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AbstrAct

 Group Key Distribution (GKD) protocols are designed to distribute a group key to several users for establishing 
a secure communication over a public network.  The central trusted authority, called the key distribution center (KDC) 
is in charge of distributing the group keys. For securing the communication, all the users share a common secret 
key in advance with KDC. In this paper, we propose a secure and efficient Group Authenticated Key Distribution 
(GAKD) protocol based on the simple idea of encryption in matrix rings. In this protocol, each user registers in private 
with the KDC, while all the other information can be transferred publicly. The scheme also supports authentication 
of group keys without assuming computational hard problems such as Integer Factorization Problem (IFP). 
  The analysis of our GAKD protocol shows that the proposed protocol is resistant to reply, passive and 
impersonation attacks. Our construction leads to a secure, cost and computation- effective GAKD protocol.

Keywords: Group key distribution protocols; Matrices; Group communications

Defence Science Journal, Vol. 72, No. 5, September 2022, pp. 703-711, DOI : 10.14429/dsj.72.17461 
 2022, DESIDOC

Received : 31 August 2021, Revised : 8 April 2022 
Accepted : 7 July 2022, Online published : 1 November 2022

1. IntroDuctIon
The basic condition for secure group communications 

over public channels is that all group users should agree on a 
common secret key. Group Key Exchange (GKE) protocol is 
the most basic component of group communications where the 
fundamental goal is to establish a common secret key (group 
key) in a way that no one other than the group members can 
obtain the group key. The objective of group key exchange 
protocol with authentication is to establish a secret group key 
between the legitimate group members who can verify the 
authenticity of the shared key. This secret group key (session 
key) is used to facilitate secure communication services such 
as confidentiality, authentication, data integrity, etc.

Most of the popular group key protocols are divided into 
two categories: (1) Group Key Exchange (GKE) protocols: 
there is no explicit KDC and all communicating parties 
interactively determine the session keys and (2) Centralized 
Group Key Distribution (GKD) protocols, where a Key 
Distribution Center (KDC) is in charge of managing the entire 
group from selecting session keys to transporting these secretly 
to all communicating entities. The most famous key exchange 
protocol is Diffie–Hellman key agreement protocoll2 which can 
provide session keys for only two entities. Various attempts 
have been made for extending the 2-party Diffie-Hellman key 
agreement protocol to its multi-party variant.13,1,7

Centralized group key distribution protocols are widely 
used due to their efficiency in implementation. Guo,3 et al.also 

proposed a GAKD protocol based on the generalized Chinese 
remainder theorem. Zheng,16 et al.proposed two variations 
for centralized key distribution protocols named Fast Chinese 
Remaindering Group Key and Chinese Remaindering Group 
Key. Shamir’s secret sharing has also been used to design 
group key distribution protocols.5,9,15 For example, Harn-Lin5 
and Liu,8 et al. proposed authenticated group key transfer 
protocols where they use the IFP to resist insider attacks. 
Meng, et al.9 in have also proposed a GKD protocol which is 
based on a secret sharing scheme by Shamir but the security 
of their protocol does not rely on any computational hard 
problem. There are several research articles where the 
construction and analysis of group key protocols are 
discussed.6,11-12

In the protocols proposed in,5,8-9 one-way hash functions 
are computed by users to authenticate the session key. The 
KDC publishes the hash value of the session key in advance, 
which is used to verify the authenticity of the group key. 
Recently we have also worked on cryptographic protocols 
which are based on matrices over rings4,10.

On the other hand, there are some limitations of 
these protocols: some cryptographic algorithms assume 
the hardness of mathematical problems, many need a vast 
number of operations and there are some which cannot 
prevent reply attacks. Several protocols have been proposed 
in past years but most of these are deficient in terms of 
the communication overhead, computational complexity, 
storage complexity, and a large number of users. Thus, it is 
essential to design a Group Authenticated Key Distribution 
(GAKD) protocol, which has the ability to overpower the 
above weaknesses.
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Our contribution: In this paper, we design a secure 
and efficient GAKD protocol that is based on the simple 
idea of symmetric encryption in matrix rings. In the proposed 
protocol, each user needs to register with KDC in private while 
all the other messages can be transferred publicly. The protocol 
supports authentication of group keys without assuming any 
hard mathematical problem. We have also proved the scheme 
to be secure against passive, impersonation, and reply attacks. 
the scheme is feasible due to its efficiency in communication 
and computation cost.

The rest of the article is organized in the following way: 
in section 2, we provide primary definitions and results for a 
better understanding of the protocol. Section 3 presents the 
structure of group authenticated key distribution (GAKD) 
protocol, entities, and threat models for GAKD protocols. In 
section 4, we construct a group authenticated key distribution 
protocol using the results of section 4. In section 5, we discuss 
its security against passive, impersonation, and reply attacks. 
Section 6 discusses various complexities of the proposed 
scheme. In section 7, we provide experimental results with 
the implementation of the proposed protocol. Conclusions are 
finally drawn in section 8.

2. PrElIMInarIES
In this section, we propose the following symmetric 

encryption scheme and discuss its security for any passive 
adversary:
2.1 Proposed Symmetric Encryption Scheme

Let C  be a finite field with p  (prime) elements and ,m  n  
are positive integers. Suppose Alice and bob are two entities 
that share a common secret vector m

pr Z∈  and A be a public 
matrix in ( )m pnMat Z×  with m n≥  and ( )rank A n.=  For encrypting a 
message n

pZ  , Alice computes

    Ax r b+ =

and sends m
pb Z∈  to bob. bob removes the secret part r  from b  

and solves the system
  Ax b r= −

Since ( )rank A n= , we have by Rank-Nullity theorem that

( ) ( ) 0nullity n ranA Ak= − =  . Clearly, x  is a solution of the above 
system and hence bob solves the system to obtain the message 
x  uniquely. 

2.1.1Definition 1(Problem-A) 
For a given public matrix ( )mxn patA M Z∈  with m≥n, rank(A)=n, 

and a vector m
pb Z∈ , find a vector pair ( ), n

p
m
px r Z Z∈ ×  such that 

the following equation holds:

  Ax r b+ =                                        (1)
provided such x  and r  exists.

2.2 Brute Force attack on Problem-a
Since the message vector x  is chosen from n

pZ  and the 
secret vector r  is selected from (( , ) )n m

p pp
mZ Zr Zx ∈ × , the 

number of choices for x  is np  whereas the number of choices 
for the vector r  is .mp Hence, the exhaustive search attack 
results in n m n mpp p +× =   possible solutions.

2.3 a linear algebra attack on Problem-a
Consider the known matrices
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and the column vectors
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then Eqn. (1) can be rewritten as the following system of linear 
equations:

11 1 12 2 1 1 2 11. 0. ··· 0.n n ma x a x a x r r r b+ + + + + + + =  
21 1 22 2 2 1 2 20. 1. ··· 0.n n ma x a x a x r r r b+ + + + + + + =  

1 1 2 2 1 20. 0. ··· 1.m m mn n m ma x a x a x r r r b+ + + + + + + =  
   

                              
which can further be written as the following new system of m   
equation in m n+  variables,

  Ax b=              (2)

where,

( )

1

2

11 12 1n

21 22 2n n

1

m1 m2 mn 2m m n

m

1 0 0
0 1 0

A

0 0

x
x

a a a
a a a x

and       x
r

a a r

r

1a
× +

 
 
 
 … … 
  … …   = =   
  

… …   
 
 
  



       



 

                
(3)

Due to the linear independence of the rightmost m columns 
of the matrix A , we have that  ( )rank A m≥  and since A  is 

( )m m n× +  matrix, we have that  ( )rank A m≤  . Thus, we 
conclude that ( ) .rank A m=  Hence by rank-Nullity theorem,

         
( ) ( )nullity A m n rank A n= + − =

Using an algorithm such as Gaussian elimination, 
the system in Eqn. (2) can be solved in polynomial 
time but the number of solutions to the system is pn  

(since ( )Anullity n= ). From these pn  solutions, say from x the 

corresponding solutions ( , )x r  can be retrieved.

.

.

.

.

.

.
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For an initially fixed value of r,  there will be a unique 
value of x such that (x,r) is a unique solution of the system in 
(1), whereas the total number of possible solution (x,r) for the 
system is pn. This means that users having r can solve Problem-A 
uniquely whereas any adversary will have pn possible number 
of solutions for Problem-A with only one solution being the 
correct one. We summarize these details in Theorem 5.

2.4 another attack on Problem-a
Suppose we want to solve Eqn. (1) for x  and ,r we begin 

by fixing a value of r and then solve the system
  Ax b r= −

which has either no solution or unique if exists (since 
( ) 0nullit Ay = ). Since ,m

pr Z∈  we would have to try this method  
pm times for every fixed value of r and we know from  
subsection 2.3 that there will be exactly pn values of r  for 
which we will be finding the unique corresponding value of 
x .

Here, instead of choosing the value of r  we can also 
choose a value of x and obtain corresponding values of r. Since

,n
px Z∈  we obtain np  number of solutions for Eqn. (1) exactly 

as the method of subsection 2.3.
based on the above discussion and different types of attacks, 

we conclude that for sufficient values, say 202 , 15,p n≅ =  and
20,m =  it is not feasible for any adversary to find the ‘correct’ 

solution to Problem-A as there are 3002 possible solutions for 
it.

2.5 Impersonating Property of Proposed 
Symmetric Encryption Scheme
theorem 1. Suppose an adversary wants to send some 

arbitrary message z to bob by impersonating as Alice. It 
computes Az r b+ =  by choosing some arbitrary value 
of .m

pr Z∈  Let ( ),C b auth= be the ciphertext with the 
authentication information of the message z . In order for 
bob to correctly obtain the message z,  it should satisfy

  r r=  
Proof: Since auth information is associated with 

message z, in order for bob to decrypt the message correctly, 
z should be a solution of the following system

  Az b r= −  
as r is the secret key shared between Alice and bob. From 
the generation of ciphertext ,C  we also have .Az r b+ =   
Thus b r r b− + =  and hence

  r r= .

3. GaKD Protocol, EntItIES anD attacK 
MoDElS
In this section, we define the structure of GAKD 

protocol, types of entities, and attack models for these 
protocols.
3.1 Group authenticated Key Distribution 

(GaKD) Protocol
A GAKD protocol can be described as a 5-tuple

  ( ), , , ,
iKDC UKDC U A AΠ = 

 

where KDC is an entity trusted by all the users Ui of the set 
U.  Algorithm  generates the group key distribution message, 
whereas the algorithm 

iUA  recovers the group key for user 
Ui from the group key distribution message. Algorithm A 
authenticates that the retrieved key was indeed generated by 
KDC.

3.2 Entities
In a GKD protocol, entities are divided into the  following 

categories:
KDC: KDC is the central trusted party and it is in charge of 

issuing session keys to the participating users. During registration, 
it certifies users’ identities and shares with each user a ‘secret’ of 
some kind. On receiving a group key initialization message from 
users, KDC sends group key distribution messages to users.

User: A user Ui who shares a ‘secret’ with KDC while 
registering. Users are required to maintain the secrecy of this 
‘secret’ because it is used for future communications. When 
a set of users need a group key, they submit a request to KDC. 
After receiving the corresponding distribution message, the 
corresponding user retrieves a session key and verifies its 
authenticity by using algorithm .

Adversary: An adversary is defined as an entity that wants 
to attack the protocol in some way. The adversaries are further 
classified as

Insider: A legal user who attempts to derive ‘secret’ shared by 
other users of U with KDC.

Outsider: Any adversary not in U, who wants to attack the 
protocol. The goal of outsiders is to either obtain a session key or 
prevent users in U from obtaining a valid session key.

3.3 Models of attacks
We consider the following three attack models for adversaries:

3.3.1 Passive Attack
In passive attacks, the goal of an adversary is to break its 

confidentiality by observing the transcript of GAKD protocol.

3.3.2 Impersonation Attack
Impersonation attacks are those where any entity tries to 

impersonate to be a legal user/KDC to attack a protocol. In our 
protocol, these are specified as

Imp I: Outsider sends group key requests to KDC by 
impersonating as a legal user.

Imp II: Adversary impersonates to be KDC to distribute 
group keys.

3.3.3 Reply attack
In this case, an entity resends outdated messages to others to 

attack the system in the following ways:
Rep I: Outsider resends an outdated group key request to 

KDC.
Rep II: Any adversary redistributes an outdated group key 

to users.

3.4 Meng, et al.’s GaKD Protocol
The group key distribution protocol proposed by Meng, et 

al.7 consists of the following phases:
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3.4.1 Preparatory Phase
1. KDC initialization: KDC selects a random prime p and a 

hash function ( )h ⋅ . both ( )h ⋅  and p  are publicly known 
parameters.

2. User’s registration: Each user registers with KDC for 
joining the group. In this process, each user Ui  shares 

a private coordinate (xi,yi) with KDC, where ix  and iy  

are in the finite field .pZ  KDC should make sure that 

each 0ix ≠  and i jx x≠  for .i j≠   Every user makes 

its identity iU  public while keeping it’s coordinate 

( ),i ix y   secret.

3.4.2 Distribution Phase
1. Let m be the total number of legal users who have 

registered with KDC. They constitute the group 

{ }1 2, , , mU U U U= …  and their private coordinates form 
a set ( ) ( ) ( ){ }1 1 2 2, , , , , ,m mx y x y x y .…Ω =

 2. KDC randomly generates a polynomial of degree m,   
( ) 0 1

m
mf x a a x a x= + + +

 and chooses a0 as the group 

key k , that is, ( ) 00 .k f a= =  
3. KDC picks 2mdifferent coordinates on ( )f x  to form two 

more sets, namely ( ) ( ) ( ){ }' ' ' ' ' '
1 1 1 2 2, , , , , ,m mx y x y x yΩ = …    

and { }2 1 1 2 2( , ), ( , ),...( , )m mx y x y x yΩ =
 such that 1 1 2 .Ω ∩ Ω = Ω ∩ Ω = φ  

4. KDC uses  xi(i=1,2,...,m)  in 1Ω   and all the coordinates 
in 2Ω  to compute group key information given by

             
1 ,

'

1

'

' mod
m

j
t

i j

m
i

i
j jtt i t

x
d p

x
y

x xx
x

= = ≠ −−

−−
= ∑ ∏  

5. KDC computes the hash values ( ),' '
i ih x y

 
to generate 

values, ( ),' ' '
i i i id d h x y  mod p= +  which is protected group 

key distribution information.
6. The initiator sends a group key initialization message I 

to KDC.
7. On receiving the initialization message, 

KDC broadcasts a response message 

{ }1 2, , , , ,mx xR xσ = σ …   where  σ  is a group  
communication identifier selected by KDC.

8. Each user Ui randomly selects a coordinate ( )* *,i ix y , 

where * .i ix x≠   It sends to KDC the following request 

message ,ó iM given by

                                ( )* *
i,i i i, x ,M U }{ , y=σ σ

9. KDC already shares a private coordinate ( ),i ix y  with 

every user Ui and receives ( )* *,i ix y  in message ,iMσ  . It 
uses these coordinates to form the linear function

          

( )
*

*
* *

i i
i i i

i i i i

x x x x
g x y y mod p

x x x x
− −

= +
− −

 
 

10. KDC uses( )' ',i ix y  to compute the values ( )'
i ig x  and 

( )1 '
i ig y−  where ( )1

ig y−  is the inverse of ( ).ig x  
11. KDC generates key distribution message 

( ) ( ) ( ){ }' 1 ', , , , ,i i i i i i iK U g x g y d h k−= σ  and sends it to the 

corresponding user ,iU  where ( ),h k σ   is authentication 
information about the group key .k  

3.5 Key recovery-authentication Phase
1. Every user iU  forms ( )ig x   and ( )1 '

i ig y−   using 
coordinates ( ),i ix y   and ( )* *,i ix y   After receiving key 
distribution message Ki  from KDC, user Ui recovers 

( )( )' 1 '
i i i ix g g x−=

  
and ( )( )' 1 ' .i i i iy g g y−=

 

2. Every user iU uses the coordinate ( )' ', ,i ix y  m public 

values 1 2, , , mx x x…  in message Rσ , to calculate the 
Lagrange components given by

 
1

'
' mod

j

m
j

i i
i j

x
y p

x x=

−
∆ =

−∏
 
 

3. The group key can be obtained as follows

 ( )' ', modi i i i ik d h x y p= + ∆ −  

4. Ui uses the hash function h(.) to compute the hash values

 ( ),i ih h k= σ  

 if ( ),i ih h k= σ  holds, the group key is correctly sent by 

KDC, that is, .ik k=   Otherwise, users should make a 
new group key request to KDC.

4. GrouP authEntIcatED KEy DIStrIButIon 
Protocol
In this section, we present our GAKD protocol with a 

detailed explanation. It is described as the 5-tuple

         
( ), , , ,

iKDC UKDC U A AΠ = 
   

      
which consists of the following phases: (1) KDC initialization 
phase, (2) Distribution phase, (3) Key recovery phase and  
(4) Authentication of the group key.

4.1 Initialization of KDc
The Key Distribution Center (KDC) selects two one-way 

hash functions ( )1 2: , ,m m
ph Z Z h ⋅   a random prime ,p  and a 

random matrix ( )m n pA Mat Z×∈  with m n≥  and ( ) .rank A n=  

4.1.1User’s Registration
Each user registers with KDC for joining the group. 

During the registration, KDC selects distinct random vectors 
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m
ir Z∈   for the respective users ,1iU i k≤ ≤  . Each user makes its 

identity Ui  public while keeping its vector ir   private.

4.1.2 Definition 2 (No of group key request ji  by user iU  )

  For each , ji i  represents thj   request ( )1 j m≤ ≤   for group 

key by user iU  and i jr i⊕   is defined as

              

  

i1

i2

i j
ij

i
j

r
r

r
r

r

 
 
 
 

⊕ =  
⊕ 

 
 
  





im

 

          

During the key distribution process, KDC keeps a counter 
Ci corresponding to every user Ui, which keeps the record of 
the number of requests for group keys by user Ui .

3. User iU  randomly picks vector ( )* .
n

i pt Z∈  iU sends 
KDC its group key request message Mi as

                             { },i i iM t U=  

4. KDC randomly selects a group key n
px Z∈  and computes 

the hadmard product it x of vectors it  and ,x  that is, the 
entry-wise product of vectors.

5. KDC then computes
 

           ( ) ( ) ( ) ( )1 1 1 ,i i j i i j iA t x h r i c h r i b j m+ ⊕ = + ⊕ = ≤ ≤

 the authentication information auth=h2(x,r1,r2,...,rk, 
U1,U2,..., Uk) and sends the distribution message

{ }, ,i i iD auth b U=  to the corresponding iU , where ( )2h ⋅   
is a one way hash function.

4.3 Key recovery Phase
iUA

1. Each user uses its private vector rj with the hash function 
hi and its number of requests to obtain their corresponding 

value of ( )i iA t x c=  which is now a system of equations 

with known matrix A and the vectors .ic  

2. User iU  solves the system of linear equations
                    ( )i iA t x c=

 and obtains the solution tix  uniquely (since ( ) 0nullity A =  ). 
Each user computes the common group key  x using their 
random vectors ti  with invertible entries.

4.4 authentication of the group key (  )
each user verifies the authenticity of group key x using 

auth, their respective random vectors ti, and the public hash 
function h2.

4.5 correctness analysis
theorem 2. All the legal user ( )1iU i k≤ ≤  , compute the 

common group key .x  Each user is certain that the group key 

x  is indeed sent by the KDC if ( )2 , ,i iauth h x t U=  holds.
Proof: On receiving the group key distribution message 

{ }, ,i i iD auth b U= from KDC user ,iU  solves the following 
system of equations for variable z  

                 ( ) '
1i i j iAz b h r i b= − ⊕ =            (4)

Clearly, it x  is a solution of the above equation and since
( ) 0,nullity A =   user iU  solves the system to get the unique 

value .i iz t x=  Since ( )* ,
n

i pt Z∈  user iU  retrieves the group 
key x  as 

 

      

1 1
11 1 1 1 1

1 1
21 2 2 2 2 2

1 1
in in in in

i i i i

i i i i
i i

nn

xt z t t x
xt z t t x

t z x

xt z t t x

− −

− −
−

− −

     
     
     = = = =
     
     
        

 

Since each user recovers the same group key ,x they 
authenticate the group key x  by checking if ( )2 , ,i iauth h x t U=  
holds.

Symbols Description

Z Set of integers

mZ m-tuples over Z  

pZ Finite field with p  elements

( )m n pMat Z× Set of  m n×  matrices over pZ   

( ) ( )1 2,h h⋅ ⋅ Hash functions

iU thi  user, 1 i k≤ ≤  

{ }1 2 ,, , kU U U U=  Set of legal users

ir ‘Secret’ shared between user iU  and      
KDC

M Group key initialization message

Res Response message by KDC

iM Group key request message by user iU  

( )* n

i pt Z∈ Random vectors with non-zero entries from 
pZ

ji thj  group key request by user iU
n
px Z∈ Group key selected by KDC

auth Authentication information of group key x  

iD Group key distribution message of user Ui 

table 1. list of notations

4.2 Distribution Phase (aKDc)
1. The initiator transmits key initiation message M to KDC.
2. KDC broadcasts the response { }Res A=  to all the users.
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5. SEcurIty analySIS oF thE GaKD 
Protocol
In this section, we examine the solution set of Problem-A. 

We then discuss the security of our proposed protocol against 
various types of attacks.

5.1 Security of Problem-a

theorem 3. Let ( )m n pA Mat Z×∈  be a public matrix 

with ( ),m n rank A n≥ =  and a public vector m
pb .Z∈ Suppose 

someone wants to solve the following problem for ( ),x r

                       Ax r b+ =                                         (5)
provided such x and r exists. then, the probability of finding 
the correct solution of eqn. (5), for an initial fixed value of r 
is 1 .np

Proof: The following equation Ax r b+ =  has variables 
( ), n m

p px r Z Z∈ ×  and according to the method of section 2.3, 
Eqn. (4) has exactly np  number of solutions. but for an initial 
fixed value of r, we get exactly one x  such that ( ),x r  is a 
unique solution of eqn. (5). thus, the probability of finding the 
correct solution to  Eqn. (5) is 1 .np

5.2 resistance to Passive attack
theorem 4. On seeing the transcript of GAKD protocol, 

no outsiders can retrieve the group key and no adversary can 
obtain the ‘secret’ shared by other users with KDC.

proof: Let trans(Π) denote the transcript of the protocol 
Π, that is,

( ) ( ){ }1 2 1 2 1 2, , , , , , , , , 1 ,1 , ,k k jtrans A t t t b b b i i k j m h hΠ = … … ≤ ≤ ≤ ≤  
where we have,

                       ( ) ( )1i i j iA t x h r i b+ ⊕ =  
 
Suppose any outsider wants to obtain the group key x  

by accessing trans(Π) only, it will have to solve the following 
problem for y  

                      ( )1 i j iAy h r i b+ ⊕ =  

Although the outsider knows ij,it does not have the secret 
vector ri and since h1 is a hash function, it has no information 

about ( )1 i jh r i⊕ . Hence ( )1 i jh r i⊕ is also a variable for any 
outsider and it is required to solve the following problem

        i iAy r b+ =                         (6)
for two-variable vectors  y  and .ir   by virtue of theorem 

3, the probability for any outsider to obtain the group key x  is 
1 ,np

 which is negligible for sufficient values of p  and .n

For deriving the ‘secret’ shared by other users, any 
outsider will have to solve Problem-A which will provide pn 

values of ( )1 i jh r i⊕  but preimage resistance does not allow 

to obtain the value i jr i⊕  . For deriving the ‘secret’ of some 

user ,lU  any insider will be able to compute the value of 

( ) ( )1 l j l ll bh r t xA⊕ = −

but again, the pre-image resistance of hash function 
implies that no insider can derive the ‘secret’ of other users by 
obtaining the transcript of the protocol.

Hence, no outsider can retrieve the group key and no 
adversary can obtain the ‘secret’ shared by other users with 
KDC by observing trans (Π).

5.3 resistance to Impersonation attack
theorem 5.  During the execution of GAKD protocol, 

no outsiders can retrieve the group key or prevent other users 
from deriving group key by Imp I.

Proof: Suppose, some outsider  pretends to be a legal 

user 1U   and sends a request message to KDC. We have already 
proved in Theorem 4 that no outsider can obtain the group key 
with non-negligible probability.

Meanwhile, all other legal users Ui can still recover the group 
key by using its ‘secret’, the number of request, hash function 

and  the  key distribution message { }, , ,i i iM A auth d U=  as 
proved in theorem 2. thus, legal users are not influenced by 

's  bogus request message and outsiders cannot stop the users 
from computing the session key by impersonation attack Imp 
I.

theorem 6. Any adversary, whether insider or outsider, 
cannot circulate a group key to users by the impersonation 
attack Imp II.

Proof: Suppose some outsider wants to distribute group 
keys to all the users by impersonating as KDC .On receiving 
the challenges ti from users Ui, an outsider can select a random 
group key z and compute A(tiz). In this case, the outsider has no 

information about the hash values of any user, that is, ( )1 .i jh r i⊕  

So, outsider can choose arbitrary value ir compute ( )i i iA t z r d+ =  

and sends the key distribution message { }, , ,i i iM A auth d U=  to 

corresponding user iU . by theorem 1, in order for the users to 

correctly retrieve the group key, it should satisfy ( )1i i jr rh i= ⊕  
for all i  because auth is authentication information associated 

with key z  only. but since 1h  is a hash function and ir  is 

unknown, choosing such ir  is not possible. Similarly, if an 

insider wants to distribute a group key to user iU  , it should 

know their hash values ( )1 ,i jh r i⊕  which is not possible.
Thus, any adversary, whether insider or outsider, cannot 

circulate a group key to users by the impersonation attack  
Imp II.

5.4 resistance to reply attack
theorem 7. No outsider can retrieve an old/outdated 

group key by reply attack Rep I.
Proof: During the distribution phase, the group key x  

is selected randomly and has nothing to do with the random 
vectors ti. This means that even if some outsider sends an 
outdated group key request to KDC, it will choose random 

.
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group key z and follow the steps of the distribution phase. And 
again, by Theorem 1, no outsider can obtain the group key z  
by observing the transcript of GAKD protocol.

Hence, no outsider can retrieve an outdated group key by 
reply attack Rep I.

theorem 8: No adversary can circulate an old group key 
to legal users by reply attack Rep II.

Proof: Suppose an adversary obtains an outdated group 
key x. It has all the previous information associated with x 
such as group key request message { },i i iM t U=  , group key 
distribution message { }, ,i i iD auth b U=  .When users request for 
new group key using fresh values of vector '

it , adversary sends 
outdated group key distribution message { }, ,i i iD auth b U=   
where, ( ) ( )1i i i jb A t x h r i= + ⊕  . Since the number of group 
key requests changes, while recovering the group key x, users 
will use hash values ( )1 j 1iih r +⊕  which would be completely 
different from ( )1 i jh r i⊕  . As a result, users will solve the 
following system

                   ( )1 i 1ji rAz b h i += − ⊕  
which may or may not have a solution. Even if it has a solution, 

say z,  it is not necessary that this z  would be satisfying '
iz t x=  

( '
it  constitute a new group key request message). Hence users 

do not retrieve the old group key x . Thus, no adversary can 
disburse an old group key to the users by Rep II.

6. ExPErIMEnt
In this section, we implement our GAKD protocol and 

provide experimental results for the different numbers of users. 
to support the claim of efficiency of our proposed GAKD 
protocol, we implemented the protocol with SageMath. We 
executed the protocol for the massive number of users to collect 
data about the time taken in responding to group key requests 
and the time taken in recovering group keys.

table 2 shows the specification of the computer used for 
executing the protocol using SageMath.     

7. PErForMancE analySIS anD 
coMParISon
We compare our protocol with a few existing protocols 

on various aspects such as computational complexity of KDC, 
computational complexity of single user, communication 
overhead, storage complexity,  etc.
7.1 the computation complexity of KDc

Let k be the number of legal users. In our protocol, 
KDC performs k  hadmard product multiplications, k  vector 
additions, k  matrix multiplication and 1k +  hash operations. 
thus, the total number of field operations required for KDC 
to distribute the keys are kmn kn+   multiplicative operations,

( )1km km n+ −  additions, and 1k +  hash operations. For fixed 
values of 20m =  and 15n =  , the complexity of KDC is 

( )( )2
2logO p  since multiplication has quadratic complexity 

( )( )2
2logO p  in .pZ  

7.2 the computation complexity of users
After receiving the distribution message from KDC, a 

user starts to derive and verify the authenticity of the group 
key. Each user needs 2 hash operations, m matrix subtractions, 
m3 field operations for Gaussian elimination, and n  field 
inversions. Thus, the complexity for recovering the group 
key is O(1) field multiplications (for a fixed size matrix A) 
and is independent of the number of users in the group.

7.3 communication overhead
Users send about  kn numbers to KDC and KDC transfers 

mn km+  numbers to the users. Thus the total communication 
overhead is kn km mn+ +  numbers of .pZ  For our parameters, 

that is, 202 , 20p m≈ =  and 15n = , the total communication 

overhead is ( ) 20
2300 35 log (2 ) 700 6000k k+ = + -bits.

7.4 Storage complexity
In our protocol, KDC must store secret vectors ri of 

users and matrix A which means that it must store km mn+  
numbers whereas each user needs m numbers to store its 
secret vector ri and mn numbers to store the matrix A where 
each of these numbers is in Zp.  Thus, the storage complexity 
is O(klog2p)  since each number in needs log2p  bits to store its 
value.

Processor Intel(r) core (tM) i3-5005u cPu 
 @ 2.00 Ghz

Operating system                                                   Windows 10 pro, bit
RAM              4 Gb
Programming language              SageMath

table 2. System specifications

number of  
users

response time of  
KDc

Key recovery time of 
single user

     50 0.018233 0.0016902
     100 0.033114 0.0017551
     200 0.071087 0.0016338
     300 0.097746 0.0017149
     400 0.130984 0.0017013
     500 0.163447 0.0016374
     600 0.200384 0.0016661
     700 0.232993 0.0018009
    800  0.266245     0.0016548
    900  0.306462     0.0016618
    1000  0.338680     0.0016951

table 3. computation time for entities in seconds

Here we have computed response time of KDC and key 
recovery time of a user for a single group key request. For the 
simulation of hash function, we have used random tuples from 
Zm.The computation time of hashing and key authentication is 
neglected.

It is worth noting that in Table 3, the key recovery time 
is almost the same even if there are a different number of 
users in the group. This is due to the fact that key recovery is 
independent of the number of users present in the group and it 
is required to solve 20   equations in 15  variables over Zp by 
all the users for all the cases.
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7.5 comparative analysis
Let k denotes the number of legal users and Zn be the 

platform for all the protocols. For Harn-Lin’s protocol, n  is 
a 1024  -bit RSA modulus, for Meng et al’s protocol, n  is 
a 260 -bit prime, for our protocol n  is a 20  -bit prime and 
the size of the matrix A  is 20 15.×  

Table 4 compares our protocol with the existing 
protocols on many aspects such as hard problem assumption, 
resistance to passive, impersonation and reply attacks, etc.

Analysis of Table 5 shows that for our proposed 
protocol, the computational complexity for KDC is linear 
in the number of users whereas the existing protocols have 
quadratic complexity. The computational complexity for 
a  single user is also independent of the number of users 
present in the system whereas it is linear/quadratic for 
existing protocols.

The computation time of hashing is O(1), which is 
constant and hence it is neglected.

Analysis of Table 6 shows that our protocol performs 
better than Meng et al’s protocol for the time taken to respond 
by KDC and for recovering the key by a user. Meng et al’s 

Properties harn-lin’s protocol      Meng et al’s protocol liu et al’s protocol our protocol
Assumption of hard problem yes No yes No
Number of hash functions    1  1   2      2
Resistant to passive attacks yes yes yes yes
Resistant to impersonation attacks yes yes yes yes
Resistant to reply attacks No yes yes yes

table 4. comparison of various GaKD protocols

complexity harn-lin’s protocol Meng et al’s protocol our protocol

Computational Complexity of 
KDC ( )( )22

2logO k n  ( )( )22
2logO k n ( )( )2

2logO k n  

Computational Complexity of 
single user ( )( )22

2logO k n ( )( )2
2logO k n ( )( )2

2logO n  

Communication Overhead bits 5120k  -bits 2340k  -bits 700 6000k +  - bits

Storage space of KDC 22 2048klog n k=  
-bits

26 1560klog n k=  
-bits ( ) 220 300 40 6000k log n k+ = +  -bits

Storage space of single user
22 2048log n =  -bits 22 520log n =  -bits 2320 6400log n =  bits

table 5. complexity comparison of GaKD protocols

number of users      KDc response time        Key recovery time
Meng’s protocol our protocol Meng’s protocol our protocol

50 0.104552 0.018233 0.019082 0.0016902
100 0.134091 0.033114 0.037025 0.0017551
200 0.328321 0.071087 0.091200 0.0016338
300 0.633199 0.097746 0.160992 0.0017149
400 1.047877 0.130984 0.245661 0.0017013
500 1.295323 0.163447 0.315709 0.0016374

table 6. comparison of KDc response time and key recovery time

protocol is implemented on a more powerful system than 
ours. If we use a more advanced computer for implementing 
our protocol, we definitely will get much better results than 
Meng et al’s protocol.

8. concluSIon
We have proposed a GAKD protocol using the simple 

idea of encryption in matrix rings. We have proved that the 
scheme is secure against passive, impersonation, and reply 
attacks. We have obtained the computational complexity for 
the proposed protocol and experimental results for a different 
number of users to validate our claim of the efficiency of the 
protocol.
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