
703

Simple and Efficient Group Key Distribution Protocol using Matrices

Atul Pandey,#,* Indivar Gupta$ and Dhiraj Kumar Singh%

#Department of Mathematics, University of Delhi, Delhi - 110 007, India
$DRDO - Scientific Analysis Group (SAG), Metcalfe House, Delhi - 110 054, India

%Zakir Husain Delhi College (University of Delhi), Jawaharlal Nehru Marg, Delhi - 110 002, India
*E-mail: pandeyatul_ap@yahoo.com

AbstrAct

 Group Key Distribution (GKD) protocols are designed to distribute a group key to several users for establishing
a secure communication over a public network. The central trusted authority, called the key distribution center (KDC)
is in charge of distributing the group keys. For securing the communication, all the users share a common secret
key in advance with KDC. In this paper, we propose a secure and efficient Group Authenticated Key Distribution
(GAKD) protocol based on the simple idea of encryption in matrix rings. In this protocol, each user registers in private
with the KDC, while all the other information can be transferred publicly. The scheme also supports authentication
of group keys without assuming computational hard problems such as Integer Factorization Problem (IFP).
 The analysis of our GAKD protocol shows that the proposed protocol is resistant to reply, passive and
impersonation attacks. Our construction leads to a secure, cost and computation- effective GAKD protocol.

Keywords: Group key distribution protocols; Matrices; Group communications

Defence Science Journal, Vol. 72, No. 5, September 2022, pp. 703-711, DOI : 10.14429/dsj.72.17461
 2022, DESIDOC

Received : 31 August 2021, Revised : 8 April 2022
Accepted : 7 July 2022, Online published : 1 November 2022

1. IntroDuctIon
The basic condition for secure group communications

over public channels is that all group users should agree on a
common secret key. Group Key Exchange (GKE) protocol is
the most basic component of group communications where the
fundamental goal is to establish a common secret key (group
key) in a way that no one other than the group members can
obtain the group key. The objective of group key exchange
protocol with authentication is to establish a secret group key
between the legitimate group members who can verify the
authenticity of the shared key. This secret group key (session
key) is used to facilitate secure communication services such
as confidentiality, authentication, data integrity, etc.

Most of the popular group key protocols are divided into
two categories: (1) Group Key Exchange (GKE) protocols:
there is no explicit KDC and all communicating parties
interactively determine the session keys and (2) Centralized
Group Key Distribution (GKD) protocols, where a Key
Distribution Center (KDC) is in charge of managing the entire
group from selecting session keys to transporting these secretly
to all communicating entities. The most famous key exchange
protocol is Diffie–Hellman key agreement protocoll2 which can
provide session keys for only two entities. Various attempts
have been made for extending the 2-party Diffie-Hellman key
agreement protocol to its multi-party variant.13,1,7

Centralized group key distribution protocols are widely
used due to their efficiency in implementation. Guo,3 et al.also

proposed a GAKD protocol based on the generalized Chinese
remainder theorem. Zheng,16 et al.proposed two variations
for centralized key distribution protocols named Fast Chinese
Remaindering Group Key and Chinese Remaindering Group
Key. Shamir’s secret sharing has also been used to design
group key distribution protocols.5,9,15 For example, Harn-Lin5
and Liu,8 et al. proposed authenticated group key transfer
protocols where they use the IFP to resist insider attacks.
Meng, et al.9 in have also proposed a GKD protocol which is
based on a secret sharing scheme by Shamir but the security
of their protocol does not rely on any computational hard
problem. There are several research articles where the
construction and analysis of group key protocols are
discussed.6,11-12

In the protocols proposed in,5,8-9 one-way hash functions
are computed by users to authenticate the session key. The
KDC publishes the hash value of the session key in advance,
which is used to verify the authenticity of the group key.
Recently we have also worked on cryptographic protocols
which are based on matrices over rings4,10.

On the other hand, there are some limitations of
these protocols: some cryptographic algorithms assume
the hardness of mathematical problems, many need a vast
number of operations and there are some which cannot
prevent reply attacks. Several protocols have been proposed
in past years but most of these are deficient in terms of
the communication overhead, computational complexity,
storage complexity, and a large number of users. Thus, it is
essential to design a Group Authenticated Key Distribution
(GAKD) protocol, which has the ability to overpower the
above weaknesses.

DeF. SCI. J., VOL. 72, NO. 5, September 2022

704

Our contribution: In this paper, we design a secure
and efficient GAKD protocol that is based on the simple
idea of symmetric encryption in matrix rings. In the proposed
protocol, each user needs to register with KDC in private while
all the other messages can be transferred publicly. The protocol
supports authentication of group keys without assuming any
hard mathematical problem. We have also proved the scheme
to be secure against passive, impersonation, and reply attacks.
the scheme is feasible due to its efficiency in communication
and computation cost.

The rest of the article is organized in the following way:
in section 2, we provide primary definitions and results for a
better understanding of the protocol. Section 3 presents the
structure of group authenticated key distribution (GAKD)
protocol, entities, and threat models for GAKD protocols. In
section 4, we construct a group authenticated key distribution
protocol using the results of section 4. In section 5, we discuss
its security against passive, impersonation, and reply attacks.
Section 6 discusses various complexities of the proposed
scheme. In section 7, we provide experimental results with
the implementation of the proposed protocol. Conclusions are
finally drawn in section 8.

2. PrElIMInarIES
In this section, we propose the following symmetric

encryption scheme and discuss its security for any passive
adversary:
2.1 Proposed Symmetric Encryption Scheme

Let C be a finite field with p (prime) elements and ,m n
are positive integers. Suppose Alice and bob are two entities
that share a common secret vector m

pr Z∈ and A be a public
matrix in ()m pnMat Z× with m n≥ and ()rank A n.= For encrypting a
message n

pZ , Alice computes

 Ax r b+ =

and sends m
pb Z∈ to bob. bob removes the secret part r from b

and solves the system
 Ax b r= −

Since ()rank A n= , we have by Rank-Nullity theorem that

() () 0nullity n ranA Ak= − = . Clearly, x is a solution of the above
system and hence bob solves the system to obtain the message
x uniquely.

2.1.1Definition 1(Problem-A)
For a given public matrix ()mxn patA M Z∈ with m≥n, rank(A)=n,

and a vector m
pb Z∈ , find a vector pair (), n

p
m
px r Z Z∈ × such that

the following equation holds:

 Ax r b+ = (1)
provided such x and r exists.

2.2 Brute Force attack on Problem-a
Since the message vector x is chosen from n

pZ and the
secret vector r is selected from ((,))n m

p pp
mZ Zr Zx ∈ × , the

number of choices for x is np whereas the number of choices
for the vector r is .mp Hence, the exhaustive search attack
results in n m n mpp p +× = possible solutions.

2.3 a linear algebra attack on Problem-a
Consider the known matrices

11 12 1n

21 22 2n

m1 m2 mn

A

a a a
a a a

a a a

… 
 … =
 
 
 

  





and

1

2

mb

b

b
b

 
 
 =
 
 
 



and the column vectors

1

2

nx

x

x
x

 
 
 =
 
 
 



and

1

2

mr

r

r
r

 
 
 =
 
 
 



then Eqn. (1) can be rewritten as the following system of linear
equations:

11 1 12 2 1 1 2 11. 0. ··· 0.n n ma x a x a x r r r b+ + + + + + + =
21 1 22 2 2 1 2 20. 1. ··· 0.n n ma x a x a x r r r b+ + + + + + + =

1 1 2 2 1 20. 0. ··· 1.m m mn n m ma x a x a x r r r b+ + + + + + + =

which can further be written as the following new system of m
equation in m n+ variables,

 Ax b= (2)

where,

()

1

2

11 12 1n

21 22 2n n

1

m1 m2 mn 2m m n

m

1 0 0
0 1 0

A

0 0

x
x

a a a
a a a x

and x
r

a a r

r

1a
× +

 
 
 
 … … 
  … …   = =   
  

… …   
 
 
  



       



(3)

Due to the linear independence of the rightmost m columns
of the matrix A , we have that ()rank A m≥ and since A is

()m m n× + matrix, we have that ()rank A m≤ . Thus, we
conclude that () .rank A m= Hence by rank-Nullity theorem,

() ()nullity A m n rank A n= + − =

Using an algorithm such as Gaussian elimination,
the system in Eqn. (2) can be solved in polynomial
time but the number of solutions to the system is pn

(since ()Anullity n=). From these pn solutions, say from x the

corresponding solutions (,)x r can be retrieved.

.

.

.

.

.

.

PANDEy, et al.: SImpLe AND eFFICIeNt GrOup Key DIStrIbutION prOtOCOL uSING mAtrICeS

705

For an initially fixed value of r, there will be a unique
value of x such that (x,r) is a unique solution of the system in
(1), whereas the total number of possible solution (x,r) for the
system is pn. This means that users having r can solve Problem-A
uniquely whereas any adversary will have pn possible number
of solutions for Problem-A with only one solution being the
correct one. We summarize these details in Theorem 5.

2.4 another attack on Problem-a
Suppose we want to solve Eqn. (1) for x and ,r we begin

by fixing a value of r and then solve the system
 Ax b r= −

which has either no solution or unique if exists (since
() 0nullit Ay =). Since ,m

pr Z∈ we would have to try this method
pm times for every fixed value of r and we know from
subsection 2.3 that there will be exactly pn values of r for
which we will be finding the unique corresponding value of
x .

Here, instead of choosing the value of r we can also
choose a value of x and obtain corresponding values of r. Since

,n
px Z∈ we obtain np number of solutions for Eqn. (1) exactly

as the method of subsection 2.3.
based on the above discussion and different types of attacks,

we conclude that for sufficient values, say 202 , 15,p n≅ = and
20,m = it is not feasible for any adversary to find the ‘correct’

solution to Problem-A as there are 3002 possible solutions for
it.

2.5 Impersonating Property of Proposed
Symmetric Encryption Scheme
theorem 1. Suppose an adversary wants to send some

arbitrary message z to bob by impersonating as Alice. It
computes Az r b+ = by choosing some arbitrary value
of .m

pr Z∈ Let (),C b auth= be the ciphertext with the
authentication information of the message z . In order for
bob to correctly obtain the message z, it should satisfy

 r r=
Proof: Since auth information is associated with

message z, in order for bob to decrypt the message correctly,
z should be a solution of the following system

 Az b r= −
as r is the secret key shared between Alice and bob. From
the generation of ciphertext ,C we also have .Az r b+ =
Thus b r r b− + = and hence

 r r= .

3. GaKD Protocol, EntItIES anD attacK
MoDElS
In this section, we define the structure of GAKD

protocol, types of entities, and attack models for these
protocols.
3.1 Group authenticated Key Distribution

(GaKD) Protocol
A GAKD protocol can be described as a 5-tuple

 (), , , ,
iKDC UKDC U A AΠ = 

where KDC is an entity trusted by all the users Ui of the set
U. Algorithm generates the group key distribution message,
whereas the algorithm

iUA recovers the group key for user
Ui from the group key distribution message. Algorithm A
authenticates that the retrieved key was indeed generated by
KDC.

3.2 Entities
In a GKD protocol, entities are divided into the following

categories:
KDC: KDC is the central trusted party and it is in charge of

issuing session keys to the participating users. During registration,
it certifies users’ identities and shares with each user a ‘secret’ of
some kind. On receiving a group key initialization message from
users, KDC sends group key distribution messages to users.

User: A user Ui who shares a ‘secret’ with KDC while
registering. Users are required to maintain the secrecy of this
‘secret’ because it is used for future communications. When
a set of users need a group key, they submit a request to KDC.
After receiving the corresponding distribution message, the
corresponding user retrieves a session key and verifies its
authenticity by using algorithm .

Adversary: An adversary is defined as an entity that wants
to attack the protocol in some way. The adversaries are further
classified as

Insider: A legal user who attempts to derive ‘secret’ shared by
other users of U with KDC.

Outsider: Any adversary not in U, who wants to attack the
protocol. The goal of outsiders is to either obtain a session key or
prevent users in U from obtaining a valid session key.

3.3 Models of attacks
We consider the following three attack models for adversaries:

3.3.1 Passive Attack
In passive attacks, the goal of an adversary is to break its

confidentiality by observing the transcript of GAKD protocol.

3.3.2 Impersonation Attack
Impersonation attacks are those where any entity tries to

impersonate to be a legal user/KDC to attack a protocol. In our
protocol, these are specified as

Imp I: Outsider sends group key requests to KDC by
impersonating as a legal user.

Imp II: Adversary impersonates to be KDC to distribute
group keys.

3.3.3 Reply attack
In this case, an entity resends outdated messages to others to

attack the system in the following ways:
Rep I: Outsider resends an outdated group key request to

KDC.
Rep II: Any adversary redistributes an outdated group key

to users.

3.4 Meng, et al.’s GaKD Protocol
The group key distribution protocol proposed by Meng, et

al.7 consists of the following phases:

DeF. SCI. J., VOL. 72, NO. 5, September 2022

706

3.4.1 Preparatory Phase
1. KDC initialization: KDC selects a random prime p and a

hash function ()h ⋅ . both ()h ⋅ and p are publicly known
parameters.

2. User’s registration: Each user registers with KDC for
joining the group. In this process, each user Ui shares

a private coordinate (xi,yi) with KDC, where ix and iy

are in the finite field .pZ KDC should make sure that

each 0ix ≠ and i jx x≠ for .i j≠ Every user makes

its identity iU public while keeping it’s coordinate

(),i ix y secret.

3.4.2 Distribution Phase
1. Let m be the total number of legal users who have

registered with KDC. They constitute the group

{ }1 2, , , mU U U U= … and their private coordinates form
a set () () (){ }1 1 2 2, , , , , ,m mx y x y x y .…Ω =

 2. KDC randomly generates a polynomial of degree m,
() 0 1

m
mf x a a x a x= + + +

 and chooses a0 as the group

key k , that is, () 00 .k f a= =
3. KDC picks 2mdifferent coordinates on ()f x to form two

more sets, namely () () (){ }' ' ' ' ' '
1 1 1 2 2, , , , , ,m mx y x y x yΩ = …

and { }2 1 1 2 2(,), (,),...(,)m mx y x y x yΩ =
 such that 1 1 2 .Ω ∩ Ω = Ω ∩ Ω = φ

4. KDC uses xi(i=1,2,...,m) in 1Ω and all the coordinates
in 2Ω to compute group key information given by

1 ,

'

1

'

' mod
m

j
t

i j

m
i

i
j jtt i t

x
d p

x
y

x xx
x

= = ≠ −−

−−
= ∑ ∏

5. KDC computes the hash values (),' '
i ih x y

to generate

values, (),' ' '
i i i id d h x y mod p= + which is protected group

key distribution information.
6. The initiator sends a group key initialization message I

to KDC.
7. On receiving the initialization message,

KDC broadcasts a response message

{ }1 2, , , , ,mx xR xσ = σ … where σ is a group
communication identifier selected by KDC.

8. Each user Ui randomly selects a coordinate ()* *,i ix y ,

where * .i ix x≠ It sends to KDC the following request

message ,ó iM given by

 ()* *
i,i i i, x ,M U }{ , y=σ σ

9. KDC already shares a private coordinate (),i ix y with

every user Ui and receives ()* *,i ix y in message ,iMσ . It
uses these coordinates to form the linear function

()
*

*
* *

i i
i i i

i i i i

x x x x
g x y y mod p

x x x x
− −

= +
− −

10. KDC uses()' ',i ix y to compute the values ()'
i ig x and

()1 '
i ig y− where ()1

ig y− is the inverse of ().ig x
11. KDC generates key distribution message

() () (){ }' 1 ', , , , ,i i i i i i iK U g x g y d h k−= σ and sends it to the

corresponding user ,iU where (),h k σ is authentication
information about the group key .k

3.5 Key recovery-authentication Phase
1. Every user iU forms ()ig x and ()1 '

i ig y− using
coordinates (),i ix y and ()* *,i ix y After receiving key
distribution message Ki from KDC, user Ui recovers

()()' 1 '
i i i ix g g x−=

and ()()' 1 ' .i i i iy g g y−=

2. Every user iU uses the coordinate ()' ', ,i ix y m public

values 1 2, , , mx x x… in message Rσ , to calculate the
Lagrange components given by

1

'
' mod

j

m
j

i i
i j

x
y p

x x=

−
∆ =

−∏

3. The group key can be obtained as follows

 ()' ', modi i i i ik d h x y p= + ∆ −

4. Ui uses the hash function h(.) to compute the hash values

 (),i ih h k= σ

 if (),i ih h k= σ holds, the group key is correctly sent by

KDC, that is, .ik k= Otherwise, users should make a
new group key request to KDC.

4. GrouP authEntIcatED KEy DIStrIButIon
Protocol
In this section, we present our GAKD protocol with a

detailed explanation. It is described as the 5-tuple

(), , , ,

iKDC UKDC U A AΠ = 

which consists of the following phases: (1) KDC initialization
phase, (2) Distribution phase, (3) Key recovery phase and
(4) Authentication of the group key.

4.1 Initialization of KDc
The Key Distribution Center (KDC) selects two one-way

hash functions ()1 2: , ,m m
ph Z Z h ⋅ a random prime ,p and a

random matrix ()m n pA Mat Z×∈ with m n≥ and () .rank A n=

4.1.1User’s Registration
Each user registers with KDC for joining the group.

During the registration, KDC selects distinct random vectors

PANDEy, et al.: SImpLe AND eFFICIeNt GrOup Key DIStrIbutION prOtOCOL uSING mAtrICeS

707

m
ir Z∈ for the respective users ,1iU i k≤ ≤ . Each user makes its

identity Ui public while keeping its vector ir private.

4.1.2 Definition 2 (No of group key request ji by user iU)

 For each , ji i represents thj request ()1 j m≤ ≤ for group

key by user iU and i jr i⊕ is defined as

i1

i2

i j
ij

i
j

r
r

r
r

r

 
 
 
 

⊕ =  
⊕ 

 
 
  





im

During the key distribution process, KDC keeps a counter
Ci corresponding to every user Ui, which keeps the record of
the number of requests for group keys by user Ui .

3. User iU randomly picks vector ()* .
n

i pt Z∈ iU sends
KDC its group key request message Mi as

 { },i i iM t U=

4. KDC randomly selects a group key n
px Z∈ and computes

the hadmard product it x of vectors it and ,x that is, the
entry-wise product of vectors.

5. KDC then computes

 () () () ()1 1 1 ,i i j i i j iA t x h r i c h r i b j m+ ⊕ = + ⊕ = ≤ ≤

 the authentication information auth=h2(x,r1,r2,...,rk,
U1,U2,..., Uk) and sends the distribution message

{ }, ,i i iD auth b U= to the corresponding iU , where ()2h ⋅
is a one way hash function.

4.3 Key recovery Phase
iUA

1. Each user uses its private vector rj with the hash function
hi and its number of requests to obtain their corresponding

value of ()i iA t x c= which is now a system of equations

with known matrix A and the vectors .ic

2. User iU solves the system of linear equations
 ()i iA t x c=

 and obtains the solution tix uniquely (since () 0nullity A =).
Each user computes the common group key x using their
random vectors ti with invertible entries.

4.4 authentication of the group key ()
each user verifies the authenticity of group key x using

auth, their respective random vectors ti, and the public hash
function h2.

4.5 correctness analysis
theorem 2. All the legal user ()1iU i k≤ ≤ , compute the

common group key .x Each user is certain that the group key

x is indeed sent by the KDC if ()2 , ,i iauth h x t U= holds.
Proof: On receiving the group key distribution message

{ }, ,i i iD auth b U= from KDC user ,iU solves the following
system of equations for variable z

 () '
1i i j iAz b h r i b= − ⊕ = (4)

Clearly, it x is a solution of the above equation and since
() 0,nullity A = user iU solves the system to get the unique

value .i iz t x= Since ()* ,
n

i pt Z∈ user iU retrieves the group
key x as

1 1
11 1 1 1 1

1 1
21 2 2 2 2 2

1 1
in in in in

i i i i

i i i i
i i

nn

xt z t t x
xt z t t x

t z x

xt z t t x

− −

− −
−

− −

     
     
     = = = =
     
     
        

 

Since each user recovers the same group key ,x they
authenticate the group key x by checking if ()2 , ,i iauth h x t U=
holds.

Symbols Description

Z Set of integers

mZ m-tuples over Z

pZ Finite field with p elements

()m n pMat Z× Set of m n× matrices over pZ

() ()1 2,h h⋅ ⋅ Hash functions

iU thi user, 1 i k≤ ≤

{ }1 2 ,, , kU U U U=  Set of legal users

ir ‘Secret’ shared between user iU and
KDC

M Group key initialization message

Res Response message by KDC

iM Group key request message by user iU

()* n

i pt Z∈ Random vectors with non-zero entries from
pZ

ji thj group key request by user iU
n
px Z∈ Group key selected by KDC

auth Authentication information of group key x

iD Group key distribution message of user Ui

table 1. list of notations

4.2 Distribution Phase (aKDc)
1. The initiator transmits key initiation message M to KDC.
2. KDC broadcasts the response { }Res A= to all the users.

DeF. SCI. J., VOL. 72, NO. 5, September 2022

708

5. SEcurIty analySIS oF thE GaKD
Protocol
In this section, we examine the solution set of Problem-A.

We then discuss the security of our proposed protocol against
various types of attacks.

5.1 Security of Problem-a

theorem 3. Let ()m n pA Mat Z×∈ be a public matrix

with (),m n rank A n≥ = and a public vector m
pb .Z∈ Suppose

someone wants to solve the following problem for (),x r

 Ax r b+ = (5)
provided such x and r exists. then, the probability of finding
the correct solution of eqn. (5), for an initial fixed value of r
is 1 .np

Proof: The following equation Ax r b+ = has variables
(), n m

p px r Z Z∈ × and according to the method of section 2.3,
Eqn. (4) has exactly np number of solutions. but for an initial
fixed value of r, we get exactly one x such that (),x r is a
unique solution of eqn. (5). thus, the probability of finding the
correct solution to Eqn. (5) is 1 .np

5.2 resistance to Passive attack
theorem 4. On seeing the transcript of GAKD protocol,

no outsiders can retrieve the group key and no adversary can
obtain the ‘secret’ shared by other users with KDC.

proof: Let trans(Π) denote the transcript of the protocol
Π, that is,

() (){ }1 2 1 2 1 2, , , , , , , , , 1 ,1 , ,k k jtrans A t t t b b b i i k j m h hΠ = … … ≤ ≤ ≤ ≤
where we have,

 () ()1i i j iA t x h r i b+ ⊕ =

Suppose any outsider wants to obtain the group key x

by accessing trans(Π) only, it will have to solve the following
problem for y

 ()1 i j iAy h r i b+ ⊕ =

Although the outsider knows ij,it does not have the secret
vector ri and since h1 is a hash function, it has no information

about ()1 i jh r i⊕ . Hence ()1 i jh r i⊕ is also a variable for any
outsider and it is required to solve the following problem

 i iAy r b+ = (6)
for two-variable vectors y and .ir by virtue of theorem

3, the probability for any outsider to obtain the group key x is
1 ,np

 which is negligible for sufficient values of p and .n

For deriving the ‘secret’ shared by other users, any
outsider will have to solve Problem-A which will provide pn

values of ()1 i jh r i⊕ but preimage resistance does not allow

to obtain the value i jr i⊕ . For deriving the ‘secret’ of some

user ,lU any insider will be able to compute the value of

() ()1 l j l ll bh r t xA⊕ = −

but again, the pre-image resistance of hash function
implies that no insider can derive the ‘secret’ of other users by
obtaining the transcript of the protocol.

Hence, no outsider can retrieve the group key and no
adversary can obtain the ‘secret’ shared by other users with
KDC by observing trans (Π).

5.3 resistance to Impersonation attack
theorem 5. During the execution of GAKD protocol,

no outsiders can retrieve the group key or prevent other users
from deriving group key by Imp I.

Proof: Suppose, some outsider  pretends to be a legal

user 1U and sends a request message to KDC. We have already
proved in Theorem 4 that no outsider can obtain the group key
with non-negligible probability.

Meanwhile, all other legal users Ui can still recover the group
key by using its ‘secret’, the number of request, hash function

and the key distribution message { }, , ,i i iM A auth d U= as
proved in theorem 2. thus, legal users are not influenced by

's bogus request message and outsiders cannot stop the users
from computing the session key by impersonation attack Imp
I.

theorem 6. Any adversary, whether insider or outsider,
cannot circulate a group key to users by the impersonation
attack Imp II.

Proof: Suppose some outsider wants to distribute group
keys to all the users by impersonating as KDC .On receiving
the challenges ti from users Ui, an outsider can select a random
group key z and compute A(tiz). In this case, the outsider has no

information about the hash values of any user, that is, ()1 .i jh r i⊕

So, outsider can choose arbitrary value ir compute ()i i iA t z r d+ =

and sends the key distribution message { }, , ,i i iM A auth d U= to

corresponding user iU . by theorem 1, in order for the users to

correctly retrieve the group key, it should satisfy ()1i i jr rh i= ⊕
for all i because auth is authentication information associated

with key z only. but since 1h is a hash function and ir is

unknown, choosing such ir is not possible. Similarly, if an

insider wants to distribute a group key to user iU , it should

know their hash values ()1 ,i jh r i⊕ which is not possible.
Thus, any adversary, whether insider or outsider, cannot

circulate a group key to users by the impersonation attack
Imp II.

5.4 resistance to reply attack
theorem 7. No outsider can retrieve an old/outdated

group key by reply attack Rep I.
Proof: During the distribution phase, the group key x

is selected randomly and has nothing to do with the random
vectors ti. This means that even if some outsider sends an
outdated group key request to KDC, it will choose random

.

PANDEy, et al.: SImpLe AND eFFICIeNt GrOup Key DIStrIbutION prOtOCOL uSING mAtrICeS

709

group key z and follow the steps of the distribution phase. And
again, by Theorem 1, no outsider can obtain the group key z
by observing the transcript of GAKD protocol.

Hence, no outsider can retrieve an outdated group key by
reply attack Rep I.

theorem 8: No adversary can circulate an old group key
to legal users by reply attack Rep II.

Proof: Suppose an adversary obtains an outdated group
key x. It has all the previous information associated with x
such as group key request message { },i i iM t U= , group key
distribution message { }, ,i i iD auth b U= .When users request for
new group key using fresh values of vector '

it , adversary sends
outdated group key distribution message { }, ,i i iD auth b U=
where, () ()1i i i jb A t x h r i= + ⊕ . Since the number of group
key requests changes, while recovering the group key x, users
will use hash values ()1 j 1iih r +⊕ which would be completely
different from ()1 i jh r i⊕ . As a result, users will solve the
following system

 ()1 i 1ji rAz b h i += − ⊕
which may or may not have a solution. Even if it has a solution,

say z, it is not necessary that this z would be satisfying '
iz t x=

('
it constitute a new group key request message). Hence users

do not retrieve the old group key x . Thus, no adversary can
disburse an old group key to the users by Rep II.

6. ExPErIMEnt
In this section, we implement our GAKD protocol and

provide experimental results for the different numbers of users.
to support the claim of efficiency of our proposed GAKD
protocol, we implemented the protocol with SageMath. We
executed the protocol for the massive number of users to collect
data about the time taken in responding to group key requests
and the time taken in recovering group keys.

table 2 shows the specification of the computer used for
executing the protocol using SageMath.

7. PErForMancE analySIS anD
coMParISon
We compare our protocol with a few existing protocols

on various aspects such as computational complexity of KDC,
computational complexity of single user, communication
overhead, storage complexity, etc.
7.1 the computation complexity of KDc

Let k be the number of legal users. In our protocol,
KDC performs k hadmard product multiplications, k vector
additions, k matrix multiplication and 1k + hash operations.
thus, the total number of field operations required for KDC
to distribute the keys are kmn kn+ multiplicative operations,

()1km km n+ − additions, and 1k + hash operations. For fixed
values of 20m = and 15n = , the complexity of KDC is

()()2
2logO p since multiplication has quadratic complexity

()()2
2logO p in .pZ

7.2 the computation complexity of users
After receiving the distribution message from KDC, a

user starts to derive and verify the authenticity of the group
key. Each user needs 2 hash operations, m matrix subtractions,
m3 field operations for Gaussian elimination, and n field
inversions. Thus, the complexity for recovering the group
key is O(1) field multiplications (for a fixed size matrix A)
and is independent of the number of users in the group.

7.3 communication overhead
Users send about kn numbers to KDC and KDC transfers

mn km+ numbers to the users. Thus the total communication
overhead is kn km mn+ + numbers of .pZ For our parameters,

that is, 202 , 20p m≈ = and 15n = , the total communication

overhead is () 20
2300 35 log (2) 700 6000k k+ = + -bits.

7.4 Storage complexity
In our protocol, KDC must store secret vectors ri of

users and matrix A which means that it must store km mn+
numbers whereas each user needs m numbers to store its
secret vector ri and mn numbers to store the matrix A where
each of these numbers is in Zp. Thus, the storage complexity
is O(klog2p) since each number in needs log2p bits to store its
value.

Processor Intel(r) core (tM) i3-5005u cPu
 @ 2.00 Ghz

Operating system Windows 10 pro, bit
RAM 4 Gb
Programming language SageMath

table 2. System specifications

number of
users

response time of
KDc

Key recovery time of
single user

 50 0.018233 0.0016902
 100 0.033114 0.0017551
 200 0.071087 0.0016338
 300 0.097746 0.0017149
 400 0.130984 0.0017013
 500 0.163447 0.0016374
 600 0.200384 0.0016661
 700 0.232993 0.0018009
 800 0.266245 0.0016548
 900 0.306462 0.0016618
 1000 0.338680 0.0016951

table 3. computation time for entities in seconds

Here we have computed response time of KDC and key
recovery time of a user for a single group key request. For the
simulation of hash function, we have used random tuples from
Zm.The computation time of hashing and key authentication is
neglected.

It is worth noting that in Table 3, the key recovery time
is almost the same even if there are a different number of
users in the group. This is due to the fact that key recovery is
independent of the number of users present in the group and it
is required to solve 20 equations in 15 variables over Zp by
all the users for all the cases.

DeF. SCI. J., VOL. 72, NO. 5, September 2022

710

7.5 comparative analysis
Let k denotes the number of legal users and Zn be the

platform for all the protocols. For Harn-Lin’s protocol, n is
a 1024 -bit RSA modulus, for Meng et al’s protocol, n is
a 260 -bit prime, for our protocol n is a 20 -bit prime and
the size of the matrix A is 20 15.×

Table 4 compares our protocol with the existing
protocols on many aspects such as hard problem assumption,
resistance to passive, impersonation and reply attacks, etc.

Analysis of Table 5 shows that for our proposed
protocol, the computational complexity for KDC is linear
in the number of users whereas the existing protocols have
quadratic complexity. The computational complexity for
a single user is also independent of the number of users
present in the system whereas it is linear/quadratic for
existing protocols.

The computation time of hashing is O(1), which is
constant and hence it is neglected.

Analysis of Table 6 shows that our protocol performs
better than Meng et al’s protocol for the time taken to respond
by KDC and for recovering the key by a user. Meng et al’s

Properties harn-lin’s protocol Meng et al’s protocol liu et al’s protocol our protocol
Assumption of hard problem yes No yes No
Number of hash functions 1 1 2 2
Resistant to passive attacks yes yes yes yes
Resistant to impersonation attacks yes yes yes yes
Resistant to reply attacks No yes yes yes

table 4. comparison of various GaKD protocols

complexity harn-lin’s protocol Meng et al’s protocol our protocol

Computational Complexity of
KDC ()()22

2logO k n ()()22
2logO k n ()()2

2logO k n

Computational Complexity of
single user ()()22

2logO k n ()()2
2logO k n ()()2

2logO n

Communication Overhead bits 5120k -bits 2340k -bits 700 6000k + - bits

Storage space of KDC 22 2048klog n k=
-bits

26 1560klog n k=
-bits () 220 300 40 6000k log n k+ = + -bits

Storage space of single user
22 2048log n = -bits 22 520log n = -bits 2320 6400log n = bits

table 5. complexity comparison of GaKD protocols

number of users KDc response time Key recovery time
Meng’s protocol our protocol Meng’s protocol our protocol

50 0.104552 0.018233 0.019082 0.0016902
100 0.134091 0.033114 0.037025 0.0017551
200 0.328321 0.071087 0.091200 0.0016338
300 0.633199 0.097746 0.160992 0.0017149
400 1.047877 0.130984 0.245661 0.0017013
500 1.295323 0.163447 0.315709 0.0016374

table 6. comparison of KDc response time and key recovery time

protocol is implemented on a more powerful system than
ours. If we use a more advanced computer for implementing
our protocol, we definitely will get much better results than
Meng et al’s protocol.

8. concluSIon
We have proposed a GAKD protocol using the simple

idea of encryption in matrix rings. We have proved that the
scheme is secure against passive, impersonation, and reply
attacks. We have obtained the computational complexity for
the proposed protocol and experimental results for a different
number of users to validate our claim of the efficiency of the
protocol.

acKnowlEDGMEnt
the research of the first author is supported by university

Grants Commission (UGC), reference number-1100(DEC-
2016). The third author is grateful for the support from
the Serb-mAtrICS scheme (mtr/2020/000508) of the
Department of Science and Technology, Government of India.

PANDEy, et al.: SImpLe AND eFFICIeNt GrOup Key DIStrIbutION prOtOCOL uSING mAtrICeS

711

rEFErEncES
bresson, e.; Chevassut, O.; pointcheval, D.: provably 1.
secure authenticated group Diffie–Hellman key exchange.
ACM Trans. Inf. Syst. Secur. (TISSEC), 10(3), 10 (2007).
Diffie, W. & Hellman, m. New directions in cryptography. 2.
IEEE Trans. Inf. Theory, 22(6), 644-654 (1976).
Guo, C. & Chang, C.C. An authenticated group key 3.
distribution protocol based on the generalized Chinese
remainder theorem. Int. J. Commun. Syst., 2014, 27(1),
126–134.
Gupta, I.; pandey, A. & Dubey, m.K. A key exchange 4.
protocol using matrices over group ring, Asian-European
J. Math., 2019.
Harn L. & Lin C. Authenticated group key transfer 5.
protocol based on secret sharing. IEEE Trans. Comput.
59(6), 842–846 (2010).
Jaiswal, P.; Tripathi, S. Cryptanalysis of olimid’s 6.
group key transfer protocol based on secret
sharing. J. Inf. Optim. Sci., 2018, 39(5), 1129-1137.
doi: 10.1080/02522667.2017.1292655
Kim, y.; perrig, A. & tsudik, G. tree-based group key 7.
agreement. ACM Trans. Inf. Syst. Secur. (TISSEC), 2004,
7(1), 60–96.
Liu, y.; Cheng, C. & Cao, J. An improved authenticated 8.
group key transfer protocol based on secret sharing. IEEE
Trans. Comput., 2013, 62(11), 2335–2336.
meng, K.; miao, F. & yu, y. A secure and efficient on-9.
line/off-line group key distribution protocol. Des. Codes
Cryptogr., 2019, 87(7), 1601–1620.
Pandey, A.; Gupta, I.; Singh, D.K. On the security 10.
of DLCSp over GLn(Fq[Sr]), Applicable algebra in
engineering, communication and computing, 2021.
Santhanalakshmi, S.; Sangeeta, K. & patra, G.K. 11.
Design of group key agreement protocol using neural key
synchronization. J. Interdiscip. Math., 2020, 23(2), 435-
doi: 10.1080/09720502.2020.1731956
Srivastava, G.; Singh, J.N. & manjul, m. Group key 12.
management: Issues and opportunities. J. Discrete
Math. Sci. & Cryptography, 2021, 24(3), 787-795.
doi: 10.1080/09720529.2020.1794518
Steiner, m.; tsudik, G. & Waidner, m. Diffie–Hellman 13.
key distribution extended to group communication. In

Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pp. 31–37. ACm, New
york (1996).
Storjohann, A. & mulders, t. Fast algorithms for linear 14.
algebra modulo N. Proceedings of Algorithms—ESA’98.
Springer berlin Heidelberg, 1461, 139-150 (1998).
Sun, y.; Wen, Q. & Sun, H. An authenticated group key 15.
transfer protocol based on secret sharing. Procedia Eng.
2012, 29, 403–408.
Zheng, X.; Huang, C.t. & matthews, m. Chinese remainder 16.
theorem-based group key management. In Proceedings of
the 45th annual southeast regional conference (ACM-SE
45). ACM, New york, Ny, USA, 266-271 (2007).

contrIButorS

Mr atul Pandey has completed his bSc(H), mathematics,
mSc(mathematics) from university of Delhi, India. He has recently
submitted his PhD thesis in Mathematics from University of Delhi.
He has qualified Net, JrF and GAte in mathematics. He is currently
working as an Assistant Professor at Galgotias University, Greater
Noida.
For this work, he has defined and discussed the security of problem-A
and used it for the construction of the proposed GAKD protocol.

Dr Indivar Gupta completed his phD from IIt Delhi, India. He
has been working as a scientist in Scientific Analysis Group, DrDO
since 2000, and has research contributions in various areas related
to cryptology and information security. His area of research interests
includes computational algebra, number theory and high performance
computing.
For this study, he has guided with the analysis and experimental
results using the SageMath software.

Dr Dhiraj Kumar Singh is Associate Professor in the Department
of mathematics, Zakir Husain College, Delhi (university of Delhi).
He has an experience of 10 years in teaching and research. His area
of research is Information theory and Cryptology. He has published
more than 30 research papers in journals of international repute. He
is MATRIX Fellow of Department of Science and Technology, Govt.
of India.
In the present work, he provided the research inputs for analysis,
modification and revision of the manuscript.

