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ABSTRACT

Exact solution of an incompressible fluid of second-order type  by causing forced oscillations
in the liquid of finite depth bounded by a porous bottom has been obtained.  The results presented
are in terms of nondimensional elastico-viscosity parameter ( ) which depends on the non-
Newtonian coefficient and the frequency of excitation ( ) of the external disturbance while
considering the porosity (K) of the medium. The flow parameters are found to be identical with
that of  Newtonian case as 

 

and K .  It is seen that the effect of 

 

and the porosity
of the bounding surface has significant effect on the velocity parameter.  Further, the nature of
the paths of the fluid particles have also been studied with reference to 

 

and the porosity of
the bounding surface.
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NOMENCLATURE

g(s) Given history

g (s ) Retarded history

Retardation factor

S Stress tensor

P Indeterminate hydrostatic pressure

U
i

Velocity component in the ith direction

A
i

Acceleration component in the ith coordinate

T Time parameter

Coefficient of viscosity

Coefficient of elastico-viscosity

  

Coefficient of cross-viscosity
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u
i

Nondimensional velocity component along
the ith coordinate

k Permeability of material in the dimensional
form

Density of the fluid

Nondimensional elastico-viscosity parameter

P Nondimensionalised indeterminate hydrostatic
pressure

a
i

Nondimensionalised acceleration component
in the ith direction

L Characteristic length

K     Nondimensionalised porosity factor

c                 
Nondimensionalised cross-viscosity parameter
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Nondimensional frequency of excitation

F Nondimensional external force applied

Phase parameter

A Cross-sectional area of the filter bed

Coefficient of viscosity

q Flux of the fluid

V Velocity vector

Unit vector along the gravitational force

G Gravitational force

1 . INTRODUCTION

Viscous fluid flow over wavy wall had attracted
the attention of relatively few researchers although
the analysis of such flows finds application in different
areas, such as transpiration cooling of reentry vehicles
and rocket boosters, cross-hatching on ablative
surfaces, and film vaporisation in combustion chambers,
etc. Especially, where the heat and mass transfer
takes place in the chemical processing industry,
the problem by considering the permeability of the
bounding surface in the reactors assumes greater
significance.

In view of several industrial and technological
importance, the problem of the exact solutions of
two-dimensional flows of a second-order incompressible
fluid has been examined by Pattabhi Ramacharyulu1

considering rigid boundaries. Later, a linear analysis
of the compressible boundary layer flow over a
wall was presented by Lekoudis,2 et al. Subsequently,
Shankar and Sinha3 studied the problem of Rayleigh
for a wavy wall, while Lessen and Gangwani4

examined the effect of small amplitude wall waviness
on the stability of the laminar boundary layer. Further,
the problem of free convective heat transfer in a
viscous incompressible fluid confined between vertical
wavy wall and a particle flat wall was examined
by Vajravelu and Shastri5, and thereafter, by Das
and Ahmed6. Later, Patidar and Purohit7 studied
the free convective flow of a viscous incompressible
fluid in porous medium between two long vertical
wavy walls. Subsequently, Rajeev, Taneja, and Jain8

had examined the problem of MHD flow with slip

effects and temperature-dependent heat source in
a viscous incompressible fluid confined between a
long vertical wall and a parallel flat plate.

In all the above investigations, the fluid under
consideration was viscous incompressible fluid and
one of the bounding surfaces had a wavy character.
Recently, Ramana Murthy and Kulkarni9 examined
the problem of elastico-viscous fluid of second-
order type by causing disturbances in the liquid
which was initially at rest and the bounding surface
was subjected to sinusoidal oscillations. The results
are presented in terms of nondimensional elastico-
viscosity parameter ( ) which depends on the non-
Newtonian coefficient and the frequency of excitation
( ) of the external disturbance while considering
the porosity (K) of the medium.

The aim of the present analysis is to examine
the nature of the fluid flow and also to trace the
paths of the fluid particles and examine the effects
of various parameters by considering an additional
property namely elastico viscosity and also by creating
forced oscillations in the fluid of finite depth bounded
by porous bottom. The free-surface condition on
the top was taken into account.

2 . MATHEMATICAL FORMULATION

In the sense of Noll10, a simple material is a
substance for which stress can be determined with
entire knowledge of the history of the strain. This
is called simple fluid, if it has property that at all
local states, with the same mass density, are intrinsically
equal in response, with all observable differences
in response being due to definite differences in the
history. For any given history g(s), a retarded history
g (s) can be defined as:

:)()( sgsg ,0 s 10 (1)

being retardation factor. Assuming that the stress
is more sensitive to recent deformation than to the
deformations at distant past, it has been established
by Coleman and Noll11 that the theory of simple
fluids yields the theory of perfect fluids as 
and that of Newtonian fluids as a correction (up
to the order of ) to the theory of the perfect
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fluids. Neglecting all the terms of the order higher
than two in , the incompressible elastico-viscous
fluid of second-order type have been considered
whose constitutive relation is governed by:

2)1(
3

)2(
2

)1(
1 EEEPIS (2)

where ijjiij UUE ,,
1 (3)

and jmimijjiij UUAAE ,,,,
2 2 (4)

The coefficients 

 

and are material
constants. The constitutive relation for general Rivlin-
Ericksen12 fluid also reduces to Eqn (2) when the
squares and higher orders of E2 are neglected,
with the coefficients being constants. Also, the
non-Newtonian models considered by Reiner13 could
be obtained from Eqn (2) when 

 

and naming
 as the coefficient of cross–viscosity. With reference

to the Rivlin-Ericksen fluids, may be called as
the coefficient of elastico-viscosity.

It has been reported that a solution of poly-
iso-butylene in cetane behaves as a second-order
fluid. In many of the chemical processing industries,
slurry adheres to the reactor vessels and gets
consolidated. As a result, the chemical compounds
within the reactor vessel percolates through the
boundaries, causing loss of production and consuming
more reaction time. In view of such technological
and industrial importance wherein the heat and
mass transfer takes place in the chemical industry,
the problem of permeability of the bounding surfaces
in the reactors attracts the attention of several
investigators.

The aim is to study a class of exact solutions
for the flow of incompressible fluid of second–
order type the porosity factor of the bounding
surfaces and comparing the results with those in
the Newtonian case. The disturbance due to forced
oscillations of a liquid of finite depth bounded by
a porous bottom has been studied. The results are
expressed in terms of a nondimensional porosity
parameter K, which depends on the non-Newtonian
coefficient 

 

and the frequency of excitation .
It is noticed that the flow properties are identical
with those in the Newtonian case (K = ).

If V (U
1
,U

2
,U

3
) is the velocity component and

F (F
x
,F

y
,F

z
) are the body forces acting on the

system, then the equation of motion in X, Y and Z
directions are given by

Z

S

Y

S

X

S
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DT

DU XZXYXX
X

1 (5)
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DT
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2 (6)

Z

S

Y

S

X

S
F

DT

DU ZZZYZX
Z

3 (7)

where VV
T

V

DT

D
.

If the bounding surface is porous, the rate of
percolation of the fluid is directly proportional to
the cross–sectional area of the filter bed and the
total force, say the sum of the pressure gradient
and the gravity force. In the sense of Darcy

)(
21

21 G
HH

PP
CAq (8)

where
k

C

 

in which k is the permeability of the

material. Since this law is empirical, therefore to
generalise this result, we must have the relation
for variable thickness of the porous material. A
straight forward generalisation of the Eqn (8) yields

][ GP
k

V (9)

where 

 

is the unit vector along the gravitational
force (G) taken in the –ve direction. If any other
external forces are acting on the system, instead
of G, then one has

][ FP
k

V (10)

In the absence of external forces, P
k

V ,

which gives V
k

P
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Therefore, the net resulting equation (in the
dimensional form) of motions in the X, Y, and Z
directions are

1
1 U

kZ
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Y

S

X

S
F

DT

DU XZXYXX
X (11)

2
2 U

kZ

S

Y

S

X

S
F

DT

DU YZYYYX
Y (12)

3
3 U

kZ

S

Y

S

X

S
F

DT

DU ZZZYZX
Z (13)

 Introducing the following nondimensional variables
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where T is the (dimensional) time variable.

The nondimensional form of Eqn (10) will now be

)( fpKv (14)

In the absence of external forces pKv

which yields

K

v
p (15)

A class of plane flows given by the velocity
components has been considered

),(1 tyuu

 

and 02u (16)

in the directions of rectangular Cartesian coordinates
x and y. The velocity field given by Eqn (16)

identically satisfies the incompressibility condition.
The stress can now be obtained in a nondimensional
form as

2)(
y

u
ps cxx

    
(17)

2))(2(
y
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(18)

)(
t

u

yy

u
sxy

    

(19)

In view of the above, the equation of motion
in the x-direction is given by

xfu
Ky

u

ty

u

x

p

t

u 1
)( 2

2

2

2    

(20)

where f
x 

is the external force acting along the
x-direction.

The equation of motion in the y-direction in the
absence of any external forces is given by

2)()2(0
y

u

yy

p
c

    

(21)

The pressure gradient in Eqn (20) can only be
a function of time for this flow.

Using Eqn (20) if

)(t
x

p
, 

xp

tp

xtp
0)(

)(
0

xttpp )()(0

    

(22)

where )(0 tp is the initial pressure.

From Eqn (21)

2)()2(
y

u

yy

p
c

which on integration wrt y yields
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2))(2(
y

u
p c a function of x say x

(23)

Using Eqn (22) and Eqn (23), one has

2
0 ))(2()()()(

y

u
ttpx c (24)

Using Eqn (24) in Eqn (23), one has

xttpp )()(0 (25)

Considering (t) = 0, and using Eqn (25) in
Eqn (20), the flow characterised by the velocity
is given by

xfu
Ky

u

ty

u

t

u 1
)( 2

2

2

2

(26)

where K is the nondimensional porosity constant
and f

x 
is the external force (nondimensional) acting

along the x-direction. It may be noted that the
presence of 

 

changes the order of differential
from two to three.

3 . FORCED OSCILLATIONS OF A LIQUID
OF FINITE DEPTH BOUNDED BY A
RIGID BOTTOM

Let the fluid of the depth L
h 

bounded by the
rigid bottom y = 0 be influenced by the (nondimensional)
external force Fei

 

in the x-direction. In such a
situation, Eqn (26) will now get modified as

tiFeu
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u
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u

t
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)( 2

2

2

2

(27)

with the no-slip condition at the bottom

0),0( tu (28)

and the free surface condition on the top

,0xys at hy (29)

Assuming the trial solution as

tieyFftyu )(),( (30)
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When expressed in polar form
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K
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Also the conditions satisfied by f(y) are

,0)0(f (34)

This yields the solution

ph

yhp

ip
yf

cosh

)(cosh
1

)1(

1
)( 2 (35)

In view of Eqn (30)
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On, y = h, the velocity is
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The paths of particles may be obtained by
integrating Eqn (36) wrt t

ph

yhp

ipi
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RPx
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)(cosh
1

)1(2 (43)

The constant of integration may be conveniently
taken to be zero for particles starting from the
same point (taken as origin) on the bottom.

For the case of large h,
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which for y >> , reduces to
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1

The paths of the particles in this case are
given by
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Phase parameter in this case is given by

)(tan 1 Q
(50)

4 . DISCUSSIONS AND CONCLUSIONS

As K 

 

, the results obtained for the velocity
field, paths of the particles are in agreement with
those of Pattabhi Ramacharyulu1. In the absence
of external forces, the results coincide with that of
Ramana Murthy and Kulkarni9. The case of Newtonian
fluid can be realised as 

 

.

Figure 1 illustrates the effect of elastico-viscosity
on the velocity profiles. It is observed that as the
elastico-viscosity increases, there is a decreasing
trend in the velocity of the fluid particles. And at
times, it is also noticed that there is a back flow
at the boundary layer. This is in agreement with
the real-life situation due to the fact that the
intramolecular forces are strong as elastico-viscosity
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increases, which results in the decrease of fluid
velocity. Further, it is seen that as the porosity of
the plate increases, the velocity profiles are found
to be more significantly distributed.

The effect of porosity on the nature of the
velocity profiles is illustrated in Fig. 2. In each
situation, it is noticed that as the porosity increases,
the fluid velocity also increases. The profiles are
significantly distributed and are found to be more
parabolic in the case with the inclusion of elastico-
viscosity term in the governing equation of motion.

Figure 3 illustrates the effect of the frequency
of excitation of the bounding surface on the velocity
profiles. In the case of Newtonian fluid (

 

),
it is observed that as the frequency of excitation
increases, the fluid velocity also increases. The
velocity profiles are found to be parabolic in nature.
However, a reverse trend is observed in case of
fluid whose elastico-viscosity parameter =0.6.
As the elastico-viscosity of the fluid increases,
which in turn can be attributed to the strong

intramolecular forces, the velocity decreases, i.e.,
the bulk of the fluid behaves like a rigid body.

The effect of elastico-viscosity of the fluid on
the velocity profiles has been illustrated in Fig. 4
for the case of t = 0.5 and t = 1 respectively. It
is observed that as the elastico-viscosity increases,
the fluid velocity decreases and even a back flow
is observed in certain cases. Further, over a period
of time as increases, the fluid velocity increases.

Figure 5 illustrates the paths of the fluid particles
wrt the variation in the elastico-viscosity of the
fluid. As the elastico-viscosity increases, the trace
of the fluid particles are shifted more towards left.
As the porosity of the plate decreases from k = 10
to k = 0.1, it is seen from Fig. 6 that the paths
of the fluid particles are more drifted to left.

The effect of the elastico-viscosity on the paths
of the fluid particles for t = 0.1 and t = 1, i.e., at
the very short duration are illustrated in Fig. 7.
Initially, as the elastico-viscosity of the fluid increases,

Figure 1. Effect of elastico-viscosity ( ) on the velocity profiles.
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Figure 3. Effect of

 

(frequency of excitation) on the velocity profiles.

Figure 2. Effect of porosity (K) on the velocity profiles.
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the paths of the fluid particles are more parabolic
and are drifted to right. However, the reverse trend
is observed for t = 1.

Figure 8 illustrates the effect of the elastico-
viscosity of the fluid on the phase parameter. It
is seen that for a constant value the frequency of

Figure 4. Effect of elastico-viscosity ( ) on the velocity profiles.

Figure 5. Effect of elastico-viscosity ( ) on the paths of the fluid particles for K=10.
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Figure 7. Effect of elastico-viscosity ( ) on the paths of the fluid particles.

the excitation of the bounding surface, the phase
parameter increases as the elastico-viscosity increases.
Further, for any fluid under consideration, the phase

parameter and the frequency of excitation of the
bounding surfaces are inversely proportional to each
other.

Figure 6. Effect of elastico-viscosity ( ) on the paths of the fluid particles for K=0.1.
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The effect of the porosity of the bounding
surface on the phase parameter of the fluid is
illustrated in Fig. 9. It is seen that as the porosity
of the plate increases, the phase parameter decreases.
Further, it can also be noticed that the phase parameter
and the frequency of excitation are inversely related
to each other.
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