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1.  IntroductIon
Smartphones are replacing conventional mobiles as well 

as computational devices due to their portability and ease 
of handling almost everything ranging from storing private 
data to making banking transactions. Smartphones having 
Android OS are extensively familiar and have wide usage 
due to their open architecture and the assortment of apps it 
affords. As per the recent information by IDC1 (International 
Data Corporation), the market share of android smartphones 
is 83.8 per cent till March 2021 and it will grow to 85 per cent 
by March’2025. Due to its widespread usage, we are deluged 
with a variety of smartphone apps that makes our life simple 
and easier. Flooding of these apps tempts attackers to design a 
variety of malapp (malicious applications) which are directed 
toward smartphones to steal vital private information, acquire 
root privileges, build botnets to attack networks, or extract 
critical data from smartphones. These malwares after stealing 
the critical data sent it to the remote servers controlled by 
hackers. This paper aims at identifying the existence of those 
malapps which are distantly controlled by hackers via remote 
servers to collect the critical data. The network traffic-based 
framework extracts required features that are fused resulting 
in a unified feature. The unified feature is further given to the 
optimal classifier for the detection of malwares. This n/w traffic 
analysis-based framework aids in creating robust solutions for 
identifying android malwares.

These malapps are the most deterrent to the security of 
these devices. Smartphone security refers to the measures taken 
to thwart these malwares to protect sensitive information stored 

in or communicated by smartphones. The security analysis of 
smartphones mainly deals with findings of the vulnerabilities 
and intimidations while using smartphone applications. 

Mobile devices including Smartphones generated 
about 54.8 per cent of worldwide web traffic2 and analyzing 
this traffic leads to incredible results in detecting malapps. 
Analyzing traffic3,4 is accomplished by studying the patterns 
in the network traffic for its identification and segregation for 
further investigation. Numerous traffic features are extracted 
from the network traffic patterns. Mainly Hypertext Transfer 
Protocol (HTTP) and Transmission Control Protocol (TCP) 
are two types of traffic that are prevalent in the smartphone 
ecosystem.  Features extracted from HTTP and TCP are 
exploited in detecting the malapps. The HTTP header features 
could not detect the malapps in the encrypted traffic and TCP-
based detection models are impervious to encrypted traffic. 
Therefore, TCP flow-based detection methods are mainly 
exploited in detecting malapps.

Two widely used malware detection methods employed by 
researchers pivots around static5 and dynamic analysis6-8. The 
amalgamation of these widely used detection methods is also 
exploited by some researcher’s resulting in hybrid analysis9. 
Static investigation-based detection techniques failed to detect 
apps having code obfuscation, and conventional dynamic 
investigation-based detection needs are quite cumbersome. N/w 
traffic based dynamic detection excerpts detection attributes 
from n/w traffic and uses Machine Learning (ML) techniques 
to categorize mobile apps. Our detection prototype is based on 
TCP-based features. 

In short, the following are the main contributions to the 
manuscript:
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Proposed a traffic feature-based fusion that comprises of • 
optimal combination of multiple traffic features by cross-
diffusion of order and sparse graphs to produce a unified 
feature.
The unified feature vector thus generated is given to • 
the three parallel ML classifiers and classifiers scores 
obtained are fused to enhance the accuracy attained by 
separate classifiers. 
Presented the performance comparison with existing state-• 
of-the-art methods using standard data sets available.  

In Section 2, related work is presented. In Sec 3, we 
cover the proposed identification framework for malware 
identification and the assessment of our technique is presented 
in Sec 4. In Sec 5, we conclude the paper.

2.  related Work
Arora10, et al. examine the TCP-based features based on 

traffic to shape the classifier for Android malware with more 
than 90 per cent of detection accuracy. Arora11 et al. came up 
with a hybrid model named NTPDroid (network traffic and 
Permissions based Android malapp detection framework), 
that uses permissions and traffic features from the apps and 
exploits a Frequent Pattern Growth algo to generate frequent 
patterns of permissions and traffic features to achieve detection 
accuracy of 94 per cent. Wang12 et al. proposed an efficient 
malware detection technique by using text semantics of n/w 
traffic by studying each HTTP flow. These HTTP packets were 
further processed by NLP (Natural Language Processing) to 
take out text-level features achieving an accuracy of 99.15 per 
cent but the method achieves 54.81 per cent for unknown apps 
in the wild. 

Liu13 et al. proposed a malware detection technique built 
on TCP n/w traffic, where network traffic generated by apps 
gets a greater number of a TCP flow to extract packet sizes 
as features. Results achieve 97 per cent of detection accuracy. 
Ding Li14 et al. introduced a framework named DroidClassifier 
for the identification of HTTP header fields of n/w traffic 
created by malapps by using a supervised method to train the 
malware dataset. Moreover, Clustering is also used to increase 
the classification efficiency. The results achieve 90 per cent of 
detection accuracy. Li15 et al. proposed a multilevel detection 
system named  MulAV, in which it obtains info from n/w 
traffic, App’s source code, and geospatial info where n/w traffic 
is collected by TCPdump Tool. The info is further fed to the 
ML method to train the model which identifies malapps. The 
result achieves a detection rate of 97.8 per cent. Wang16 et al. 
discussed a technique to parse the HTTP packets of n/w traffic 
where features analysed are packet avg. length, number of 
upload and download packets, distribution of packet size, etc. 
Features were further extracted to obtain the pure malicious 
traffic dataset and this is used to detect malwares. Su17 et al. 
presented an Android detection method that uses TCP-based 
behavioral characteristics to detect malapps. Here capturing of 
n/w traffic is done using NTM [network traffic monitor] tool 
and training are done via n/w traffic classifier. Results achieve 
99.2 per cent and 94.2 per cent of detection accuracy by using 
Random forest and j48 classifier. 

Zulkifli18, et al. proposed a detection process based on 
n/w traffic which registers the app behavior and considered 
7 TCP-based n/w traffic features from Contagio dumpset and 
Drebin dataset in which Drebin dataset achieved 98.4 per 
cent of detection accuracy on J48 decision tree algo. Malik19,  
et al. proposed a pattern-based detection method CREDROID 
which identifies malapps based on the DNS (Domain Name 
Service) queries, data it transfers to the remote server from n/w 
traffic logs, and also the protocol used for communication for 
identifying the credibility of the app. Moreover, the Android 
app can be checked without rooting the android phone. Wang20 
et.al. proposed a malapp detection framework exploiting the 
URLs (Uniform Resource Locator) visited by them. Here 
the malapp detection model is based on a multi-view neural 
network with a detection accuracy of 98.35. Multiple views 
maintain copious semantic info from inputs for segregating the 
apps. Wang21, et al. suggested a framework for android malapp 
identification leveraging both the TCP and HTTPS features. 
Here, the app detection was done on the server-side without 
affecting the user experience. C4.5 ML algo is used to train the 
model with 8312 benign and 5560 malign apps for identifying 
unknown apps with an accuracy of 97.89 per cent. Sanz22,  

et al. offered a lightweight malapp detection framework using 
TCP-based network features with an accuracy of 90 per cent 
and a false-positive rate of less than 3 per cent. Here, the total 
number of 359 malapp and benign apps are used along with 
two Random forests and AdaBoost ML algorithms.

Upadhayay23 et.al. suggested a hybrid-based malware 
detection model using network traffic and permissions with 
a higher frequency of occurrence to achieve the detection 
accuracy of 95.96 per cent. Alshehri24, et al. proposed 
an innovative method to detect the repackaged apps by 
investigating the network traffic behavior of smartphones. 
Here authors exploited the request traffic generated by the 
apps. A total number of 8645 applications were used for 
experimentation. Here the accuracy of request flows attained is 
95.1 per cent an improvement of 18.3 per cent of accuracy when 
compared with contemporary methods. Sihag25, et al. proposed 
network packet-based investigations of captured traffic of the 
smartphone. Here, the authors represent the captured network 
packet interactions as images. These images were given to CNN 
(Convolution Neural Network) to achieve a detection accuracy 
of 99.12 per cent. Norouzian26, et al. offered a hybrid detection 
method based on network traffic flow and static features. Here 
network flow features are combined with static graph vectors 
to detect malapps with 97 per cent accuracy.

3.  IdeNTIFIcATIoN FrAmeworK 
ProPoSed
The proposed traffic analysis framework for smartphone 

security analysis is elucidated in Fig. 1. The framework 
consists of four blocks viz. traffic feature fusion, classifier 
score-fusion, decision criteria, and reference apps update 
to accomplish efficient malapp detection. extracted traffic 
features are converted into three traffic feature vectors. All the 
three traffic feature vectors are used for constructing similarity 
graphs by the means of cosine similarity. Similarity graphs are 
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again converted to normalised graphs by using the anchored 
normalisation technique. Normalised graphs are again used 
to form the sparse and order graphs. These obtained sparse 
and order graphs are further cross diffused to generate three 
fused traffic feature vectors. The three fused feature vectors are 
further concatenated to form the highly distinct unified feature 
vector. This distinct unified feature is discriminatory and given 
to three classifiers. The scores obtained from these classifiers 
are again optimally combined to classify a given test app.

Because of the numerous attributes encapsulated in the 
android based smartphone apps, individual ML algo shows its 
incompetence to categorize these apps accurately. To achieve 
overall detection accuracy, the framework uses three classifiers 
viz. Random Forest (RF), k-Nearest Neighbor (KNN), and 
Support Vector Machine (SVM) for app categorisation. RF 
performs superbly when the dataset is large and it is not 
susceptible to outliers. SVM performs better in the limited 
dataset and it is optimal for binary classification. If there is 
no training period, then KNN performs best. The framework 
leverages modified PCR-5 rules for score fusion. Finally, in 
decision block score wPCR5 is matched with the threshold wth 
and a particular test app is categorised as benign if wPCR5 ≥  wth  
or otherwise malign.

3.1  Traffic Feature Fusion 
It is apparent from Fig. 1 that traffic feature fusion 

comprises feature extraction followed by similarity, normalised, 
sparse, and order graph generation. The generated sparse and 
order graphs are further cross diffused giving unified feature 
vector U as output.

3.1.1 Traffic Feature Extraction
The traffic gathering platform is used to collect the 

malign and benign traffic data produced by malign and benign 
apps, respectively. A firewall is installed on the platform to 
guarantee its security. Figure 2 shows our methodology for 
traffic gathering. The traffic gathering platform comprises four 
constituents, i.e., the control server, traffic collection module, 
app repository having downloaded malign and benign apps, 
and TCP traffic storage module containing only filtered TCP 
flows. These four components converse with the aid of a LAN 
switch. The control server is controlling the traffic gathering job 
in the platform by assigning the job to the different modules. 
The apps from the apps repository are directed to the traffic 
collection module, where the android virtual machine (AVM) 
is used to run the apps and collect the corresponding traffic. The 
collected traffic is further directed to the TCP traffic storage 
module, where only TCP flows are stored and the rest of the 
traffic is filtered out. Here android emulators are used to install 
and running apps on AVM. AVM comprises of packed android 
s/w stack and it runs just like a physical smartphone. Apps are 
run on an emulator. An emulator is restarted to fuel the malign 
apps to generate malicious behavior in the network traffic. A 
script in python was written to extract the features from the 
TCP flows. The extracted TCP features used are tabulated in 
Table 1.

Fifteen traffic features were extracted for a test app t along 
with N apps from the reference dictionary, { , }d D D+ −∈ , D+

which comprises of benign apps and D− comprises of the 
malign app. The traffic feature extraction procedure is shown 
in Fig. 2. Update in Fig.1 shows that the reference dictionary 

Figure 1. Proposed traffic-based framework for smartphone security analysis.
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Figure 2. Traffic gathering platform.

Table 1. extracted TcP based traffic features

Feature 
symbol Feature description

1F Avg. no. of bytes sent

2F Avg. no. of bytes received

3F Total no. of headers bytes sent

4F Avg. no. of bytes per second

5F The ratio of the no. of incoming to outgoing bytes 

6F Avg. no. of the packet sent per second

7F Avg. no. of the packet received per second

8F
The ratio of the no. of incoming to no. of outgoing 
packets

9F Std. deviation of the packet- size sent

10F The standard deviation of the packet- size received

11F Avg. no. of the packet sent per-flow 

12F Avg. no. of the packet received per-flow 

13F Avg. no. of bytes sent per-flow 

14F Avg. no. of bytes received per-flow 

15F Std. deviation of the length of the flow

apps are constantly updated with the most recent malign and 
benign apps to improve the detection ability of the framework. 
Here, only TCP packets and TCP-related traffic features are 
considered. Traffic features exploited in our framework are 
depicted in Table 1. From the above 15 traffic features, we 
form three vectors such that each vector complements the 
other in detecting the malicious app. The vectors formed are 
as follows:

1 { 1, 2, 3, 4, 5}V F F F F F=                                              (1)
2 { 6, 7, 8, 9, 10}V F F F F F=            (2)
3 { 11, 12, 13, 14, 15}V F F F F F=           (3)

The proposed solution is realised by the formation of the 
three complementary traffic feature vectors, namely V1 (byte-
based features), V2 (packet-based features), and V3 (flow-based 
features). We have built three feature vectors as stated in  
Eqn. (1) - Eqn. (3) for each test app and reference app. In 
feature-fusion, traffic-features vectors for reference and test 
apps are utilised for graph formation. The test app’s traffic-
feature vectors represent one node and the reference app’s 

traffic-feature vector represents other nodes. Consequently, 
non-linear graphs are formed for all test app t corresponding to 
three traffic feature vectors.

3.1.2 Graph Generation
This subsection mainly comprises the generation of 

similarity, normalised, sparse, and order graphs. For traffic 
feature vectors, 1

tV , 2
tV  and 3

tV of test app t corresponding 
to three traffic-based features, we construct graphs 

( , , )G Ver E wφ φ φ φ= , where {1,2,3}φ∈ , corresponding to 
three traffic-based features and wφ are edge weights acting 
as similarity betwixt traffic-feature vectors of apps t and d 
where { , }d D D+ −∈ , Verφ correlates to the vertices of the 
created similarity graphs, Eφ correlates to the edges of the 
similarity graphs that characterize the association between 
test apps and the reference apps. In the suggested framework, 
similarity matrices n nGφ ×∈  are constructed by calculating the 
cosine similarity between the three traffic-feature vectors of the 
test app t and reference apps d. For feature set values ( ),t dV Vφ φ , 
where {1,2,3}φ∈  corresponds to three traffic-feature vectors, the 
similarity edge weights are symbolised by the vector ( , )w t rφ  and 
are derived by the cosine similarity between the pair ( ),t dV Vφ φ  
from the following Eqn. (4).

*
( , ) t d

t d

V V
w t d

V V

φ φ
φ

φ φ
=

            (4)        

Similarity graphs created using eq.(4) for three traffic feature 
vectors are further normalised using an anchor avg stdA A Aφ φ φ= +
, where avgAφ  stdAφ and are average and standard deviation of 
malicious score distribution for φ  traffic feature vector. we 
consider only malicious scores for calculating the anchor. The 
normalised graphs N φ , whose edge weights matrix jw

φ
, where 

{1,2,....., }, {1,2,3}j n∀ ∈ ∀φ∈ is constructed by Eqn. (5),

min( )
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          (5)

The obtained normalised graphs were transformed to 
obtain the sparse S φ and order Oφ graphs. Sparse graphs 
guarantee robustness to noise while boosting the strong info 
and suppressing the weak info corresponding to each traffic 
feature vector. A sparse graph { , , }S Ver Eφ φ φ φ= η is built using 
KNN by Eqn. (6).

( ), |

0,

j j N
w w KNN

Otherwise

φ

φ φ

φ
 ∈ νη = 
                          (6) 

ν is the parameter controlling the sparseness of the graph. 
Edges corresponding to reference apps that are similar to the test 
apps are retained and the rest of the edges are removed to ensure 
robustness to noise. To discriminate the significant reference 
apps from the insignificant ones, each of the reference apps is 
assigned a weight according to its order. Therefore, order(s) is 
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assigned to each reference app based on its similarity with the 
test app, which is calculated by the edge weight between the 
test app and the reference app in the normalised graph. The 
order graph { , , }O Ver Eφ φ φ φ= µ having the weight matrix is 
constructed by Eqn.(7) :

( ), {1,2,... }jorder w j n
φφµ = ∀ ∈            (7)

Where function order, allocates order(s) to each reference 
app.

Details of feature unification are presented in the 
subsequent subsection.

3.1.3 Cross Diffusion
Three traffic feature vectors created are fused in a way 

to extract complementary info in them by optimal non-linear 
cross-diffusion of generated sparse and order graphs. Features 
fusion via cross-diffusion technique27 was offered and its results 
confirm that the feature fusion by non-linear graphs techniques 
are significantly more accurate than linear graph-centered 
approaches. Graph-built unification retains robust features of apps 
and rejects all the frail features that add to misclassification. 

Order graphs averts biasness and sparse graphs guarantees 
elimination of any outlier behavior. Cross diffusion [eq.
(9)] basically comprised of addition of sparse graphs of two 
other feature vectors to form 

tφα [eq.(8)], where 
tφα is the tht

element of the set φ and subsequently their multiplication with 
order graph of the feature vector with 

tφα .
t Y

Y

φα = η∑  where, { } { }tY ∈ φ − φ           (8)

t t tφ φ φβ = α µ⊙
 
 {1,2,3}∀φ∈             (9) 

         Here, we add the sparse graph of two other feature vectors 
and then multiply it with the order graph of the feature vector 
turn by turn to generate three fused vectors. Eqn. (9) can be 
further represented [eqn. (10,11,12)] in the form of fused vec-
tors (

1 2 3

, ,V V VF F F ), sparse vectors (
1 2 3

, ,V V VS S S ) and order 
vectors (

1 2 3

, ,V V VO O O ) as follows:

               

1 2 3 1

( )V V V VF S S O= + ⊙

                             

 (10)

          2 3 1 2

( )V V V VF S S O= + ⊙                       (11) 

          
3 1 2 3

( )V V V VF S S O= + ⊙                      
 

    
  (12)                                                        

The above-fused feature vectors
1VF , 

2VF and
3VF

are concatenated to form the unified feature vector, U by  
Eqn. (13).

1 2 3V V VU F F F= + +           (13)

This unified feature vector is given to three parallel 
classifier(s) i.e. SVM (Support Vector Machine), RF (Random 
Forest) & KNN (K Nearest Neighbors). The classifiers scores of 
these parallel classifiers are further fused to classify apps. Details 
of Optimal classifier fusion follow in the next sub-section.

3.2  classifier Score-Fusion 
Created U is fed to three classifiers connected in parallel. 

Obtained classification scores [Ss (SVM), Sr (RF), Sk (KNN)] 
are again fused by the classifier score fusion technique. 
There are various score fusion techniques28,29 reported in the 
literature. Here we have chosen the PCR-530 to solve the highly 
contradictory scores of the three classifiers. PCR-5 is used 
to solve ambiguous problems in multi-sensor score fusion. 
Android app detection is a certainly ambiguous problem as 
we are uncertain whether the app is malicious or not. In the 
suggested model, three classifiers are selected and the fusion 
of the output of these classifiers can be modeled as a multi-
sensor score fusion problem as their outputs are independent 
of each other. Therefore, Android app detection satisfies all the 
conditions of the PCR-5 theory. In our framework, the frame 
of discernment Θ  has two elements B M and corresponding 
benign and malign. Classifier scores [Ss, Sr, Sk]  are converted 
individual Basic Belief assignments or belief masses by the 
Eqn.(14).

( ) ( )
( ) 1 ( )

i i i

i i i

m C S
m C S

Β = × Β
Μ = − × Β

    
                          (14)

Where ( , , )i s r k∈  & iC  denotes the confidence measure 
of the single classifier. 

These belief masses are combined by PCR-5 rules. The 
conjunctive consensus among the classifiers is assessed by  
Eqn. (15, 16)

( ) ( )* ( )* ( )srk s r km m m mΒ = Β Β Β         (15)

( ) ( )* ( )* ( )srk s r km m m mΜ = Μ Μ Μ                             (16)

Overall conflict among the classifiers is estimated by  
eqn. (17). It comprises six partial conflicts-masses.

( ) ( )* ( )* ( ) ( )* ( )* ( )
( )* ( )* ( ) ( )* ( )* ( )
( )* ( )* ( ) ( )* ( )* ( )

srk s r k r s k

k s r s r k

r s k k s r

m m m m m m m
m m m m m m
m m m m m m

Β ∩ Μ = Β Μ Μ + Β Μ Μ +
Β Μ Μ + Μ Β Β +
Μ Β Β + Μ Β Β  (17)

Six partial conflict masses are further redistributed using 
PCR-5 rules in ratio to masses assisting these partial conflicts. 
The values of pi and qi are a contribution to Benign and Malign 
masses following reallocation of partial conflicts, where  
i = 1,…,6 and are determined by Eqn. (18-23).

 1 1 ( )* ( )* ( )
( ) ( )* ( ) ( ) ( )* ( )

s r k

s r k s r k

m m mp q
m m m m m m

Β Μ Μ
= =

Β Μ Μ Β + Μ Μ
     (18) 

 

2 2 ( )* ( )* ( )
( ) ( )* ( ) ( ) ( )* ( )

r s k

r s k r s k

m m mp q
m m m m m m

Β Μ Μ
= =

Β Μ Μ Β + Μ Μ
     (19)

3 3 ( )* ( )* ( )
( ) ( )* ( ) ( ) ( )* ( )

k s r

k s r k s r

p q m m m
m m m m m m

Β Μ Μ
= =

Β Μ Μ Β + Μ Μ    (20)

4 4 ( )* ( )* ( )
( )* ( ) ( ) ( ) ( )* ( )

s r k

r k s s r k

m m mp q
m m m m m m

Μ Β Β
= =

Β Β Μ Μ + Β Β
  (21)

5 5 ( )* ( )* ( )
( )* ( ) ( ) ( ) ( )* ( )

r s k

s k r r s k

p q m m m
m m m m m m

Μ Β Β
= =

Β Β Μ Μ + Β Β
  (22)

6 6 ( )* ( )* ( )
( )* ( ) ( ) ( ) ( )* ( )

k s r

s r k k s r

p q m m m
m m m m m m

Μ Β Β
= =

Β Β Μ Μ + Β Β   (23)

Approximated contributions pi and qi where i = 1,…,6 are 
added on to their respective conjunctive consensus. The final 
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belief of the app being benign mPCR5 (B) and that of an app 
being malign mPCR5 (M) are determined by Eq. (24) and Eq. 
(25) respectively.

6

5
1

( ) ( )PCR srk i
i

m m p
=

Β = Β + ∑          (24)

6

5
1

( ) ( )PCR srk i
i

m m q
=

Μ = Μ + ∑
    

                          (25)

The decision about the given test app t is taken after a 
comparison of the mPCR5 (B) with mth. If 5 ( )PCR thm mΒ ≥ then 
the t is acknowledged as benign else it is taken as malign. 

4.  evaluatIon
Quantitative analysis on various performance matrices 

like Precision, Accuracy, F1 Score, Specificity, and Sensitivity 
was performed on the suggested and two other state-of-the-art 
methods. Their ROC (Receiver Operating Characteristic) plots 
were also drawn for comparison. The ROC curve is the plot of 
FAR (False Acceptance Rate) vs 1-FRR (False Rejection Rate) 
Following are the details of the evaluation process.   

4.1  databases
We choose about 3000 samples of malign apps and 

benign apps each downloaded from the benchmarked datasets 
i.e. Drebin31, AMD32, Androzoo33, and CICMalDroid202034. 
Benign apps are taken from Google Playstore. The malign apps 
generated both the benign and malign traffic as most of these 
malign apps are formed from the benign apps by their reverse 
engineering and repackaging after inserting maliciousness into 
them. Finally, a dataset is constructed by TCP-based network 
flows to assess the performance of the proposed framework. 
Network flows corresponding to benign and malign apps are 
stored in pcap format by running selected apps over and over 
for a period of 6 hrs. We select only those apps from the datasets 
that produce the network traffic and filter out the TCP-based 
flows. Traffic features as tabulated in Table 1 are extracted 
from these flows using the script written in python. 

we select about 500 feature-flow vectors each 
corresponding to benign and malign flows from the total 
extracted flows corresponding to DB1, DB2, DB3, and 
DB4 datasets to train our model. We further integrate these 
500 feature flow vectors of benign and malign flows into an 
integrated set of 2000 benign and malign flows each to form 
the fifth set of TCP features containing 2000 benign and 
malign feature vectors each. Further, we apply a ten-fold cross-
validation procedure for training and testing are done on five 
sets of feature sets and finally, average values are taken as the 
results. All investigations are done on MATLAB R2018a on 
16GB RAM, i7, and 2.7 GHz processor. 

4.2  Performance Assessment
Performance of the suggested framework is realised by the 

means of TCP features extracted from TCP flows corresponding 
to malign and benign apps as in Table 2 and calculating 
evaluation matrices through ten-fold cross-validation. It is 
compared to training time and mean-time-to-detect (MTTD) 
against three state-of-the-art approaches. Here, MTTD is the 
time taken to detect malapps. Evaluation matrices results are 

Table 2. experimentation dataset

App type 
dataset

malign_
Apps(m)

Benign_
Apps(B) Source

DataBase(DB)1 750 750 Androzoo(M)
GooglePlay(B)

DataBase(DB)2 750 750 AMD(M)
CICMalDroid2020(B)

DataBase(DB)3 750 750 CICMalDroid2020(M)
GooglePlay(B)

DataBase(DB)4 750 750 Drebin(M)
GooglePlay(B)

also compared with three state-of-the-art techniques FED12, 
MMD20, and LwN21. 

The three state-of-the-art methods viz FED, MMD and 
LwN are compared with the proposed method. In FeD, a 
malware detection technique is built on TCP n/w traffic, wherein 
network traffic generated by apps comprises TCP flows. These 
flows are used to extract packet sizes as features. Standard 
deviation, Mean, min, and max values of the sizes of the first 
few packets of TCP flows are taken as features. Here author 
leverages the RF ML algorithm to train the model to achieve 
97 per cent of detection accuracy. In the second state-of-the-art 
method MMD, the authors proposed a framework for android 
malapp identification leveraging both the TCP and HTTPS 
features. Here, the malapp detection is done on the server-side 
without affecting the user experience. C4.5 Decision tree ML 
algo is used to train the model with 8312 benign and 5560 
malign apps for identifying unknown apps with an accuracy 
of 97.89 per cent. In the LwN method, a lightweight malapp 
detection framework using TCP-based network features was 
given with an accuracy of 90 per cent and a false-positive rate 
of less than 3 per cent. Here, the total number of 359 malapp 
and benign apps are used along with two RF and AdaBoost ML 
algorithms.

Detection Accuracy, F1 Score, Specificity, Sensitivity, 
and Precision are calculated using equations 26, 27, 28, and 
29 respectively.

TP TNDetection Accuracy
TP FP TN FN

+
=

+ + +
       (26)

21
2

TPF Score
TP FP FN

=
+ +

          (27)

TNSpecificity
TN FP

=
+

                                

                                                                                     (28)
TPSensitivity

TP FN
=

+
                                         (29)

Precision TP
TP FP

=
+

                                                   (30)

where, TP, FP, TN, and FN are true positive, false positive, 
true negative, and false negative respectively. ROC curves for 
the proposed method and comparative methods FED, MMD, 
and LwN for flow sets corresponding to datasets DB1, DB2, 
DB3, and DB4 are depicted in Fig. 3. The experimental results 
are presented in Table 4. It is observed that the mean value of F 
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Figure 3.  roc curves for the proposed method and comparative methods mmd, Fed, and LwN for flow sets corresponding to 
datasets dB1, dB2, dB3, and dB4. 

score, detection accuracy, sensitivity, specificity, and precision 
for the proposed framework are 0.98742, 98.74 per cent, 99.04 
per cent, 98.44 per cent, and 98.456 per cent respectively. The 
highest value of the F score, detection accuracy, sensitivity, 
specificity, and precision is 0.9890, 98.90 per cent, 99.80 per 
cent, 99.60, and 98.61 respectively. 

The proposed technique outshines similar state-of-the-art 
traffic-based methods when evaluated on extracted TCP features 
as presented in Table 1. Enhancement for mean accuracy of 
the suggested scheme is achieved by 6.28 per cent, 4.34 per 
cent, and 2.3 per cent over LwN, FeD, and MMD respectively. 
This enhanced value of accuracy of the suggested framework 
is attained by the optimal combination of traffic features using 
a cross-diffusion strategy and fusion of classifier(s) score 
using the DSmT-based PCR-5 rule to form a clear-cut border 
for differentiating malign apps from benign apps. Here, three 
feature vectors comprising the three sets of complementary 
features are fused in a nonlinear style through cross-diffusion 

wherein the rugged features are enhanced and the frail features 
are repressed resulting in the robust UF. Further, in the optimal 
score level fusion process, UF is fed to the three ML classifiers 
where concurrent scores are boosted and discordant classifier 
scores are suppressed. Also, the conflict between the multiple 
classifiers is resolved to get the final decision score. 

The suggested framework is also compared to MTTD of 
different state-of-the-art techniques. To calculate the MTTD of 
contemporary methods, learned models are fed with the 250 
arbitrary apps for investigation. Our proposed method attains 
an amazing average analysis performance of 5.8 seconds per 
app. Similarly, the average analysis performance of LwN, 
FED, and MMD comes out to be 6.5 seconds, 7.3 sec., and 
6.9 seconds respectively. Hence, our proposed framework 
outshined other methods in respect of detection time, detection 
accuracy, and efficacy in real-life app scenarios. MTTD also 
confirms that the suggested framework detects the apps with 
high accuracy in a reasonable time.
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Table 3. Performance comparison in terms of accuracy with existing methods using captured data from 20 different apps

Apps 
UF+rF lWn Fed mmd Proposed method

Accuracy
AccuRadio 0.8900 0.8300 0.8500 0.8900 0.9400
Maps 0.8700 0.8100 0.8400 0.8100 0.9100
WhatsApp 0.8600 0.8200 0.8100 0.8700 0.9300
Outlook 0.8300 0.8100 0.8300 0.8500 0.9100
Mail 0.7800 0.8400 0.8500 0.8400 0.9300
Netflix 0.9000 0.7700 0.8900 0.9100 0.9500
Twitter 0.9300 0.7500 0.7600 0.9200 0.9400
Facebook 0.9100 0.9000 0.8700 0.9300 0.9500
youtube 0.8800 0.8600 0.8800 0.9200 0.9700
Gmail 0.9200 0.9300 0.8900 0.9500 0.9600
DroidDream 0.8100 0.8400 0.9000 0.9200 0.9800
DroidKungFu1 0.8700 0.8800 0.9300 0.9400 0.9600
Buzz 0.8200 0.8400 0.9100 0.8900 0.9400
BlueScanner 0.8500 0.8400 0.9400 0.9300 0.9800
Plankton 0.8200 0.8500 0.9200 0.9100 0.9600
WallpaperGirls 0.8100 0.8200 0.8300 0.8600 0.9300
StylePhotoCollage 0.8700 0.8400 0.9100 0.9200 0.9400
PrivateSms 0.8300 0.8500 0.9400 0.8700 0.9900
PartMessage 0.8800 0.9000 0.9500 0.8900 0.9700
IdeaSecurity 0.8200 0.8800 0.9000 0.9600 0.9800

Table 4.   Performance metrics (Pm) for proposed methods and other comparative methods.

dataset Pm lWn Fed mmd Proposed method

DB1 FLOwSeT 

Accuracy 0.9250 0.9440 0.9620 0.9880
Specificity 0.9100 0.9280 0.9540 0.9960
Sensitivity 0.9400 0.9600 0.9700 0.9800
F1 Score 0.9261 0.9449 0.9623 0.9879
Precision 0.9126 0.9302 0.9547 0.9959

DB2 FLOwSeT 

Accuracy 0.9230 0.9380 0.9630 0.9890
Specificity 0.9060 0.9360 0.9660 0.9860
Sensitivity 0.9400 0.9400 0.9600 0.9920
F1 Score 0.9243 0.9381 0.9629 0.9890
Precision 0.9091 0.9363 0.9658 0.9861

DB3 FLOwSeT 

Accuracy 0.9260 0.9440 0.9630 0.9881
Specificity 0.9140 0.9420 0.9460 0.9780
Sensitivity 0.9380 0.9460 0.9800 0.9980
F1 Score 0.9269 0.9441 0.9636 0.9881
Precision 0.9160 0.9422 0.9478 0.9784

DB4 FLOwSeT

Accuracy 0.9220 0.9460 0.9660 0.9870
Specificity 0.8860 0.9260 0.9560 0.9780
Sensitivity 0.9580 0.9660 0.9760 0.9960
F1 Score 0.9247 0.9471 0.9663 0.9871
Precision 0.8937 0.9288 0.9569 0.9784

INTEGRATED
FLOwSeT 

Accuracy 0.9270 0.9480 0.9680 0.9850
Specificity 0.9405 0.9455 0.9645 0.9840
Sensitivity 0.9133 0.9505 0.9715 0.9860
F1 Score 0.9260 0.9481 0.9681 0.9850
Precision 0.9388 0.9458 0.9647 0.9840



KUMAR, et al.:  A NOVeL TRAFFIC BASeD FRAMewORK FOR SMARTPHONe SeCURITy ANALySIS

379

Performance comparison in terms of accuracy with 
existing methods using online captured data from 20 different 
apps chosen from diverse sources is shown in Table 3. Here, 
we have taken Smartphone Samsung Galaxy S9 having android 
8 OS with 8 GB RAM and 64 GB storage for generating the 
network traffic. Our framework detects the apps that generate 
the flows similar to one generated during the training phase 
with high accuracy. The trained model is also tested on the 
network flows captured from the 20 different apps under an 
unconstrained environment using real smartphones instead of 
emulators and the performance comparison is done with our 
framework versus three different state-of-the-art methods viz. 
LwN, FeD, and MMD and one self-proposed method RF+UF 
i.e. unified feature fed to the random forest algorithm. From 
Table 3, the average accuracy obtained when the random apps 
are tested on LwN, FeD, MMD, RF+UF, and the proposed 
method is 85.75 per cent, 84.30 per cent, 88.82 per cent, 
89.90 per cent, and 95.10 per cent respectively. Our proposed 
framework is dependent on the selected number of features. 
Generating the traffic flows in an unconstrained environment 
is cumbersome as traffic generation gets hindered when the 
internet connection is interrupted. Sometimes, the malign 
app took a significant amount of time to generate malicious 
behavior in traffic flow.

5.  coNcLUSIoN
A novel network traffic analysis-based framework has 

been proposed in the manuscript to detect android malapps by 
exploiting the traffic features. It consists of four blocks viz. 
traffic feature fusion, classifier score-fusion, decision criteria, 
and reference apps update to accomplish efficient malapp 
detection Fifteen TCP-based features have been used in feature 
fusion to get a unified feature vector which is given to three 
Multilayer classifiers and find fusion scores for detecting 
malwares. The reference dictionary apps are regularly updated 
with zero-day malign and benign apps to improve the detection 
ability of the framework. It has been shown that the Framework 
proposed achieves an average detection accuracy of 98.74 per 
cent and outperforms other existing methods. A comparison of 
the evaluation matrices of the suggested framework with other 
contemporary approaches reveals better detection accuracy of 
malapps. Our future endeavor is to incorporate other dynamic 
and static attributes for detecting sophisticated malapps and to 
overcome all the limitations discussed.
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