2) is 
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also generated for a duration of approximately 7 seconds with 
a sampling interval of 0.03 seconds by giving a 3211 input to 
the aircraft control surface. The initial values for the states 

[ ], , , u w q θ   are chosen as [36,7,0,0.15] for both examples.2 

Figure 2. time history match of parameters estimated using FFNN-bPN/FFNN-rLS (Ex1).

The time history of input states and control input for Ex1 
and Ex2 are shown in Fig. 1 and Fig. 3 respectively. Aircraft 
parameters used to generate both the data sets are given in 
Table 1.

Figure 1. time series plot of inputs (Ex1).
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Parameter Values used
Mass m 2280 kg

wing Chord c 1.5875 m

wing Span S 23.23 m2

Dynamic Pressure 
 

21
2

q  V  = ρ 6.1042 Pa

Initial velocity in x axis u0 36 m/s

Initial velocity in z axis w0 7 m/s

True air speed  2 2V u w= +  36.6742 m/s

Angle of attack 1 wtan
u

−  α =  
 

  
0.1973 °

Moment of inertia yyI 6940 kg/m2

table 1. Aircraft parameters used for simulation

Figure 3. time series plot of inputs (Ex2).

A 4th order Runge-Kutta integration method is used to obtain 
the longitudinal flight variables u, w,q and  θ  from eqn. (58). 
The performance metric used is parameter estimation error norm 
(PEEN). PEEN is defined as:

( )
( )

100true est

true

norm
PEEN *

norm
β − β

=
β  

   
                                            

 (61)

where true  β  is the vector of true values of the aircraft parameters 
and est  β  is the vector of estimated values of the aircraft parameters. 
PEEN is calculated for each method. Table 2 presents the 
estimated parameter values for Ex1 and Ex2. The comparison of 
the computational times and the PEENs is depicted in Table 4. 

In order to train the network, simulations are carried out 
with specifications as in Table 1 to generate time histories for 

the variables 2
e, ,q, α α δ  and coefficients Cx, Cm and Cz  using 

the (56) and (57). The data 2
e, ,q, α α δ  is given as input to the 

network and Cx, Cm and Cz  is presented as output. The algorithms 
are used to train the network. FFNN-BPN and FFNN-RLS 
are used to obtain the updated weights which can be used to 
estimate the parameters. Once the network is trained, delta 
method is used to estimate the aerodynamic parameters such 
as 2 2 ,, , , , , ,

e ex x z z m m m mqC  C  C  C  C  C   C Cα α δ α δα α  . In the delta 
method, the input variables are perturbed to cause a change 
in the output variable. For example, the value of q  is changed 
to  q  q+ ∆  for all the data points and a corresponding change 

in mC +  is obtained. Similarly, q  is changed to q  q−∆   for all 

the data points and corresponding change mC −  is obtained. The 

derivative 
mqC  will be 2

m m
mq

C   C  
C  

q

+ −−
=

∆  . The remaining 
three parameters 0 0,  x mC  C and 0  zC can be calculated by 
substituting the parameters estimated using the delta method 

and the available coefficients i.e., x m zC ,  C and C into  
Eqn. (59). The estimated parameter values are compared with the 
true values that are given in the 2nd column of  Table 2. It is observed 
that the estimated values are quite close to the true values even 
when there is noise of SNR=10 in the data. The PEEN related to 
Ex1 is 1.82% for FFNN-BPN and 1.69 % for FFNN-RLS, which 
is reasonably small. Similarly, simulations were performed for 
Ex2 and the PEEN was observed to be 1.98% and 1.71% for the 
FFNN-BPN and FFNN-RLS algorithms respectively. 
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Parameter true Values FFNN-bPN Ex1 FFNN-rLS Ex1 FFNN-bPN Ex2 FFNN-rLS Ex2

X0C - 0.0540 - 0.0560 - 0.0515 -0.05381 -0.05457

 XC α   0.2330   0.2919   0.2159 0.25124  0.2407

 2X
C

α
  3.6089   3.5830   3.6416 3.5567  3.56543

 ZC α  - 0.1200 - 0.1226 - 0.1209       -0.1271 -0.1330

  ZC α - 5.6800 - 5.6799 - 5.6687 -5.70397 -5.5722

Z eC δ - 0.4070 - 0.4231 - 0.3944 -0.3165 -0.41148

m0C   0.0550   0.0479   0.0481 0.05131 0.05522

 mC α - 0.7290 - 0.6803 - 0.6819 -0.6718 -0.73905

 2m
C

α
- 1.7150 - 1.8535 - 1.8182 -1.9878 -1.4706

mqC - 16.300 -16.5652 -16.0477 -16.4310 -16.22079

 m eC δ - 1.9400 - 1.9669 - 1.9374 -1.9425 -1.94366

PEEN(%)   1.886   1.693 1.97761 1.71047

table 2. Estimated aerodynamic parameters 

Figure 4. time history match of parameters estimated using FFNN-bPN/FFNN-rLS (Ex2).

The tuning parameters that have been used for training 
the network are listed in Table 3. The time histories of the 
estimated parameters in Figure 2 (for Ex1) and Figure 4 (for 

Ex2) also show that the estimated values are significantly close 
to the true values and the estimates using FFNN-RLS have 
approximately 10% better PEEN than FFNN-BPN. 
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The comparative CPU time requirements for the two 
methods are shown in Table 4. Computation of Kalman gain 
is needed in FFNN-RLS. However, this method, which uses 
an improved form of backpropagation using Kalman gain (and 
covariance) requires lesser number of training iterations to 
converge. Hence, the overall computational time is seen to be 
about 60% lesser in FFNN-RLS as compared to FFNN-BPN.
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tuning Parameters FFNN-bPN FFNN-rLS

No. of hidden layers         1        1 

No. of nodes in hidden layer         6        6 

Sigmoid Slope parameter 1λ
       0.8      0.8 

 Sigmoid Slope parameter 2λ
       0.75      0.75 

Learning Parameter        0.2      0.2 

Momentum parameter        0.4       -

No. of training iterations      1000     200 

table 3. tuning parameters for FFNN-bPN/FFNN-rLS

PEEN in % Execution time in seconds

Ex1 Ex2 Ex1 Ex2

FFNN-BPN 1.886 1.9776 3.912173 4.364223

FFNN-RLS 1.693 1.71047 1.129653 1.15643

table 4. comparison of execution times and PEENs

5. coNcLudINg rEmArKS
Two variants of FFNN, namely FFNN-BPN and 

FFNN-RLS have been presented and the performance of 
these algorithms have been evaluated for aircraft parameter 
estimation. The major difference between these two algorithms 
is in the method by which the errors are propagated back to 
update the network weights. The simulation results show that 
the estimation results of FFNN-RLS is better than FFNN-
BPN by approximately 10%. Although the number of steps 
in the RLS algorithm is more than the BPN algorithm due to 
the computation of Kalman gain and covariance, iterations 
required for convergence have been observed to be lesser in 
FFNN-RLS making the algorithm faster on the whole. The 
conditions for asymptotic stability for both the techniques 
have been derived by proposing a Lyapunov energy function 
and using Lyapunov-Krasovskii’s approach. The simulation 
results show that the estimation accuracy obtained by both 
the methods IS encouraging, and this paves the way to further 
consider these techniques for parameter estimation of fighter 
aircrafts and helicopters. Now, that the FFNN based approach 
is validated analytically as well as with simulated data, it can 
be further applied to more complex models.
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