
371

Defence Science Journal, Vol. 72, No. 3, May 2022, pp. 371-381, DOI : 10.14429/dsj.72.3.17522
 2022, DESIDOC

Received : 24 September 2021, Revised : 30 March 2022
Accepted : 11 May 2022, Online published : 01 July 2022

1. IntroductIon
Smartphones are replacing conventional mobiles as well

as computational devices due to their portability and ease
of handling almost everything ranging from storing private
data to making banking transactions. Smartphones having
Android OS are extensively familiar and have wide usage
due to their open architecture and the assortment of apps it
affords. As per the recent information by IDC1 (International
Data Corporation), the market share of android smartphones
is 83.8 per cent till March 2021 and it will grow to 85 per cent
by March’2025. Due to its widespread usage, we are deluged
with a variety of smartphone apps that makes our life simple
and easier. Flooding of these apps tempts attackers to design a
variety of malapp (malicious applications) which are directed
toward smartphones to steal vital private information, acquire
root privileges, build botnets to attack networks, or extract
critical data from smartphones. These malwares after stealing
the critical data sent it to the remote servers controlled by
hackers. This paper aims at identifying the existence of those
malapps which are distantly controlled by hackers via remote
servers to collect the critical data. The network traffic-based
framework extracts required features that are fused resulting
in a unified feature. The unified feature is further given to the
optimal classifier for the detection of malwares. This n/w traffic
analysis-based framework aids in creating robust solutions for
identifying android malwares.

These malapps are the most deterrent to the security of
these devices. Smartphone security refers to the measures taken
to thwart these malwares to protect sensitive information stored

in or communicated by smartphones. The security analysis of
smartphones mainly deals with findings of the vulnerabilities
and intimidations while using smartphone applications.

Mobile devices including Smartphones generated
about 54.8 per cent of worldwide web traffic2 and analyzing
this traffic leads to incredible results in detecting malapps.
Analyzing traffic3,4 is accomplished by studying the patterns
in the network traffic for its identification and segregation for
further investigation. Numerous traffic features are extracted
from the network traffic patterns. Mainly Hypertext Transfer
Protocol (HTTP) and Transmission Control Protocol (TCP)
are two types of traffic that are prevalent in the smartphone
ecosystem. Features extracted from HTTP and TCP are
exploited in detecting the malapps. The HTTP header features
could not detect the malapps in the encrypted traffic and TCP-
based detection models are impervious to encrypted traffic.
Therefore, TCP flow-based detection methods are mainly
exploited in detecting malapps.

Two widely used malware detection methods employed by
researchers pivots around static5 and dynamic analysis6-8. The
amalgamation of these widely used detection methods is also
exploited by some researcher’s resulting in hybrid analysis9.
Static investigation-based detection techniques failed to detect
apps having code obfuscation, and conventional dynamic
investigation-based detection needs are quite cumbersome. N/w
traffic based dynamic detection excerpts detection attributes
from n/w traffic and uses Machine Learning (ML) techniques
to categorize mobile apps. Our detection prototype is based on
TCP-based features.

In short, the following are the main contributions to the
manuscript:

A Novel Traffic Based Framework for Smartphone Security Analysis

 Sumit Kumar,#,* S. Indu$ and Gurjit Singh Walia#

#DRDO - Scientific Analysis Group (SAG), Delhi - 110 054, India
$Electronics and Communication, Delhi Technological University, Delhi - 110 042, India

*E-mail: sumitkr@hotmail.com

ABSTrAcT

Android Operating system (OS) has grown into the most predominant smartphone platform due to its flexibility
and open source characteristics. Because of its openness, it has become prone to numerous attackers and malware
designers who are constantly trying to elicit confidential information by articulating a plethora of attacks through these
designed malwares. Detection of these malwares to protect the smartphone is the core function of the smartphone
security analysis. This paper proposes a novel traffic-based framework that exploits the network traffic features to
detect these malwares. Here, a unified feature (UF) is created by graph-based cross-diffusion of generated order
and sparse matrices corresponding to the network traffic features. Generated unified feature is then given to three
classifiers to get corresponding classifier scores. The robustness of the suggested framework when evaluated on the
standard datasets outperforms contemporary techniques to achieve an average accuracy of 98.74 per cent.

Keywords: Smartphone; Malware; Network traffic; Android; Fusion

DeF. SCI. j., VOL. 72, NO. 3, MAy 2022

372

Proposed a traffic feature-based fusion that comprises of •
optimal combination of multiple traffic features by cross-
diffusion of order and sparse graphs to produce a unified
feature.
The unified feature vector thus generated is given to •
the three parallel ML classifiers and classifiers scores
obtained are fused to enhance the accuracy attained by
separate classifiers.
Presented the performance comparison with existing state-•
of-the-art methods using standard data sets available.

In Section 2, related work is presented. In Sec 3, we
cover the proposed identification framework for malware
identification and the assessment of our technique is presented
in Sec 4. In Sec 5, we conclude the paper.

2. related Work
Arora10, et al. examine the TCP-based features based on

traffic to shape the classifier for Android malware with more
than 90 per cent of detection accuracy. Arora11 et al. came up
with a hybrid model named NTPDroid (network traffic and
Permissions based Android malapp detection framework),
that uses permissions and traffic features from the apps and
exploits a Frequent Pattern Growth algo to generate frequent
patterns of permissions and traffic features to achieve detection
accuracy of 94 per cent. Wang12 et al. proposed an efficient
malware detection technique by using text semantics of n/w
traffic by studying each HTTP flow. These HTTP packets were
further processed by NLP (Natural Language Processing) to
take out text-level features achieving an accuracy of 99.15 per
cent but the method achieves 54.81 per cent for unknown apps
in the wild.

Liu13 et al. proposed a malware detection technique built
on TCP n/w traffic, where network traffic generated by apps
gets a greater number of a TCP flow to extract packet sizes
as features. Results achieve 97 per cent of detection accuracy.
Ding Li14 et al. introduced a framework named DroidClassifier
for the identification of HTTP header fields of n/w traffic
created by malapps by using a supervised method to train the
malware dataset. Moreover, Clustering is also used to increase
the classification efficiency. The results achieve 90 per cent of
detection accuracy. Li15 et al. proposed a multilevel detection
system named MulAV, in which it obtains info from n/w
traffic, App’s source code, and geospatial info where n/w traffic
is collected by TCPdump Tool. The info is further fed to the
ML method to train the model which identifies malapps. The
result achieves a detection rate of 97.8 per cent. Wang16 et al.
discussed a technique to parse the HTTP packets of n/w traffic
where features analysed are packet avg. length, number of
upload and download packets, distribution of packet size, etc.
Features were further extracted to obtain the pure malicious
traffic dataset and this is used to detect malwares. Su17 et al.
presented an Android detection method that uses TCP-based
behavioral characteristics to detect malapps. Here capturing of
n/w traffic is done using NTM [network traffic monitor] tool
and training are done via n/w traffic classifier. Results achieve
99.2 per cent and 94.2 per cent of detection accuracy by using
Random forest and j48 classifier.

Zulkifli18, et al. proposed a detection process based on
n/w traffic which registers the app behavior and considered
7 TCP-based n/w traffic features from Contagio dumpset and
Drebin dataset in which Drebin dataset achieved 98.4 per
cent of detection accuracy on J48 decision tree algo. Malik19,
et al. proposed a pattern-based detection method CREDROID
which identifies malapps based on the DNS (Domain Name
Service) queries, data it transfers to the remote server from n/w
traffic logs, and also the protocol used for communication for
identifying the credibility of the app. Moreover, the Android
app can be checked without rooting the android phone. Wang20
et.al. proposed a malapp detection framework exploiting the
URLs (Uniform Resource Locator) visited by them. Here
the malapp detection model is based on a multi-view neural
network with a detection accuracy of 98.35. Multiple views
maintain copious semantic info from inputs for segregating the
apps. Wang21, et al. suggested a framework for android malapp
identification leveraging both the TCP and HTTPS features.
Here, the app detection was done on the server-side without
affecting the user experience. C4.5 ML algo is used to train the
model with 8312 benign and 5560 malign apps for identifying
unknown apps with an accuracy of 97.89 per cent. Sanz22,

et al. offered a lightweight malapp detection framework using
TCP-based network features with an accuracy of 90 per cent
and a false-positive rate of less than 3 per cent. Here, the total
number of 359 malapp and benign apps are used along with
two Random forests and AdaBoost ML algorithms.

Upadhayay23 et.al. suggested a hybrid-based malware
detection model using network traffic and permissions with
a higher frequency of occurrence to achieve the detection
accuracy of 95.96 per cent. Alshehri24, et al. proposed
an innovative method to detect the repackaged apps by
investigating the network traffic behavior of smartphones.
Here authors exploited the request traffic generated by the
apps. A total number of 8645 applications were used for
experimentation. Here the accuracy of request flows attained is
95.1 per cent an improvement of 18.3 per cent of accuracy when
compared with contemporary methods. Sihag25, et al. proposed
network packet-based investigations of captured traffic of the
smartphone. Here, the authors represent the captured network
packet interactions as images. These images were given to CNN
(Convolution Neural Network) to achieve a detection accuracy
of 99.12 per cent. Norouzian26, et al. offered a hybrid detection
method based on network traffic flow and static features. Here
network flow features are combined with static graph vectors
to detect malapps with 97 per cent accuracy.

3. IdeNTIFIcATIoN FrAmeworK
ProPoSed
The proposed traffic analysis framework for smartphone

security analysis is elucidated in Fig. 1. The framework
consists of four blocks viz. traffic feature fusion, classifier
score-fusion, decision criteria, and reference apps update
to accomplish efficient malapp detection. extracted traffic
features are converted into three traffic feature vectors. All the
three traffic feature vectors are used for constructing similarity
graphs by the means of cosine similarity. Similarity graphs are

KUMAR, et al.: A NOVeL TRAFFIC BASeD FRAMewORK FOR SMARTPHONe SeCURITy ANALySIS

373

again converted to normalised graphs by using the anchored
normalisation technique. Normalised graphs are again used
to form the sparse and order graphs. These obtained sparse
and order graphs are further cross diffused to generate three
fused traffic feature vectors. The three fused feature vectors are
further concatenated to form the highly distinct unified feature
vector. This distinct unified feature is discriminatory and given
to three classifiers. The scores obtained from these classifiers
are again optimally combined to classify a given test app.

Because of the numerous attributes encapsulated in the
android based smartphone apps, individual ML algo shows its
incompetence to categorize these apps accurately. To achieve
overall detection accuracy, the framework uses three classifiers
viz. Random Forest (RF), k-Nearest Neighbor (KNN), and
Support Vector Machine (SVM) for app categorisation. RF
performs superbly when the dataset is large and it is not
susceptible to outliers. SVM performs better in the limited
dataset and it is optimal for binary classification. If there is
no training period, then KNN performs best. The framework
leverages modified PCR-5 rules for score fusion. Finally, in
decision block score wPCR5 is matched with the threshold wth
and a particular test app is categorised as benign if wPCR5 ≥ wth
or otherwise malign.

3.1 Traffic Feature Fusion
It is apparent from Fig. 1 that traffic feature fusion

comprises feature extraction followed by similarity, normalised,
sparse, and order graph generation. The generated sparse and
order graphs are further cross diffused giving unified feature
vector U as output.

3.1.1 Traffic Feature Extraction
The traffic gathering platform is used to collect the

malign and benign traffic data produced by malign and benign
apps, respectively. A firewall is installed on the platform to
guarantee its security. Figure 2 shows our methodology for
traffic gathering. The traffic gathering platform comprises four
constituents, i.e., the control server, traffic collection module,
app repository having downloaded malign and benign apps,
and TCP traffic storage module containing only filtered TCP
flows. These four components converse with the aid of a LAN
switch. The control server is controlling the traffic gathering job
in the platform by assigning the job to the different modules.
The apps from the apps repository are directed to the traffic
collection module, where the android virtual machine (AVM)
is used to run the apps and collect the corresponding traffic. The
collected traffic is further directed to the TCP traffic storage
module, where only TCP flows are stored and the rest of the
traffic is filtered out. Here android emulators are used to install
and running apps on AVM. AVM comprises of packed android
s/w stack and it runs just like a physical smartphone. Apps are
run on an emulator. An emulator is restarted to fuel the malign
apps to generate malicious behavior in the network traffic. A
script in python was written to extract the features from the
TCP flows. The extracted TCP features used are tabulated in
Table 1.

Fifteen traffic features were extracted for a test app t along
with N apps from the reference dictionary, { , }d D D+ −∈ , D+

which comprises of benign apps and D− comprises of the
malign app. The traffic feature extraction procedure is shown
in Fig. 2. Update in Fig.1 shows that the reference dictionary

Figure 1. Proposed traffic-based framework for smartphone security analysis.

DeF. SCI. j., VOL. 72, NO. 3, MAy 2022

374

Figure 2. Traffic gathering platform.

Table 1. extracted TcP based traffic features

Feature
symbol Feature description

1F Avg. no. of bytes sent

2F Avg. no. of bytes received

3F Total no. of headers bytes sent

4F Avg. no. of bytes per second

5F The ratio of the no. of incoming to outgoing bytes

6F Avg. no. of the packet sent per second

7F Avg. no. of the packet received per second

8F
The ratio of the no. of incoming to no. of outgoing
packets

9F Std. deviation of the packet- size sent

10F The standard deviation of the packet- size received

11F Avg. no. of the packet sent per-flow

12F Avg. no. of the packet received per-flow

13F Avg. no. of bytes sent per-flow

14F Avg. no. of bytes received per-flow

15F Std. deviation of the length of the flow

apps are constantly updated with the most recent malign and
benign apps to improve the detection ability of the framework.
Here, only TCP packets and TCP-related traffic features are
considered. Traffic features exploited in our framework are
depicted in Table 1. From the above 15 traffic features, we
form three vectors such that each vector complements the
other in detecting the malicious app. The vectors formed are
as follows:

1 { 1, 2, 3, 4, 5}V F F F F F= (1)
2 { 6, 7, 8, 9, 10}V F F F F F= (2)
3 { 11, 12, 13, 14, 15}V F F F F F= (3)

The proposed solution is realised by the formation of the
three complementary traffic feature vectors, namely V1 (byte-
based features), V2 (packet-based features), and V3 (flow-based
features). We have built three feature vectors as stated in
Eqn. (1) - Eqn. (3) for each test app and reference app. In
feature-fusion, traffic-features vectors for reference and test
apps are utilised for graph formation. The test app’s traffic-
feature vectors represent one node and the reference app’s

traffic-feature vector represents other nodes. Consequently,
non-linear graphs are formed for all test app t corresponding to
three traffic feature vectors.

3.1.2 Graph Generation
This subsection mainly comprises the generation of

similarity, normalised, sparse, and order graphs. For traffic
feature vectors, 1

tV , 2
tV and 3

tV of test app t corresponding
to three traffic-based features, we construct graphs

(, ,)G Ver E wφ φ φ φ= , where {1,2,3}φ∈ , corresponding to
three traffic-based features and wφ are edge weights acting
as similarity betwixt traffic-feature vectors of apps t and d
where { , }d D D+ −∈ , Verφ correlates to the vertices of the
created similarity graphs, Eφ correlates to the edges of the
similarity graphs that characterize the association between
test apps and the reference apps. In the suggested framework,
similarity matrices n nGφ ×∈ are constructed by calculating the
cosine similarity between the three traffic-feature vectors of the
test app t and reference apps d. For feature set values (),t dV Vφ φ ,
where {1,2,3}φ∈ corresponds to three traffic-feature vectors, the
similarity edge weights are symbolised by the vector (,)w t rφ and
are derived by the cosine similarity between the pair (),t dV Vφ φ
from the following Eqn. (4).

*
(,) t d

t d

V V
w t d

V V

φ φ
φ

φ φ
=

 (4)

Similarity graphs created using eq.(4) for three traffic feature
vectors are further normalised using an anchor avg stdA A Aφ φ φ= +
, where avgAφ stdAφ and are average and standard deviation of
malicious score distribution for φ traffic feature vector. we
consider only malicious scores for calculating the anchor. The
normalised graphs N φ , whose edge weights matrix jw

φ
, where

{1,2,....., }, {1,2,3}j n∀ ∈ ∀φ∈ is constructed by Eqn. (5),

min()
,

2(min())

0.5 ,
max()

j
j

j

j
j

j

w w
w A

A w
w

w A
w A

w A

φ φ
φ φ

φ φ
φ

φ φ
φ φ

φ φ

 −
≤

−=   − + >   − 
 (5)

The obtained normalised graphs were transformed to
obtain the sparse S φ and order Oφ graphs. Sparse graphs
guarantee robustness to noise while boosting the strong info
and suppressing the weak info corresponding to each traffic
feature vector. A sparse graph { , , }S Ver Eφ φ φ φ= η is built using
KNN by Eqn. (6).

(), |

0,

j j N
w w KNN

Otherwise

φ

φ φ

φ
 ∈ νη = 
 (6)

ν is the parameter controlling the sparseness of the graph.
Edges corresponding to reference apps that are similar to the test
apps are retained and the rest of the edges are removed to ensure
robustness to noise. To discriminate the significant reference
apps from the insignificant ones, each of the reference apps is
assigned a weight according to its order. Therefore, order(s) is

KUMAR, et al.: A NOVeL TRAFFIC BASeD FRAMewORK FOR SMARTPHONe SeCURITy ANALySIS

375

assigned to each reference app based on its similarity with the
test app, which is calculated by the edge weight between the
test app and the reference app in the normalised graph. The
order graph { , , }O Ver Eφ φ φ φ= µ having the weight matrix is
constructed by Eqn.(7) :

(), {1,2,... }jorder w j n
φφµ = ∀ ∈ (7)

Where function order, allocates order(s) to each reference
app.

Details of feature unification are presented in the
subsequent subsection.

3.1.3 Cross Diffusion
Three traffic feature vectors created are fused in a way

to extract complementary info in them by optimal non-linear
cross-diffusion of generated sparse and order graphs. Features
fusion via cross-diffusion technique27 was offered and its results
confirm that the feature fusion by non-linear graphs techniques
are significantly more accurate than linear graph-centered
approaches. Graph-built unification retains robust features of apps
and rejects all the frail features that add to misclassification.

Order graphs averts biasness and sparse graphs guarantees
elimination of any outlier behavior. Cross diffusion [eq.
(9)] basically comprised of addition of sparse graphs of two
other feature vectors to form

tφα [eq.(8)], where
tφα is the tht

element of the set φ and subsequently their multiplication with
order graph of the feature vector with

tφα .
t Y

Y

φα = η∑ where, { } { }tY ∈ φ − φ (8)

t t tφ φ φβ = α µ⊙

 {1,2,3}∀φ∈ (9)

 Here, we add the sparse graph of two other feature vectors
and then multiply it with the order graph of the feature vector
turn by turn to generate three fused vectors. Eqn. (9) can be
further represented [eqn. (10,11,12)] in the form of fused vec-
tors (

1 2 3

, ,V V VF F F), sparse vectors (
1 2 3

, ,V V VS S S) and order
vectors (

1 2 3

, ,V V VO O O) as follows:

1 2 3 1

()V V V VF S S O= + ⊙

 (10)

 2 3 1 2

()V V V VF S S O= + ⊙ (11)

3 1 2 3

()V V V VF S S O= + ⊙

 (12)

The above-fused feature vectors
1VF ,

2VF and
3VF

are concatenated to form the unified feature vector, U by
Eqn. (13).

1 2 3V V VU F F F= + + (13)

This unified feature vector is given to three parallel
classifier(s) i.e. SVM (Support Vector Machine), RF (Random
Forest) & KNN (K Nearest Neighbors). The classifiers scores of
these parallel classifiers are further fused to classify apps. Details
of Optimal classifier fusion follow in the next sub-section.

3.2 classifier Score-Fusion
Created U is fed to three classifiers connected in parallel.

Obtained classification scores [Ss (SVM), Sr (RF), Sk (KNN)]
are again fused by the classifier score fusion technique.
There are various score fusion techniques28,29 reported in the
literature. Here we have chosen the PCR-530 to solve the highly
contradictory scores of the three classifiers. PCR-5 is used
to solve ambiguous problems in multi-sensor score fusion.
Android app detection is a certainly ambiguous problem as
we are uncertain whether the app is malicious or not. In the
suggested model, three classifiers are selected and the fusion
of the output of these classifiers can be modeled as a multi-
sensor score fusion problem as their outputs are independent
of each other. Therefore, Android app detection satisfies all the
conditions of the PCR-5 theory. In our framework, the frame
of discernment Θ has two elements B M and corresponding
benign and malign. Classifier scores [Ss, Sr, Sk] are converted
individual Basic Belief assignments or belief masses by the
Eqn.(14).

() ()
() 1 ()

i i i

i i i

m C S
m C S

Β = × Β
Μ = − × Β

 (14)

Where (, ,)i s r k∈ & iC denotes the confidence measure
of the single classifier.

These belief masses are combined by PCR-5 rules. The
conjunctive consensus among the classifiers is assessed by
Eqn. (15, 16)

() ()* ()* ()srk s r km m m mΒ = Β Β Β (15)

() ()* ()* ()srk s r km m m mΜ = Μ Μ Μ (16)

Overall conflict among the classifiers is estimated by
eqn. (17). It comprises six partial conflicts-masses.

() ()* ()* () ()* ()* ()
()* ()* () ()* ()* ()
()* ()* () ()* ()* ()

srk s r k r s k

k s r s r k

r s k k s r

m m m m m m m
m m m m m m
m m m m m m

Β ∩ Μ = Β Μ Μ + Β Μ Μ +
Β Μ Μ + Μ Β Β +
Μ Β Β + Μ Β Β (17)

Six partial conflict masses are further redistributed using
PCR-5 rules in ratio to masses assisting these partial conflicts.
The values of pi and qi are a contribution to Benign and Malign
masses following reallocation of partial conflicts, where
i = 1,…,6 and are determined by Eqn. (18-23).

 1 1 ()* ()* ()
() ()* () () ()* ()

s r k

s r k s r k

m m mp q
m m m m m m

Β Μ Μ
= =

Β Μ Μ Β + Μ Μ
 (18)

2 2 ()* ()* ()
() ()* () () ()* ()

r s k

r s k r s k

m m mp q
m m m m m m

Β Μ Μ
= =

Β Μ Μ Β + Μ Μ
 (19)

3 3 ()* ()* ()
() ()* () () ()* ()

k s r

k s r k s r

p q m m m
m m m m m m

Β Μ Μ
= =

Β Μ Μ Β + Μ Μ (20)

4 4 ()* ()* ()
()* () () () ()* ()

s r k

r k s s r k

m m mp q
m m m m m m

Μ Β Β
= =

Β Β Μ Μ + Β Β
 (21)

5 5 ()* ()* ()
()* () () () ()* ()

r s k

s k r r s k

p q m m m
m m m m m m

Μ Β Β
= =

Β Β Μ Μ + Β Β
 (22)

6 6 ()* ()* ()
()* () () () ()* ()

k s r

s r k k s r

p q m m m
m m m m m m

Μ Β Β
= =

Β Β Μ Μ + Β Β (23)

Approximated contributions pi and qi where i = 1,…,6 are
added on to their respective conjunctive consensus. The final

DeF. SCI. j., VOL. 72, NO. 3, MAy 2022

376

belief of the app being benign mPCR5 (B) and that of an app
being malign mPCR5 (M) are determined by Eq. (24) and Eq.
(25) respectively.

6

5
1

() ()PCR srk i
i

m m p
=

Β = Β + ∑ (24)

6

5
1

() ()PCR srk i
i

m m q
=

Μ = Μ + ∑

 (25)

The decision about the given test app t is taken after a
comparison of the mPCR5 (B) with mth. If 5 ()PCR thm mΒ ≥ then
the t is acknowledged as benign else it is taken as malign.

4. evaluatIon
Quantitative analysis on various performance matrices

like Precision, Accuracy, F1 Score, Specificity, and Sensitivity
was performed on the suggested and two other state-of-the-art
methods. Their ROC (Receiver Operating Characteristic) plots
were also drawn for comparison. The ROC curve is the plot of
FAR (False Acceptance Rate) vs 1-FRR (False Rejection Rate)
Following are the details of the evaluation process.

4.1 databases
We choose about 3000 samples of malign apps and

benign apps each downloaded from the benchmarked datasets
i.e. Drebin31, AMD32, Androzoo33, and CICMalDroid202034.
Benign apps are taken from Google Playstore. The malign apps
generated both the benign and malign traffic as most of these
malign apps are formed from the benign apps by their reverse
engineering and repackaging after inserting maliciousness into
them. Finally, a dataset is constructed by TCP-based network
flows to assess the performance of the proposed framework.
Network flows corresponding to benign and malign apps are
stored in pcap format by running selected apps over and over
for a period of 6 hrs. We select only those apps from the datasets
that produce the network traffic and filter out the TCP-based
flows. Traffic features as tabulated in Table 1 are extracted
from these flows using the script written in python.

we select about 500 feature-flow vectors each
corresponding to benign and malign flows from the total
extracted flows corresponding to DB1, DB2, DB3, and
DB4 datasets to train our model. We further integrate these
500 feature flow vectors of benign and malign flows into an
integrated set of 2000 benign and malign flows each to form
the fifth set of TCP features containing 2000 benign and
malign feature vectors each. Further, we apply a ten-fold cross-
validation procedure for training and testing are done on five
sets of feature sets and finally, average values are taken as the
results. All investigations are done on MATLAB R2018a on
16GB RAM, i7, and 2.7 GHz processor.

4.2 Performance Assessment
Performance of the suggested framework is realised by the

means of TCP features extracted from TCP flows corresponding
to malign and benign apps as in Table 2 and calculating
evaluation matrices through ten-fold cross-validation. It is
compared to training time and mean-time-to-detect (MTTD)
against three state-of-the-art approaches. Here, MTTD is the
time taken to detect malapps. Evaluation matrices results are

Table 2. experimentation dataset

App type
dataset

malign_
Apps(m)

Benign_
Apps(B) Source

DataBase(DB)1 750 750 Androzoo(M)
GooglePlay(B)

DataBase(DB)2 750 750 AMD(M)
CICMalDroid2020(B)

DataBase(DB)3 750 750 CICMalDroid2020(M)
GooglePlay(B)

DataBase(DB)4 750 750 Drebin(M)
GooglePlay(B)

also compared with three state-of-the-art techniques FED12,
MMD20, and LwN21.

The three state-of-the-art methods viz FED, MMD and
LwN are compared with the proposed method. In FeD, a
malware detection technique is built on TCP n/w traffic, wherein
network traffic generated by apps comprises TCP flows. These
flows are used to extract packet sizes as features. Standard
deviation, Mean, min, and max values of the sizes of the first
few packets of TCP flows are taken as features. Here author
leverages the RF ML algorithm to train the model to achieve
97 per cent of detection accuracy. In the second state-of-the-art
method MMD, the authors proposed a framework for android
malapp identification leveraging both the TCP and HTTPS
features. Here, the malapp detection is done on the server-side
without affecting the user experience. C4.5 Decision tree ML
algo is used to train the model with 8312 benign and 5560
malign apps for identifying unknown apps with an accuracy
of 97.89 per cent. In the LwN method, a lightweight malapp
detection framework using TCP-based network features was
given with an accuracy of 90 per cent and a false-positive rate
of less than 3 per cent. Here, the total number of 359 malapp
and benign apps are used along with two RF and AdaBoost ML
algorithms.

Detection Accuracy, F1 Score, Specificity, Sensitivity,
and Precision are calculated using equations 26, 27, 28, and
29 respectively.

TP TNDetection Accuracy
TP FP TN FN

+
=

+ + +
 (26)

21
2

TPF Score
TP FP FN

=
+ +

 (27)

TNSpecificity
TN FP

=
+

 (28)
TPSensitivity

TP FN
=

+
 (29)

Precision TP
TP FP

=
+

 (30)

where, TP, FP, TN, and FN are true positive, false positive,
true negative, and false negative respectively. ROC curves for
the proposed method and comparative methods FED, MMD,
and LwN for flow sets corresponding to datasets DB1, DB2,
DB3, and DB4 are depicted in Fig. 3. The experimental results
are presented in Table 4. It is observed that the mean value of F

KUMAR, et al.: A NOVeL TRAFFIC BASeD FRAMewORK FOR SMARTPHONe SeCURITy ANALySIS

377

Figure 3. roc curves for the proposed method and comparative methods mmd, Fed, and LwN for flow sets corresponding to
datasets dB1, dB2, dB3, and dB4.

score, detection accuracy, sensitivity, specificity, and precision
for the proposed framework are 0.98742, 98.74 per cent, 99.04
per cent, 98.44 per cent, and 98.456 per cent respectively. The
highest value of the F score, detection accuracy, sensitivity,
specificity, and precision is 0.9890, 98.90 per cent, 99.80 per
cent, 99.60, and 98.61 respectively.

The proposed technique outshines similar state-of-the-art
traffic-based methods when evaluated on extracted TCP features
as presented in Table 1. Enhancement for mean accuracy of
the suggested scheme is achieved by 6.28 per cent, 4.34 per
cent, and 2.3 per cent over LwN, FeD, and MMD respectively.
This enhanced value of accuracy of the suggested framework
is attained by the optimal combination of traffic features using
a cross-diffusion strategy and fusion of classifier(s) score
using the DSmT-based PCR-5 rule to form a clear-cut border
for differentiating malign apps from benign apps. Here, three
feature vectors comprising the three sets of complementary
features are fused in a nonlinear style through cross-diffusion

wherein the rugged features are enhanced and the frail features
are repressed resulting in the robust UF. Further, in the optimal
score level fusion process, UF is fed to the three ML classifiers
where concurrent scores are boosted and discordant classifier
scores are suppressed. Also, the conflict between the multiple
classifiers is resolved to get the final decision score.

The suggested framework is also compared to MTTD of
different state-of-the-art techniques. To calculate the MTTD of
contemporary methods, learned models are fed with the 250
arbitrary apps for investigation. Our proposed method attains
an amazing average analysis performance of 5.8 seconds per
app. Similarly, the average analysis performance of LwN,
FED, and MMD comes out to be 6.5 seconds, 7.3 sec., and
6.9 seconds respectively. Hence, our proposed framework
outshined other methods in respect of detection time, detection
accuracy, and efficacy in real-life app scenarios. MTTD also
confirms that the suggested framework detects the apps with
high accuracy in a reasonable time.

DeF. SCI. j., VOL. 72, NO. 3, MAy 2022

378

Table 3. Performance comparison in terms of accuracy with existing methods using captured data from 20 different apps

Apps
UF+rF lWn Fed mmd Proposed method

Accuracy
AccuRadio 0.8900 0.8300 0.8500 0.8900 0.9400
Maps 0.8700 0.8100 0.8400 0.8100 0.9100
WhatsApp 0.8600 0.8200 0.8100 0.8700 0.9300
Outlook 0.8300 0.8100 0.8300 0.8500 0.9100
Mail 0.7800 0.8400 0.8500 0.8400 0.9300
Netflix 0.9000 0.7700 0.8900 0.9100 0.9500
Twitter 0.9300 0.7500 0.7600 0.9200 0.9400
Facebook 0.9100 0.9000 0.8700 0.9300 0.9500
youtube 0.8800 0.8600 0.8800 0.9200 0.9700
Gmail 0.9200 0.9300 0.8900 0.9500 0.9600
DroidDream 0.8100 0.8400 0.9000 0.9200 0.9800
DroidKungFu1 0.8700 0.8800 0.9300 0.9400 0.9600
Buzz 0.8200 0.8400 0.9100 0.8900 0.9400
BlueScanner 0.8500 0.8400 0.9400 0.9300 0.9800
Plankton 0.8200 0.8500 0.9200 0.9100 0.9600
WallpaperGirls 0.8100 0.8200 0.8300 0.8600 0.9300
StylePhotoCollage 0.8700 0.8400 0.9100 0.9200 0.9400
PrivateSms 0.8300 0.8500 0.9400 0.8700 0.9900
PartMessage 0.8800 0.9000 0.9500 0.8900 0.9700
IdeaSecurity 0.8200 0.8800 0.9000 0.9600 0.9800

Table 4. Performance metrics (Pm) for proposed methods and other comparative methods.

dataset Pm lWn Fed mmd Proposed method

DB1 FLOwSeT

Accuracy 0.9250 0.9440 0.9620 0.9880
Specificity 0.9100 0.9280 0.9540 0.9960
Sensitivity 0.9400 0.9600 0.9700 0.9800
F1 Score 0.9261 0.9449 0.9623 0.9879
Precision 0.9126 0.9302 0.9547 0.9959

DB2 FLOwSeT

Accuracy 0.9230 0.9380 0.9630 0.9890
Specificity 0.9060 0.9360 0.9660 0.9860
Sensitivity 0.9400 0.9400 0.9600 0.9920
F1 Score 0.9243 0.9381 0.9629 0.9890
Precision 0.9091 0.9363 0.9658 0.9861

DB3 FLOwSeT

Accuracy 0.9260 0.9440 0.9630 0.9881
Specificity 0.9140 0.9420 0.9460 0.9780
Sensitivity 0.9380 0.9460 0.9800 0.9980
F1 Score 0.9269 0.9441 0.9636 0.9881
Precision 0.9160 0.9422 0.9478 0.9784

DB4 FLOwSeT

Accuracy 0.9220 0.9460 0.9660 0.9870
Specificity 0.8860 0.9260 0.9560 0.9780
Sensitivity 0.9580 0.9660 0.9760 0.9960
F1 Score 0.9247 0.9471 0.9663 0.9871
Precision 0.8937 0.9288 0.9569 0.9784

INTEGRATED
FLOwSeT

Accuracy 0.9270 0.9480 0.9680 0.9850
Specificity 0.9405 0.9455 0.9645 0.9840
Sensitivity 0.9133 0.9505 0.9715 0.9860
F1 Score 0.9260 0.9481 0.9681 0.9850
Precision 0.9388 0.9458 0.9647 0.9840

KUMAR, et al.: A NOVeL TRAFFIC BASeD FRAMewORK FOR SMARTPHONe SeCURITy ANALySIS

379

Performance comparison in terms of accuracy with
existing methods using online captured data from 20 different
apps chosen from diverse sources is shown in Table 3. Here,
we have taken Smartphone Samsung Galaxy S9 having android
8 OS with 8 GB RAM and 64 GB storage for generating the
network traffic. Our framework detects the apps that generate
the flows similar to one generated during the training phase
with high accuracy. The trained model is also tested on the
network flows captured from the 20 different apps under an
unconstrained environment using real smartphones instead of
emulators and the performance comparison is done with our
framework versus three different state-of-the-art methods viz.
LwN, FeD, and MMD and one self-proposed method RF+UF
i.e. unified feature fed to the random forest algorithm. From
Table 3, the average accuracy obtained when the random apps
are tested on LwN, FeD, MMD, RF+UF, and the proposed
method is 85.75 per cent, 84.30 per cent, 88.82 per cent,
89.90 per cent, and 95.10 per cent respectively. Our proposed
framework is dependent on the selected number of features.
Generating the traffic flows in an unconstrained environment
is cumbersome as traffic generation gets hindered when the
internet connection is interrupted. Sometimes, the malign
app took a significant amount of time to generate malicious
behavior in traffic flow.

5. coNcLUSIoN
A novel network traffic analysis-based framework has

been proposed in the manuscript to detect android malapps by
exploiting the traffic features. It consists of four blocks viz.
traffic feature fusion, classifier score-fusion, decision criteria,
and reference apps update to accomplish efficient malapp
detection Fifteen TCP-based features have been used in feature
fusion to get a unified feature vector which is given to three
Multilayer classifiers and find fusion scores for detecting
malwares. The reference dictionary apps are regularly updated
with zero-day malign and benign apps to improve the detection
ability of the framework. It has been shown that the Framework
proposed achieves an average detection accuracy of 98.74 per
cent and outperforms other existing methods. A comparison of
the evaluation matrices of the suggested framework with other
contemporary approaches reveals better detection accuracy of
malapps. Our future endeavor is to incorporate other dynamic
and static attributes for detecting sophisticated malapps and to
overcome all the limitations discussed.

reFereNceS
1. IDC. https://www.idc.com/promo/smartphone-market-

share (Accessed on August 06, 2021).
2. Statistica. https://www.statista.com/statistics/277125/

share-of-website-traffic-coming-from-mobile-devices
 (Accessed on August 06, 2021).
3. yadav, A. & Ratan, R. Identifying traffic of same keys in

cryptographic communications using fuzzy decision criteria
and bit-plane measures. Int. J. Syst. Assur. Eng. Manag,
2020, 11(9), 466–480.

 doi: 11. 10.1007/s13198-019-00878-7.
4. Ratan, R. & yadav, A. Security analysis of bit plane level

image encryption schemes. Def. Sci. J.,, 2021, 71(2), 209-

221.
 doi:10.14429/dsj.71.15643
5. Kumar, S.; Indu, S. & walia, G.S. An efficient multistage

fusion approach for smartphone security analysis Def. Sci.
J., 2021, 71(4),476–490.

 doi: 10.14429/dsj.71.15077.
6. Kumar S.; Indu S. & walia G.S. Smartphone traffic

analysis: a contemporary survey of the state-of-the-art.
In Proceedings of the Sixth International Conference on
Mathematics and Computing. Advances in Intelligent
Systems and Computing, Springer, Singapore, 2020,
1262, 325-343

 doi:10.1007/978-981-15-8061-1_26.
7. yerima, S.y. & Alzaylaee, M.K. & Sezer, S. Machine

learning-based dynamic analysis of android apps with
improved code coverage. 2019, Eur. J. Inf. Secur., 2019,
1, 1–24.

 doi: 10.1186/s13635-019-0087-1.
8. Agrawal, A.; Bhatia, A.; Bahuguna, A.; Tiwari, K.;

Haribabu, K.; Vishwakarma, D. & Kaushik, R. A survey
on analyzing encrypted network traffic of mobile devices.
Int. J. Inf. Secur., 2022, 1.

 doi: 10.1007/s10207-022-00581-y.
9. Kumar, S.; Indu, S. & walia, G.S. Optimal unification

of static and dynamic features for smartphone security
analysis. Intell. Autom. Soft Co., 2022, 35(1).

 doi:10.32604/iasc.2022.024469
10. Arora, A. & Garg, S. & Peddoju, S.K. Malware detection

using network traffic analysis in android based mobile
devices. In Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies,
2014, 66–71.

 doi: 10.1109/NGMAST.2014.57.
11. Arora, A. & Peddoju, S.K. NTPDroid: A hybrid android

malware detector using network traffic and system
permissions. In 17th IEEE Eighth International Conference
on Trust. Secur. Priv. Comput. Commun., 2020, 808–
813.

 doi: 10.1109/TrustCom/BigDataSE.2018.00115
12. wang, S.; yan, Q.; Chen, Z.; yang, B.; Zhao, C. & Conti,

M. Detecting android malware leveraging text semantics
of network flows. IEEE Trans. Inf. Forensics Secur., 2018,
13(5),1096–1109.

 doi: 10.1109/TIFS.2017.2771228.
13. Liu, A.; Chen, Z.; wang, S.; Peng, L.; Zhao, C. & Shi,

y. A fast and effective detection of mobile malware
behavior using network traffic. In Algorithms and
Architectures for Parallel Processing, edited by J.
Vaidya and joLi. 11337, Springer, 2018.

 doi:10.1007/978-3-030-05063-4_10
14. Li, Z.; Sun, L.; yan, Q.; Srisaan, w. & Chen, Z.

DroidClassifier: efficient adaptive mining of application-
layer header for classifying android malware. In
International Conference on Security and Privacy in
Communication Systems. 2017, 597–616.

 doi: 10.1007/978-3-319-59608-2_33.
15. Li, Q.; Chen, Z.; yan, Q.; wang, S.; Ma, K.; Shi, y. &

Cui, L. MulAV: Multilevel and explainable detection of

DeF. SCI. j., VOL. 72, NO. 3, MAy 2022

380

android malware with data fusion. 11337, 2018 In: LNCS.
Springer International Publishing.

16. wang, S.; Hou, S.; Lei, Z.; Chen, Z. & Han, H. Android
malware network behavior analysis at HTTP protocol
packet level. 2015. In Proceedings of the ICA3PP
International Workshops and Symposiums on Algorithms
and Architectures for Parallel Processing., 9532, 497–
507.

 doi:10.1007/978-3-319-27161-3_45.
17. Su, X.; Lin, j.; Shen, F. & Zheng, y. Two-phases detection

scheme: Detecting android malware in android markets,
In ATCI Springer 842, 389–399, 2019.

 doi:10.1007/978-3-319-98776-7_41
18. Zulkifli, A.; Hamid, I.; Shah, w. & Abdullah, Z. Android

malware detection based on network traffic using decision
tree algorithm. Adv. Intell. Syst. Comput., 2018, 700, 485–
494.

 doi: 10.1007/978-3-319-72550-5_46.
19. Malik, J. & Kaushal, R. CREDROID: Android malware

detection by network traffic analysis. In PAMCO. 2016,
28-36.

 doi:10.1145/2940343.2940348.
20. wang, S.; Chen, Z; yan, Q.; ji, K.; Peng, L.; yang, B.

& Conti, M. Deep and broad URL feature mining for
android malware detection. Information Science, 2000,
513, 600–613.

 doi: 10.1016/j.ins.2019.11.008.
21. wang, S.; Chen, Z.; yan, Q.; ji, K.; Peng, L.; yang, B. &

Jia, Z. A mobile malware detection method using behavior
features in network traffic. J. Netw. Comput. Appl., 2019,
133, 15–25.

 doi: 10.1016/j.jnca.2018.12.014.
22. Sanz, I.j.; Lopez, M.A.; Viegas, e.K. & Sanches, V.R.

“A lightweight network-based android malware detection
system,” In: IFIP Networking Conference (Networking),
2020, 695-703.

23. Upadhayay, M.; Sharma, G.; Garg, G. & Arora, A.
RPNDroid: Android malware detection using ranked
permissions and network traffic, In Fifth World Conference
on Smart Trends in Systems Security and Sustainability
(WorldS4), 2021, 19-24.

 doi: 10.1109/WorldS451998.2021.9513992.
24. Alshehri, M. APP-NTS: A network traffic similarity-

based framework for repacked Android apps detection. J.
Ambient Intell. Human Comput., 2022, 13, 1537–1546.

 doi: 0.1007/s12652-021-03023-0
25. Sihag, V.; Choudhary, G.; Vardhan, M.; Singh, P. & Seo,

J. T. PICAndro: Packet inspection-based android malware
detection 2021, Secur. Commun. Netw., 2021, 9099476,
11.

 doi: 10.1155/2021/9099476
26. Norouzian, M.R.; Xu, P.; eckert, C. & Zarras, A. Hybroid:

toward android malware detection and categorisation
with program code and network traffic. In: Information
Security. ISC 2021 Springer, Cham., Lecture Notes
Comput. Sci., 13118, 259-278. .

 doi:10.1007/978-3-030-91356-4_14
27. Walia, G.S. et al. Unified graph-based multicue feature

fusion for robust visual tracking. IEEE T. Cybernetics,
2020, 50(6), 2357-2368.

 doi: 10.1109/TCyB.2019.2920289.
28. Xiao, Fuyuan. Multi-sensor data fusion based on the belief

divergence measure of evidence and the belief entropy.
Information Fusion, 2019, 46, 23-32.

 doi: 10.1016/j.inffus.2018.04.003.
29. Xiao, Fuyuan. A new divergence measure for belief

functions in D–S evidence theory for multisensor data
fusion. Information Sciences, 2020, 514, 462-483.

 doi: 10.1016/j.ins.2019.11.022.
30. Smarandache, Florentin & Dezert, J. Advances and

applications of DSmT for information fusion, Am. Res.
Press, 2015, 4. http://fs.gallup.unm.edu/DSmT-book4.
pdf. (Accessed on 10/09/2021).

31. Daniel, A.; Spreitzenbarth, M.; Hubner, M. & Gascon, H.
DReBIN: effective and explainable detection of android
malware in your pocket. Symposium on Network and
Distributed System Security (NDSS), 2014.

 doi:10.14722/ndss.2014.23247.
32. wei, F.; Li, y.; Roy, S.; Ou, X.; Zhou, w. Deep ground truth

analysis of current android malware. In: Polychronakis,
M., Meier, M. (eds) Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA) 2017. Springer,
Cham. Lecture Notes Comput. Sci., 2017, 10327.

 doi:10.1007/978-3-319-60876-1_12
33. Mahdavifar, S.; Kadir, A.; Fatemi, R. & Alhadidi,

D. Ghorbani. Dynamic android malware category
classification using semi-supervised deep learning. In
18th IEEE International Conference on Dependable,
Autonomic, and Secure Computing (DASC), 2020, 17-
24.

34. Allix, K.; Bissyandé, T.F.; Klein, j. & Traon, y.L.
AndroZoo: Collecting millions of android apps for the
research community. 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR),
2016, 468-471.
doi:10.1109/MSR.2016.056

coNTrIBUTorS

mr Sumit Kumar received his ME in Electronics and
Communication Engineering from Delhi College of Engineering,
University of Delhi, Delhi. He is working as a Senior Scientist
at DRDO-SAG, Delhi, India. His current areas of research
interest include: Traffic analysis, smartphone security, cloud
computing, and hardware analysis.
In the present study, he has carried out complete design and
development scheme. He has also completed the experimental
work by evaluating the suggested framework and comparing
the results with other state-of-the-art methods.

Prof S. Indu received her PhD in the area of visual sensor
networks from University of Delhi, Delhi, India. She is working
as Dean (Student Welfare) and Professor of ECE Department of
Delhi Technological University. Her areas of research interest are:
Computer vision, sensor networks and image processing.
In the present study, she has provided expert guidance in
problem formulation and offered necessary direction and overall
support to carry out this study successfully.

KUMAR, et al.: A NOVeL TRAFFIC BASeD FRAMewORK FOR SMARTPHONe SeCURITy ANALySIS

381

dr Gurjit Singh walia obtained his PhD in the field of
Computer Vision from Delhi Technological University (Formerly
Delhi College of engineering), Delhi. He is working as a
Senior Scientist in DRDO, Delhi. His current research interests

include: Machine learning, pattern recognition, and information
security.
In the present study, he has guided the author and supervised
the work.

