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Creep Transition in a Thin Rotating Disc with Rigid Inclusion
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ABSTRACT

Creep stresses and strain rates have been obtained for a thin rotating disc with inclusion
using Seth’stransition theory. Results have been discussed numerically and depicted graphically.
It has been observed that radial stress has maximum value at the internal surface of the rotating
disc made of incompressible material as compared to circumferential stress and this value of
radial stress further increases with the increase in angular speed. Strain rates have maximum
values at the internal surface for compressible material. Rotating disc is likely to fracture by

cleavage close to the inclusion at the bore
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NOMENCLATURE

gi Principal finite strain components
a,b Internal and external radii of the disc

u,v,w Displacement components

r,0,z Radial, circumferential and axial directions
® Angular velocity of rotation

3, Kronecker's delta

p Density of material

C Compressibility factor

& Strain rate tensor

Y Yield stress

€ Swainger strain components

% Poisson's ratio

Q2 po’b’E (Speed factor); R=r/b; R=a/b

c, Radial stress component (T, /E)

c Circumferential stress component (T, /E)

1. INRODUCTION

Rotating disc forms an essential part of the
design of rotating machinery namely, rotors, turbines,
compressors, fly wheels and computer disc drives,
etc. The analytical procedures presently available
arerestricted to problems with simplest configurations.
The use of rotating disc in machinery and structural
applications has generated considerable interest in
many problems in domain of solid mechanics. Solutions
for thin isotropic discs can be found in most of the
standard creep text books?’. Wahl* has investigated
creep deformation in rotating discs assuming small
deformation, incompressibility condition, Tresc'a
yield criterion, its associated flow rule and a power
strain law. Seth'stransition theory® does not acquire
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any assumptions like an yield condition, incompressibility
condition and thus poses and solves a more general
problem from which cases pertaining to the above
assumptions can be worked out.

Seth® has defined the generalised principal strain
measure as

A

& ATzl A 1 ANS
€ = J.|:1_ZQi:| in :; 1_(1_2 ij

0
(1,j=1,2,3) (1)

where n is the measure and D is the Almansi

finite strain components. In this study, creep stresses
and strain rates for athin rotating disc with rigid
inclusion have been obtained using Seth'stransition
theory. Results have been discussed numerically
and depicted graphically.

2. GOVERNING EQUATIONS

A thin disc of constant density was considered
with central bore of radius a and external radius
b. The annular disc was mounted on a shaft. The
disc was rotating with angular speed » about an
axis perpendicular to its plane and passed through
the centre as shown in Fig. 1. The thickness of
disc was assumed to be constant and was taken
to be sufficiently small so that it is effectively
in a state of plane stress, that is, the axial stress
T, is zero.

The displacement components in cylindrical
polar coordinate are given hy®

u=r(1-p), v=0, w = dz (2)

where B is function of r = (x +y?)¥2 only and d
is a constant.

The finite strain components are given by Seth® as

er =1~ (P +pY]
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Figure 1. Geometry of rotating disc.
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where fB'=dB/dr .

Substituting Egn (3) in Eqn (1), the generalised
components of strain are:

&, =%[1—(rﬁ’+ﬁ)"], o =%[1—B"],

ezz:%[l_(l_d)n]vere:eez:ezr =0 (4)
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where B'=dB/dr

The stress-strain relations for isotropic material
are given by

T, =A8;1,+2ue, (i,j =1, 2,3), (5)

where 1 and p are lame's constants and e, is the
first strain invariant. 5, is the Kronecker's delta.
Equation (5) for this problem becomes

2\

T = 2
rr k+2“[err+e66]+ “err,

2\

00 — 7»+2u[err +eee]+2eee,

Tre =Tez=Tzr =Tzz=0 (6)

where B'=dB/dr

Substituting Egn (4) in Egn (6), one gets the
stresses as

T, =2—:[3—20—5“{1—C+(2—c)(|3+1)”}],

T, :2—:[3—20—5“{2—0+(1—C)(P+1)”}],

(7)

where rg = pp and

Equations of equilibrium are all satisfied except

(8)

where p is the density of the material of the disc.

Using Eqgn (7) in Egn (8), one gets a nonlinear
differential equation in g as

n-1dP
dp
B npo?r?  nl1-(P+2)"-

+P
2u nPiL-C+(2-C)P+1)"

(2-c)mp"*+1p(P+1)

(9)
Transition points of g in Egn (9) are
P> -land P —» = o
The boundary conditions are

u=O0atr=aandT =0atr=>b (10)

3. SOLUTION THROUGH PRINCIPAL
STRESS DIFFERENCE

For finding the creep stresses, the transition
function through principal stress difference!® at
the transition point P — -1 leads to the creep
state. The transition function R is defined as

R=Trr _TOG zzu_nﬁn[l_(P_i_l)n] (11)

Taking the logarithmic differentiating of Eqn (11)
wrt r, one gets

1-(P+1) -
2 (1ogR) = —1" AP (12)
d

T (P+1)] |B(P+1)

dP
Substituting the value of d_|3 from Eqn (9) in

Egn (12) and taking asymptotic value P — —1, one
gets
i(Iog R)=-

2,.2+n
- 1 {n(s—zc)+1+&}

r(2-C) 2uD"
(13)

Asymptotic value of B as P—» -1 is D/r; D
being a constant.

187



DEF SCI J, VOL. 57, NO. 2, MARCH 2007

Integrating Egn (13) wrt r, one gets
R=T, -T,=Ar" exp(Fr”*Z) (14)
where A is a constant of integration,
. n(3-2C)+1
(2-C)

~ No’p
2uD"(2-C)n+2)

_ _[ nw’p(3-2C) }

ED"(2-C)*(n+2)

and F=

From Egns (11) and (14), one gets
T, —T,, = Arkexp(Fr"?) (15)
Substituting Eqgn (15) in Egn (8), one gets

2.2

T, :_Aj'r"*lexp(Fr”*z)dr - pwzr +B (1)

where B is a constant of integration.

Using boundary condition Eqgn (10) in equation
Egn (16), one gets

B=A Ir"‘lexp(Fr"*z)dr Lo

r=b

Substituting the value of B in Egn (16), one gets
b 2 (2 2
T.=A I r<t exp(Fr“*z)dr JFJ—MD b2 ' (17)

From Eqgns (15) and (17), one gets

T66 = A{ k]r k-1 exp(Fr ”*2)dr —r k eXp(Fr n+2 )}
L po’lb-r?) -

2
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From Eqgns (11) and (15), taking asymptotic
value P— -1, one gets

S0

= {—';((32__2;) Ar* exp(Fr ”*2)} (19)

Substituting Eqgn (19) in Egn (2), one gets

_ . |n(3-2C) , « 0
u=r {_E(Z—C) Ar exp(Fr )} (20)

Sl

S

Using boundary condition [Eqgn (10)] in Egn (20),
one gets

_ E(2-C)
" n(3-2C)a" exp(Fa"™?)

Substituting the value of A in Eqns (17), (18)
and (20), one gets

E(2-C)

b
— k-1 n+2
Tor = n(3-2C)a" exp(Fa”*z){ ' exp(Fr )drH

r

(21)

b

~ E(Z—C) J'r k-1 exp(Fr n+2)dr
% | n(3-2C)a* explFa™?)|"
( ) p( ) —r k eXp(Fr n+2)
(22)
1

Uer ot r*exp|Fr™?) |n -
ak eXp Fan+2 ( )

The following nondimensional components are
introduced as

R:L ROIEG :LG :Tﬂ Q2:&2bz
b’ b>" E' " E’ E
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Equations (21) to (23) in nondimensional form
become:

(24)
(Z—C) _[Rk_l eXp(FlRm-Z)dR
o = n(3-2C)R exp(F.R) "R el )
Q? 5
+7(1— R?)
(25)
s exp(F,R™?)Tn
U=R R{ R o HE R )} (26)
where F, =- nQZ(g_ ZC)b“
(2-C)’D"(n+2)
_ [ n(8-2c)+1
R =

For a disc made of incompressible material
(C - 0), Egns (24) to (26) become

(27)

(28)

u=R

1
_ R" eXp(Fz Rmz)}n (29)

R exp(F,R;*?)

where and

4. STRAIN RATES

When creep setsin, the strains should be replaced
by strain rate. The stress-strain relations [Eqn (5)]
become

. 1+v \Y%
& =—F Ti—g%® (30)

where € isthestrain rate tensor wrt flow parameter
tand O =T, +T,+T.

Differentiating Eqn (4) wrt t, one gets

&0 =-B"P (31)

For SWAINGER measure (n = 1), one has
from Eqn (4.2)

Eo0 =P (32)

The transition value of Eqn (12) at P —» -1,
gives

B{%} (6. —0, ) (33)

Using Egns (31), (32) and (33) in Egn (30),
one gets

Sk

. - {n(ar 5, )(3—20)}%1(Gr o),

(2-¢)

R
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ta = { e, ‘(;’ f)g_ 2C)Tl[v(cr +5,)](39)

For incompressible material (C— 0), Eqn (34)
becomes

1
s o {Sn(cs, -0, )T_l( 26, —Gej
o 2 2

1
. 3n(s, -, )] (26, -0,
€oo = > >

E LR

2

These constitutive equations are the same as
obtained by Odquist® provided one takes n = 1/N.

301 C=0, Q=50

STRESSES

05 06 07 08 09 1
(R=r/b)

5. DISCUSSION

For calculating stresses, strain rates and
displacement based on the above analysis, the following

values have been taken

QZ _ p(DZbZ

=50, 75

C = 0.00, 0.25, 0.5;
n=1/3 1/5 U7 (i.e. N=3,5 7)and D = 1.

In classical theory, measure N is equal to 1/n.
Definite integrals in the Egns (24) to (25) have
been solved using Simpson's rule.

Curves have been drawn in Figs 2(a) to Fig 2(c)
between stresses and radii ratio R = r/b for a
rotating disc made of compressible/ incompressible
material at different angular speeds. It is seen
from Figs 2(a) to Fig 2(c) that the radial stress has
maximum value at the internal surface of disc as
compareto circumferential stress. It isalso observed

STRESSSES

05 0.6 0.7 0.8 0.9
(R=r/h)

Figure 2(a). Creep stressesin a thin rotating disc with inclusion for incompressible material at different angular speeds along

the radius (R = r/b).
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C=0.25, Q=50

the radius (R = r/b).
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Figure 2(b). Creep stressesin a thin rotating disc with inclusion for compressible material at different angular speeds along

C=0.5, Q*=50
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Figure 2(c). Creep stressesin a thin rotating disc with inclusion for compressible material at different angular speeds along

the radius (R = r/b).
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Figure 3(a). Strain rates distribution in a thin rotating disc with inclusion for measure n = 1/7 at different angular
speeds = 50, 75 along the radius (R = r/b).
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Figure 3(b). Strain rate distribution in a thin rotating disc with inclusion for measure n = 1/3 at different angular
speeds = 50, 75 along the radius (R =r/b).
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that the radial stress has maximum value at the
internal surface of the rotating disc with inclusion
made of incompressible material as compare to
compressible material for measure n = 1/7 or
(N =7) at angular speed Q2= 50, whereas circumferential
stressis maximum at the internal surface for measure
n=1/3 or (N = 3) at thisangular speed. The values
of radial/circumferential stress further increases
at the internal surface with the increase in angular
speed (©2? = 75) for measure n = 1/7 or (N = 7)
and n = 1/3 or (N = 3), respectively.

Curves have been drawn in Figs 3(a) and 3(b)
between strain rates and radius R = r/b at angular
speed Q= 50, 75 and measures n = 1/7, 1/3 or
(N =7, 3). It has been seen from Figs 3(a) and 3(b)
that rotating disc made of compressible material
has maximum value at the internal surface as compared
to incompressible material for measure n = 1/7 or
(N=7) and n =1/3 or (N = 3) at angular speed
2= 50. The values of strain rates further increases
at the internal surface with the increase in angular
speed Q%= 75 for measure n = 1/7 or (N =7) and
1/3 or (N = 3), respectively.
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