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ABSTRACT

This study analyses kinematics of a metallic plate perforation by a penetrator with truncated ogive nose 
geometry to find solutions also to blunt, conical, ogive, and hemi-spherical nosed penetrators. Plugging, ductile hole 
enlargement, dishing, and petal forming failure modes are used in the analyses. Acceleration throughout perforation 
is calculated by using the related failure mode, analytical model, and the target-penetrator interaction geometry. 
Depending on the failure model; back lip and front lip formation during ductile hole enlargement, plug formation 
during plugging, and deflection of target plate during dishing is also analysed. Analyses are based on projectile’s 
equation of motion, momentum and energy equations, and projectile-target plate interactions. The analyses results for 
selected cases, with the impact velocity range 215-863 m/s, are compared with the test data. The residual velocity 
estimation for a strike velocity is close to the related test data with an error of 0.3-2.2 %, except for conical nosed 
penetrators at impact velocities approaching the ballistic limit velocity.

Keywords: Perforation kinematics; Penetrator-plate interaction; Nose geometry; Limit velocity; Terminal  
 ballistics

NOMENCLATURE
A The displacement of stress wave in radial direction

b The target plate thickness

c Velocity of stress wave

c1
Parameter for static target resistance stress

c2, c3
Parameter for dynamic target resistance stress

pd Shank diameter of the projectile

D Flexural rigidity of the target plate per unit width

es
Strain energy stored by per unit volume of the 
target plate

E Young modulus

fE The energy dissipated through friction

Ep
The energy lost by the projectile

Es
Target plate’s strain energy

Et
Energy absorbed in target

F The target material resistance to penetration

Fs
Impact force on the target panel

h Depth of penetration of the penetrator’s nose tip 
at time t

K Bulk modulus

L Nose length of the penetrator

effL Effective length

mp
Penetrator’s mass

plugm Plug mass at time t

Mr
Bending moment (radial)

Mq Bending moment (tangential)

n Target plate’s strain hardening exponent

Pc
The pressure required for cavity expansion

P0
The required pressure to yield the target plate

Qr
Shear force per unit length at distance r

Rt
Target’s resistance stress to penetration

Reff
Target plate’s effective resistance stress

 ctR Resistance stress of the target plate under com-
pression

cr Cavity radius

pr Shank radius of the penetrator

plr Plastic zone size

rr Distance of penetrator’s tip to the target plate’s 
rear surface

rt
Radius at the truncated nose tip

SCE Spherical cavity expansion

t Time

V The penetrator’s instantaneous velocity

hV  
Penetrator’s instantaneous velocity at penetration 
depth h
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rV  Penetrator’s residual velocity at the exit of the 
target plate

Vs Penetrator’s strike velocity
V0 Limit velocity
v Volume

hν Volume of penetrator within target when its nose 
tip is at h

w Deflection of the target plate in z axis direction

pW  work of penetration

tx
 

The distance from the un-truncated ogive tip to the 
truncated tip

tY Target material’s strength
ε Normal strain
φ Nose geometry function
ν Poisson’s ratio (target)

, λ µ Lame constants
σ True stress

eqσ Equivalent stress
yσ Target’s yield stress
pρ The penetrator’s density

1. INTRODUCTION 
Objective of the study is to analyse perforation kinematics 

of metallic target plates at different thicknesses, impacted by the 
penetrators at different impact velocities, with different masses, 
and nose geometries, with the intention to obtain acceleration– 
time, and instantaneous velocity – time graphs for various 
penetrator-target plate combinations, by studying penetrator 
nose and target plate interaction, using the appropriate failure 
mechanisms that require only common test data, and to verify 
the analytical solutions by using the test data. 

Penetration of a plate by a penetrator which has a defined 
nose profile is studied widely1. They are reviewed by the 
references, such as2-4. however, there is a need for a common 
model that can be applied to the penetrators with various nose 
geometries.

1.1 Projectile’s Equation of Motion
with the assumption of constant cross-sectional area for 

the penetrator’s body, analysis of perforation of target plates by 
the penetrators can be made by using projectile’s equation of 
motion, as given below1.

( )2
1 2 3p eff t

dVL R c c V c V
dt

ρ = − = − + +
           (1)

Eqn (1) yields to Resal equation5 when c1=0, and to 
Poncelet equation3 when c2=0.

1.1.1  Resistance to Penetration
 Eqn (1) implies that Rt is constant or function of V. Rt is 

a function of Yt as Rt=krYt , where kr is 0.56, 0.5 or 1.337, 1.928, 
2.09, 3-610. 

1.1.2  Equation of Motion (Poncelet Equation)
 Penetration h can be calculated through integral of  

Eqn (1) and taking first term of serial expansion of logarithm 

within limits from Vs to zero1.
2

12
p s

eff

Vh
L c

ρ
≅

                                     (2)

it is shown that effect of Vs on Rt is negligible also at very 
thin plates11. 

 when h=b, Vs becomes V0, which can be calculated 
approximately from Eqn (2) as:

1
0

2

p eff

c bV
L

≅
ρ                                      (3)

using Reff, in place of c1, as proposed by Rosenberg and 
Dekel12 yields to the same energy loss of the projectile. This 
approach implies that c2 = 0 and C1 = Reff 

1.

1.1.3  Balance of Energy
 Energy transfer between penetrator and target could be 

shown as13.

p t S f pE E E E W= = + +

                           

(4)

Ef could be neglected.

1.1.4  The Strain Energy Stored During Penetration
 The stress-strain relationship for elastic and plastic 

deformation could be written as:

            for 

 for 

y

n

y y
y

E

E

ε σ ≤ σ 
  σ =   ε

σ σ > σ   σ                                               (5)

Substituting into the following one would yield to es: 
12

1

0 0 0 2 1

n n n
y n

s y
y

EEe d E d d
E n

−
ε ε ε +

  σε σ
= σ ε = ε ε + σ ε = + ε  σ + 

∫ ∫ ∫  (6)

Es is found by taking the integral of es over the volume.

Equating Ep to the case with Vo, and dividing both sides 
of the equality with Vo, yields to the following normalised 
equation.

2

0 0

1sr VV
V V

 
= − 

                                   (7)

1.2 Basic Failure Modes
basic failure modes are briefly explained as follows.

1.2.1 Ductile Hole Enlargement
 Ductile hole enlargement is the penetration mode for 

penetrators with pointed nose if b / dp > 0.1. SCE theory is 
widely used in describing ductile hole enlargement. Static 
SCE modes are analysed by various researchers14-17. Bishop  
et al.14 consider Pc as the required work for generating a cavity 
of unit volume. Pc is approximately equal to Rt. The following 
equation for Pc is proposed by hill15.

( )
2 E1
3 3 1c t

t

P Y ln
Y

  
= +   − ν                          (8)
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Satapathy18 proposes the following Eqn to consider 
thickness effect on Pc:

3 3
2 2 41 1
3 3 2 3 2

pl plt t
t c t

r r

r rY YR P Y ln
r r

       µ   = = − − +    µ λ + µ          
(9)

rpl is calculated as:
1

32
2 44 1 1/

6 6 3 3 3 2 3 3 2
pl t t t c t

r r

r Y Y Y r Y
r r

        = − + +        µ µ λ + µ λ + µ          (10)
rc is found by using Tate equation19,

( )22
1 p sc

pl t

V Vr
r R

ρ −
= +

                         (11)

V is calculated by using:

( )2 21 1
2 2p p s t tY V V V R+ ρ − = ρ +

                 (12)

where 1.7p pY = σ and Rt:

2 0.57
3

t
t t

t

ER ln
  

= σ +  σ                          (13)

1.2.1.1  Energy Balance
The penetrator’s kinetic energy is used for the work of 

volume change. The energy balance at h:
2 21 ( )

2
c

p s h t hm V V R v− = ∆
                          (14)

Vh is calculated by studying interaction of the penetrator’s 
nose with target plate, as explained in section 2.1. The analysis 
is based on a truncated (blunt) ogive nosed geometry. Solutions 
to other nose geometries are obtained from the blunt ogive 
analysis.

1.2.2 Plugging
The references20-21 provide basic theory on plugging. 

Plugging usually occurs when Vs is close to V0
10. 

 Conservation of momentum for the plug attached to the 

penetrator:

( )p s p plug rm V m m V= +
                          

(15)
      

Conservation of energy, with the assumption of adiabatic 
process, can be written as:

( )2 21 1
2 2p s p plug r p sm V m m V W E= + + +

             (16)

when Vs = V0 , Vr = 0, 2
0 / 2p pW m V= . Substituting these 

values into Eqn (16) and neglecting Es results in10:
2

2
0 0

1 1
1 /

sr

plug p

VV
V m m V

= −
+

                     (17)

For the blunt nosed penetrators, Eqn (17) takes the form:
2

2
0 0

1 1
1 /

sr

plug p

VV
V m m V

= −
+                        (18)

For thin plates ( 2 pb r≤ ), Eqns (17) and (18) convert to 
Eqn (7) if mplug =0.

1.2.3 Dishing
Dishing, analysed by woodward and cimporeu22, is due 

to stretching and bending of the plate around the impact point. 
Impact creates stress waves with velocity c, and imposes a 
transverse Fs on the target, which is equal to Rt. Figure 1 shows 
the internal loads at r from the strike point.

rQ is calculated for a clamped-edge circular plate as1:
2

2
2

d 1D
2

s
r

Fd w dwQ r
dr dr r dr r

 
= + − =  π                (19)

d 1 rQd dwr
dr r dr dr D

   =                               (20)

where D is:

figure 1. Penetrator’s impact at a panel: (a) overall view, (b) stressed region, (c) internal loads at r, (d) Internal loads at r0
1.

(a) (b)

(c)
(d)
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( )
3

2

ED
12 1

b
=

− ν                                    (21)

c is calculated as

( )
1

3 1 2t t

K Ec = =
ρ − ν ρ                           (22)

ballistic design requires high specific stiffness to transmit 
stress wave far from the impact point23.

The deflection w is calculated as follows by using Eqns 
(19) & (20):

2 2 22
16

sF rw r ln a r
D a

 = + − π                       (23)

where a = ct. w is maximum at r=0:
2a

16
s

max
Fw

D
=

π                                    (24)

Mr and M θ are found to be:

( )
2

2D 1 1
4

s
r

Fd w dw rM ln
dr r dr a

 ν  = + = + + ν   π          (25)

( )
2

2

1D 1
4

sFd w dw rM ln
dr r dr aθ

   = ν + = ν + + ν   π        (26)

Mr and M θ at r=0 could be found as24:

( )1
4 0.325

s
r

F aM M ln
bθ

 = = + ν π                    (27)

The stresses at r=0:

( )3 3

312z 1
0.325

s
rr

zF aM ln
b b bθθ

 σ = σ = − = − + ν π     (28)

The bending stress is maximum at r=0:

( )2 2

36 1
0.3252

max max s
rr

F aM ln
bb bθθ

 = σ = − = − + νσ  π  
 
 (29)

Fs is found by equating Es to projectile’s kinetic energy 
at V0: 

2 2
2

0
1 1
2 2 32

s
p t s p p s max

F aE E E W m V F w
D

= = + = = =
  (30)

( )
2 3

0 0
2 2

16 4
3 1

p p
s

Dm V Eb mVF
a a

= =
− ν

                  (31)

1.2.4 Petal Formation
Petal formation is observed with sharp-nosed projectiles 

when b / dp < 0.1. It occurs when rrσ  and θθσ  reach Rt, and Vs 
is close to V0.

2. METhODOLOGy
kinematics of plate perforation by a penetrator with blunt 

ogive nose is analysed to find solutions to the penetrators with 

all common nose geometries such as ogive, hemi-spherical, 
conical, and blunt. Acceleration and velocity histories during 
perforation are obtained by first deciding on the failure mode, 
and then using the related analytical model and the penetrator-
target plate interaction geometry.

2.1 Analyses of Perforation
2.1.1 Blunt Ogive Nosed Penetrator

Perforation through hole enlargement or plugging of a 
target plate by a truncated ogive projectile is idealized and 
schematically shown in Fig. 2, with the four cases that might 
occur: 1) h< b and L, 2) b<h<L, 3) h>b and L, 4) L<h<b. There 

Figure 2.  Schematic illustration of perforation phases in: (a) 
hole enlargement, (b) Plugging.

are two coordinate systems: a system moving with impactor 
(r and x), and a fixed system (h)25. During hole enlargement, 
lips are created, whose volume is assumed to be equal to the 
volume swept by the projectile. First, the back lip is observed, 
and its volume increases till h reaches b. Then, the front lip 
emerges and enlarges with increasing h.

Nose profile of the impactor is written as follows, with the 
coordinate origin at the nose tip:

( ) ( )22
o p or x r L x r r= ∅ = − − + −

                (32)

( )22

2
p t

o
p

r L x
r

r
+ +

=
                               (33)

(a) (b) 
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where xt is found as:

( ) ( )2
2t o p t p tx L r r r r r= − + − −

                  (34)

Assuming that the penetrator is rigid, the penetration will 
create a displacement of target’s material, whose displaced 
volume is equal to the penetration volume of the penetrator into 
the target. The displaced volume due to differential penetration 
depth (dh) is:

( ) ( )( )2
22 2  o p odv h dh r L h r r if h L= πφ = π − − + − ≤

 (35)

Integration of Eqn (35) will give the total amount of 

displaced volume ( hv∆  at h. For the case h b≤ , h L≤ , 
hv∆  

is calculated as:

( )( ) ( )
2

22

0

h

h o p oh
v r L h r r dh A B C

=
∆ = π − − + − = π + +∫ (36)

2 2

3o
hA h r L h L  = − + −                            (37)

( ) ( ) ( )
( )

( )

22 2 1

22

2 2 2 1

2 2
      

p o o o

o

p o o o

o

h LB r r h L r L h r tan
r L h

Lr r L r L r tan
r L

−

−

  −  = − − − − + +
  − −   
  −  − − −

  −  

 (38)                                                                

( )2

p oC h r r= −
                                  (39)    

  hv∆ for b<h<L:

( )( ) ( )
2

22h

h o p oh h b
v r L h r r dh A B C

= −
∆ = π − − + − = π + +∫  (40)       

A, B and C values in Eqn (40) are calculated by substituting 

the related limit values. hv∆  for h>b and L:

( )( )
( ) ( ) ( )

2
22

2 2         

L

h o p oh h b

p p

v r L h r r dh

r h L A B C r h L

= −
∆ = π − − + − +

π − = π + + + π −

∫  (41)

A, B and C values in Eqn (41) are calculated by substituting 
the related limit values. 

 For L<h<b, A, B, C values are found by using the limit 
values from h-L to h. 

Vh can be found from Eqn (14) as:

2 2 c
p s t h

h
p

m V Y v
V

m
=

∆−

                           (42)

Figure 3. Acceleration variation with; (a) Perforation time and (b) Nose penetration.

Figure 4. srV V−  comparison charts: (a) Values and (b) Normalized values.
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(a) (b)
Figure 5. Vr - Vs comparison charts for different thicknesses: (a) Values, (b) Normalized values.
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(a) (b)
Figure 6. Vr - Vs comparison charts for different nose geometries: (a) Values, (b) Normalized value.

rV  is calculated by substituting b for h in Eqn (42) as:
2 2 c

p s t b
r

p

m V Y v
V

m
=

∆−
                            (43)

Vo can be found from Eqn (43) as:

0
2 c

t b

p

Y vV
m

∆
=

                                   (44)

2.1.2 Ogive Nosed Penetrator

when replacing x with ( )tx x′ −  and L with ( )tL x′ − , 
coordinate system origin moves to the tip of un-truncated nose 
location. Then, substituting xt = 0 and rt = 0 in the equations 
of truncated ogive geometry, yield to the solutions for the un-
truncated. 

2.1.3 Hemi-Spherical Nosed Penetrator
By replacing r0 and L′ with rp, the solutions for ogive nose 

result in with the ones for hemispherical nose. Penetration 
mode might change from adiabatic shear plugging to ductile 
hole enlargement.

2.1.4 Conical Nosed Penetrator

By replacing A + B + C with ( )3 / 3pr h Lπ ′ , solutions for 
ogive-nosed projectile result in with the ones for conical nose.

2.1.5 Blunt Nosed Penetrator

By taking 0, , , , 0t p p t pr r r r x L x L r L′ ′ =′= = = = = , 
solutions for ogive-nosed penetrator result in with the ones for 
blunt nose.

2.2 Penetration Mode
Five models were used in analysing kinematics of 

perforation. scE mode, adapted for finite thickness, is used in 
Model I. Model II is like Model I but with hill’s SCE theory. 
Model III uses plastic flow theory based on momentum and 
energy conservation. Model IV is an energy and momentum 
based plugging theory. Model V is the parametric model 
proposed by Forrestal et al.26.

3. RESULTS AND DISCUSSION
Kinematic analyses were done for three different cases, 

with the test data from literature, by applying the theories put 
forward here. 

3.1 Test Case I
The test data from the literature27 is on the steel projectiles 

with ogive nose that were impacted at the 26.3 mm thick - 
6061-T651 aluminium plate with various Vs values. 

Acceleration versus perforation time and nose tip 
penetration through the target thickness at various strike 
velocities are analysed with the selected models. As an 
example, the results with Model I are shown in Fig. 3.
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Vr - Vs graph with the values calculated by using different 
models, and test data are shown in Fig. 4. 

Vr - Vs calculations are in line with the test data. The 
normalized velocity values perfectly fit into the idealized 
Recht - Ipson curve28. Residual velocity predictions with 
Model I and V are with an error of 0.3-2.2 % for all velocities. 
Model II predicts the results with good estimations. Model III 
underestimates Vr. The best calculations are with Model IV.

3.2 Test Case II
The test data from the literature29 is on conical nosed steel 

penetrators impacting at the AA5083-h116 aluminium plates 
of thickness 15-30 mm with various Vs values. 

Vr - Vs graphs with the values calculated for different 
thicknesses by using different models, and the test data are 
shown in  Fig. 5.

Vr - Vs calculations are in line with the test data at high 
strike velocities at all target plate thicknesses except for 25 
mm, for which the test data do not seem to be in line with the 
other thicknesses of the same material. For b=15 mm, Model I 
estimations are the best. For b=20 mm, the results with Models 
II and V are good. For b=30 mm, Model III results are the 
best.

3.3 Test Case III
The test data from the literature30 is on conical, blunt, or 

hemispherical nosed stell projectiles that are impacted at the 3 
mm thick Mars 300 steel plates with various Vs values. 

Residual velocity graphs that provide test data and 
calculations comparison are given in Fig. 6. For blunt nosed 
penetrators, all models except III and V predict the results in 
good agreement with the test data. For projectiles with conical 
nose, Models III, V, and I results are good at all velocities 
except the ones approaching Vo. In the case of projectiles 
having hemispherical nose, Models III, IV and I estimations 
are good at all velocities.

4. CONCLUSIONS
Analyses of plate perforation by a truncated ogive 

nosed penetrator provide solutions also to the penetrators 
with common nose geometries such as ogive, hemispherical, 
conical, and blunt.

 kinematic analyses have been made with various test 
cases that are available in the literature28-30. Vr - Vs calculations 
are in line with the test data for most of the models used. In 
general, estimations are good at the velocities not approaching 
V0. 
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