
Defence Science Journal, Vol. 57, No. 1, January 2007, pp. 149-162
2007, DESIDOC

Revised 16 March 2006

Real-time Photorealistic Visualisation of Large-scale
Multiresolution Terrain Models

Anupam Agrawal1, R.C. Joshi2, and M. Radhakrishna1

1Indian Institute of Information Technology, Allahabad–211 011
2Indian Institute of Technology, Roorkee–247 667

ABSTRACT

Height field terrain rendering is an important aspect of GIS, outdoor virtual reality applications
such as flight simulation, 3-D games, etc. A polygonal model of very large terrain data requires
a large number of triangles. So, even most high-performance graphics workstations have great
difficulty to display even moderately sized height fields at interactive frame rates. To bring
photorealism in visualisation, it is required to drape corresponding high-resolution satellite or
aerial phototexture over 3-D digital terrain and also to place multiple collections of point-location-
based static objects such as buildings, trees, etc and to overlay polyline vector objects such
as roads on top of the terrain surface. It further complicates the requirement of interactive frame
rates while navigation over the terrain. This paper describes a novel approach for objects and
terrain visualisation by combination of two algorithms, one for terrain data and the other for
objects. The terrain rendering is accomplished by an efficient dynamic multiresolution view-
dependent level-of-detail mesh simplification algorithm. It is augmented with out-of-core
visualisation of large-height geometry and phototexture terrain data populated with 3-D/2-D
static objects as well as vector overlays without extensive memory load. The proposed
methodology provides interactive frame rates on a general-purpose desktop PC with OpenGL-
enabled graphics hardware. The software TREND has been successfully tested on different real-
world height maps and satellite phototextures of sizes up to 16K*16K coupled with thousands
of static objects and polyline vector overlays.

Keywords: Digital terrain models, level-of-detail management, multiresolution modelling, real-time
rendering, photorealistic visualisation, terrain-rendering algorithm

1 . INTRODUCTION

Computer-generated perspective imagery of
mission-critical terrain has been recognised as a
valuable tool for acquiring strategic and tactical
insight. Currently available high quality digital
representation of earth features is facilitating
visualisation with greater detail and informational
content. Photorealistic terrain visualisation is achieved
by combining terrain topography with terrain image
or phototexture. Terrain topography is represented

in the form of elevation samples and is also known
as height field or digital elevation model (DEM).
There are varieties of sources to acquire DEM
data of the area of interest, which includes digitised
contour data from topographic maps, satellite or
aerial optical stereo image pair, microwave synthetic
aperture radar (SAR) images (using interferometry
or radargrammetry), etc.

The image or terrain phototexture is obtained
from a satellite or by any other suitable mechanism

149



150

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

with near-vertical view angle. Such imagery is
widely available from commercial remote sensing
satellites such as SPOT, LANDSAT, IRS, IKONOS
and QuickBird. Apart from the above two sets of
data, the visualisation may have multiple collection
of point-location-based static objects such as buildings,
trees, etc and polyline vector objects such as roads,
district boundaries, etc on top of the terrain surface.
Such high quality visualisation along with real-time
navigation over digital terrain has significant applications
in many defence, civil, and training-related areas.

Many factors determine the quality of a real-
time 3-D visual simulation. Two of these are the
fidelity of the scenes rendered and the frame rate
of the simulation, factors that are at odds with
each other1. High fidelity scenes provide a greater
degree of realism while high frame rates, in excess
of 30 frames per second, provide smooth motion.
The challenge is to add many additional features
that enhance realism of the user application while
keeping in view the desired fidelity and frame rate.

On the face of it, rendering of terrains is simple.
The basic input is a height field, which can be
drawn on the screen as a network of triangles.
However, simple calculations show that this is not
practical on hardware available on the desktop
PCs today. Consider real-world digital terrain data
set covering 160 km*160 km area at a 10 m resolution.
This makes a total of 256 million points. Assuming
that each point is stored as an 8-bit integer, the
height field would require a total of 256 MB RAM.
The same size coloured image with Red-Green-
Blue bands would require a total of 768 MB memory.
This excludes the memory required to represent
objects that populate the terrain. The rendering of
the height field would involve the drawing of around
512 million triangles. The high-end desktop graphics
card, Nvidia's GeForce4 MX 460 claims a theoretical
maximum of 38 million triangles per second only.
Not to mention that transferring total 1024 MB of
data across the graphics pipeline minimum 30 times
a second is far beyond bandwidth capacity of today's
buses. This shows the complexity of the real-time
rendering of large terrain data sets.

Restricting visualisation to small terrains or
using low-resolution terrains2,3 was suggested, but

this has limited practical value. To render the large
terrain data sets in real-time, it is necessary to
reduce the complexity of the scene while maintaining
a high image quality. Level of detail (LOD) modelling
provides efficient mechanism to represent and
manipulate complex object details by optimising
the trade-off between complexity and accuracy of
representation4. Multiresolution polygonal
mesh simplification algorithm have been used to
generate multiple surface models at varying levels
of detail, and appropriate techniques to select
and render the appropriate LOD model have been
employed.

This paper discusses the methodology and
implementation aspects to improve the quality and
speed of rendering of large terrains on general-
purpose desktop PCs. The proposed LOD algorithm
uses a compact and efficient multiresolution grid
representation of height fields and employs a variable
screen-space threshold to limit the maximum error
in the projected image. The method is different
from the individual triangle-based LOD algorithm
and is optimised for modern, consumer 3-D graphics
cards and minimises CPU usage during rendering.
It is augmented with out-of-core visualisation of
large height geometry and texture terrain data. To
display large collection of point-location-based static
objects over the terrain while maintaining the real-
time frame rate, an efficient object handling method
has been proposed using paging technique and object
instantiation. User is allowed to control the objects
locations, scales and orientations. Display of polyline
vector data over multiresolution 3-D terrain has
been accomplished using an efficient geometry-
based mapping approach.

2. RELATED WORK

Image-based modelling and rendering (IBMR)
and many polygonal mesh simplification (PMS)
techniques for terrain height fields have been developed
for terrain visualisation. The IBMR techniques model
a scene by combining 3-D geometry and 2-D image
sprites; these create a texture map from an object
represented at a high resolution, which is used to
texture the same object represented at a lower
resolution–reintroducing details contained in the
texture

5,6.



151

AGRAWAL, et al.: VISUALISING MULTIRESOLUTION TERRAIN MODELS

One of the PMS approaches employ regular
hierarchical structures to represent the terrain,
whereas the second PMS approach is characterised
by the use of less constrained triangulations or
triangulated irregular networks (TIN). The most
established methods of the first class make use of
triangle bin-trees/quadtrees7-9, and edge bisections10.
These structures facilitate compact storage due to
their regularity, as topology and geometry information
is implicitly defined. Approaches of the second
class include data structures like multi-triangulations11,
adaptive merge trees 12, hyper-triangulations13 and
the adaptation of progressive meshes to view-dependent
terrain rendering 14. Triangulated irregular networks
are able to reduce number of necessary triangles
since these are much better  adopted to high-
frequency variations. However, to capture irregular
refinement or simplification operations and connectivity,
a complex data structure is needed. Also, the algorithm
are complex and CPU-intensive for dynamic view-
dependent simplification.

Regular hierarchical structure were chosen to
represent terrain (stored as height map) as it allows
fast collision detection between the moving camera
or viewer position and the terrain. It also supports
use of efficient hierarchical data structures for
fast and easy view frustum culling. Most of the
LOD-based terrain-rendering algorithm attempt to
generate triangulations, which optimally adapt to
terrain given as a height map, and hence are CPU-
intensive. This definition of optimality specifies as
few triangles as possible for a given quality criteria.
Today, the absolute number of triangles is not as
important. Today's graphic hardwares make it possible
to render lots of triangles quickly (of the order of
40 million triangles per second or more). However,
to overcome the problem of limited-memory bandwidth,
it is necessary to supply the geometry to the card
in a specific manner, which usually means the
creation of long triangle strips. Block-based view-
dependent dynamic LOD terrain-rendering algorithm15,16,
considers the above facts using 3-D rendering hardware
and minimises the CPU overhead. The algorithm
cleverly avoids T-junctions and cracks in the
multiresolution surface while generating long triangle
strips with significant gain in rendering performance17.
Image draping over 3-D mesh geometry is performed

using texture mipmapping using OpenGL18 3-D
API.

Relatively less work has been reported in literature
on object management over multiresolution terrain.
Szenberg19, et al. describe a method of terrain
visualisation with point-location-based objects such
as houses, transmission poles, etc and overlay of
polyline vector, objects such as transmission lines.
The visualisation scheme for terrain height field is
not based on multiresolution modelling but combines
the Z-buffer with the floating-horizon algorithm.
Also, results are shown on limited-sized terrain
data (512*512 size) only. Douglass20, et al. describe
a bottom-up LOD height field rendering scheme
by placing building objects over the terrain. In
contrast to a top-down LOD approach, a bottom-
up approach necessitates the entire model being
available at the first step, and therefore, has higher
memory and computational demands4. Zachary21,
et al. extend the approach of Douglass20, et al.
to overlay polyline vector data over multiresolution
3-D terrain. Kersting22, et al. describe a texture-
based rendering of polyline vector data onto the
LOD terrain geometry.

In this paper, a new object management approach
coupled with block-based multiresolution LOD terrain
modelling approach has been proposed. It employs
an efficient object-paging scheme and multiresolution
modelling of polyline vector data, which smoothly
adapt with tile-based organisation of geometry and
texture data for out-of-core data management.

3 . TERRAIN DATA GENERATION

For generation of terrain data pertaining to
height maps, two sources of data, namely Survey
of India supplied topographic maps containing contours
depicting surface relief and National Remote Sensing
Agency (NRSA) supplied IRS-1C/1D stereo images
for the area of interest are used. Dehradun and
surrounding hilly regions in northern India were
selected for this purpose. An efficient Delaunay
triangulation-based surface-reconstruction scheme
has been developed to generate the height map
from digitised contour data2,23. An attempt was
also made to generate the height map from the



152

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

satellite stereo image pair using PCI Geomatica
software. The raw satellite images are required to
be preprocessed for sensor-error correction, geometric
correction, reduction of atmospheric effects, mosaicing,
image enhancements, etc as per the need. The
modified registered image (PAN or LISS-3) has
been used for image draping over the 3-D views
of terrain. An efficient algorithm to fuse the two
sets of images such that the resulting image contains
high spectral contents of the LISS-3 image and
high structural contents of PAN images24 has been
developed.

Although the use of remote sensing imagery
allows very realistic landscape visualisation, the
vertical sides of objects, such as building's fronts,
individual trees, etc are not recorded by the sensor.
AutoCAD 3-D modelling package and billboarding
techniques are used to represent complex and natural
objects respectively. Further more, facility is provided
for the user to interactively digitise vector data
such as roads from the scanned topographic map
to overlay and display over 3-D LOD views of the
terrain.

4 . RENDERING LARGE TERRAIN GEOMETRY
AND TEXTURE IN REAL TIME

The main objective of  multiresolution terrain
rendering research is to create visual simulations
of very large terrains on inexpensive desktop PCs.
The rendering must be done in real-time ensuring
frame rates above 30 frames per second.

4.1 Data Preprocessing

4.1.1 Terrain Geometry Data

Since data sets are very large, these will not
fit into main memory in its entirety. To address this
problem for terrain navigation application, it is proposed
to organise the digital height map data in tiles of
size (2 n+1) * (2n+1) pixels with n = 8. One pixel
overlap is kept between adjacent geometry tiles to
ensure proper stitching of tiles. Only those terrain
tiles that need to be rendered or are at least near
the camera, need to be loaded from disk and stored
in main memory. A group of 3 x 3 tiles, which are
active (loaded in main memory) at a given time has

been considered. The viewer is assumed to be
inside the centre tile. An efficient indexing scheme
has been developed to organise the digital terrain
data as collection of tiles on secondary storage16.

A quadtree was constructed for each active
tile of the terrain height map where size of each
leaf block or patch of the quadtree was 17*17 (the
size decided after experimentation). The data held
by each node of the quadtree include the minimum
x and z and maximum x and z coordinates (bounding
box) of the terrain represented by this node. The
root node of the quadtree stores the values of the
minimum and maximum coordinates of the whole
tile. Each leaf node has the index of the block it
represents. This terrain block layout is chosen such
that the block can be optimised for rendering, using
one draw-primitive call for the entire block and,
even better, using indexing to get rid of multiple
transformations of vertices17. Multiresolution pyramid
representation was used to define each leaf block
of size 17*17.

4.1.2 Satellite Texture Images

The combination of geospecific textures with
digital elevation models (height maps) allows construction
of photorealistic visual simulation of landforms.
For real-world terrain models, large, high-resolution
textures need to be processed which do not usually
fit into graphics texture memory. Previously, the
whole satellite image texture was used for image
draping using OpenGL API mipmapping18. In such
a case, due to the limitation on texture buffer size
on Pentium IV machine, the data size was restricted
to 4K*4K. Current techniques developed15 enable
the use of large texture data in tiles of size 256*256
pixels similar to geometry tiles, and establishes a
one-to-one correspondence between these. Also
during rendering, anisotropic filtering has been used
instead of conventional mipmapping scheme supported
by OpenGL API. This enhances the rendering quality
and also improves locality because the level of
filtering is chosen by the maximum partial derivative.

In the direct texture tiling approach, visible
seams appear at the edges of texture tiles when
interpolation is used to smooth textures. This occurs



153

AGRAWAL, et al.: VISUALISING MULTIRESOLUTION TERRAIN MODELS

where no information is available for neighbouring
textures. It can also be exacerbated by the wraparound
behaviour of interpolation, where the first pixel
colour is used to influence the colour of the last
pixel in a tile row. The texture-clamping feature
of the OpenGL was used and also modification to
the texture tile generation process, which uses a
power of 2 tile size with a single pixel of redundancy
on all sides of the texture. Further, to ensure that
landcover features in texture image fall at appropriate
places over height map, texture image was to be
reprojected to adjust pixel size.

4.2 Run-time

4.2.1 Reducing Polygon Flow in Rendering
Pipeline

In the proposed framework, dynamic terrain
paging and view-frustum culling techniques were
used to control substantial amount of polygons in
the rendering pipeline. Initially, the viewer was
assumed to be standing in the middle of centre tile.
As the viewer walkthroughs near the edge of the
centre tile, three new tiles in the direction of movement
were paged-in and three old tiles in the opposite
direction were paged-out. Terrain paging has been
used for the out-of-core management of large terrain
data.

To avoid excessive time spent on rendering
polygons that are not within the field-of-view, the
terrain was intersected with the view frustum and
renders only those blocks at quadtree leaves that
are part of this intersection (Fig. 1). For a field-
of-view of 90 degree, the culling stage generally

reduces the number of polygons to less than half.
The quadtree representation of tile data enables
very fast view-frustum culling16.

4.2.2 Adaptive View-dependent Geometry   
Refinement

After dynamic terrain paging and view-frustum
culling, one is left with a set of terrain blocks or
patches (size 17*17), which can be immediately
sent to the graphic pipeline. Because terrain complexity
(surface roughness) can be quite high, one will not
get the desirable frame rate unless the terrain is
very small; above-mentioned methods will not suffice
for high complexity terrain. In fact, terrain blocks
that are far away from the camera do not need
to be rendered with the same detail as terrain
blocks that are near the camera. These can be
approximated by a lower-resolution version; thereby
drastically decreasing triangle count and increasing
render speed. This leads to LOD rendering of
height maps.

Each block (size 17*17) of the terrain data in
multiresolution hierarchy was organised using pyramid
data structure. The pyramid level 0 represents the
default (highest) resolution terrain block, and pyramid
level N [N 

 

(1, )] represents each successive
lower resolution version. Figure 2 shows the four
pyramid levels of the height map block of size
17 * 17. To simplify the multiresolution method,
simply skipping samples were opted to build a
lower-resolution version of a block. Therefore,
lower-resolution blocks do not have to be pre-
generated. One can precalculate the resolution
level and camera distance relationship for all the

 

NEAR-CLIPPING PLANE FAR-CLIPPING PLANE

Figure 1. View-frustum culling – top and bottom planes are not being used: (a) 3-D view-frustum and its projection over 2-D
plane, (b) visible and partially visible quad cell blocks.

(a) (b)



154

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

blocks of the active tiles at terrain-tiles load time.
Calculating the maximum geometric error between
the current level of the block and a lower-resolution
block (for given distance from the camera to the
centre of the terrain block) generates a screen
space error ( ) in pixels. If this error is smaller
than a user-defined threshold ( ), then the algorithm
will render the block with the lower resolution.

To speed up the dynamic level of detail selection,
one precalculates same for each visible terrain
block and prepares a Look-up Table to decide the
tessellation level of the block based on position of
the camera from the block16. To calculate the same,
one treats the camera's direction vector as being
permanently horizontal (worst case which may lead
to more triangles in some cases). The graphics
hardware takes care of these extra triangles, and
hence, the above scheme brings down CPU overhead
to a minimum.

4.2.3 Removing Terrain Artifacts in Multiresolution  
Rendering

It is important to note that in a view-dependent
framework, the resolution of adjacent patches might
change at every frame. Hence, cracks occur on
borders of adjacent patches of different levels of
detail. In Fig. 3 (a), the circle shows the position
of crack in tessellation with level difference one       

  

Figure 4. LOD wiremesh view of terrain geometry.

(right side patch is shown partially). Crack-filling
methods usually involve creating additional triangles
to fill in the gaps between patches, and/or modifying
the geometry of one or other of the patches to
produce a crack-free join. Figure 3(b) shows the
modified geometry to remove the cracks where the
dashed edges are excluded in triangulation and the
bold edges are included. Similar procedure is followed
to eliminate cracks when level difference between
adjacent patches is two or three. Figure 4 shows
a snapshot of the LOD wiremesh view with adjacent
patches of different resolutions.

4.2.4 Optimising Rendering Speed using Long
Triangle Strips

Current graphics hardware is now capable
of rendering vast number of triangles, but graphics
throughput to the hardware remains a bottleneck.
Triangle strips are the most efficient primitives on
today's video cards as these save CPU-to-card
bandwidth by sending fewer than three vertices
per triangle to the graphics pipeline.

Figure 2. Multiresolution modelling of height map.

Figure 3. Removing cracks between adjacent patches:
(a) before crack removal (b) after crack removal.

(a) (b)

LOD-1LOD-0

LOD-2 LOD-3



155

AGRAWAL, et al.: VISUALISING MULTIRESOLUTION TERRAIN MODELS

Triangle strips have been used extensively for
static mesh representation. However, using such
triangle strip representation and generation techniques
is not practical for a multiresolution triangle mesh.
In a view-dependent framework, the underlying
mesh topology might change at every frame, thus
making it difficult to use triangle strips. The triangle
strip generation scheme for view-dependent dynamic
multiresolution terrain shows significant improvement
in rendering speed as compared to individual triangle-
based and triangle-fan-based rendering schemes17.

5 . OBJECT MANAGEMENT OVER DIGITAL
TERRAIN

There may be thousands of objects placed
over the terrain. These objects may include man-
made objects such as various kinds of buildings,
lampposts, signposts, as well as roads, district boundaries,
etc and also natural objects such as various kinds
of trees, etc. Here, roads or district boundaries are
polyline-based vector objects whereas the others
are point-location-based objects. One may further
divide the point-location objects into two categories.
The first one is simple objects, those having simple
geometry and can be drawn with the help of OpenGL
primitive functions. These objects do not need to
be loaded into memory. Examples of simple objects
include sky-scrapper buildings drawn using elongated
cube with texture mapping over its exposed faces
and also objects created using billboarding technique.
The second category is of complex objects having
complex geometry and large number of triangles.
These objects are required to be loaded into main
memory containing their vertices and topology
information. Examples of such objects include complex
3-D geometrical models of buildings, trees, etc.

The software has the provision to import such
complex structures from .dxf format and convert
into native .mesh extension files obtained after
selecting relevant-only information. Complex objects
may consume substantial memory as well as drawing
time and may severely affect the rendering performance.
So one usually prefers to use simple objects to
populate the terrain. To cater for the requirement
of populating the terrain using multiple copies of
the same object, a methodology has been proposed
for efficient memory management and maintaining

real-time rendering performance. Further, an efficient
geometry-based mapping algorithm has been proposed
to render polyline vector data over 3-D multiresolution
terrain.

5.1 Rendering Point-location-based Objects

While walkthrough over the 3-D terrain, user
cannot see all the objects at once. Thus there is
no need of keeping all of them in memory and
render them. The objective is to deal with a large
number of objects over the terrain. The number of
objects is not constant throughout the navigation
process; also more objects can be edited, added,
or even deleted from the objects list.

5.1.1 Placing Multiple Instances of Objects
Over Terrain

The first task is the deployment of various
buildings on the terrain. The various types of buildings
and houses being rendered on the terrain would
give a look of a good human settlement. The buildings,
which can be used over here, can be of the following
types: like designed in Opengl or a DXF- 3DFACE
building designed using AutoCAD package. The
software helps the user to place a building anywhere
on the terrain by showing the scanned georeferenced
map or image in the background inside a 2-D
window. As soon as the user clicks on the map
(after choosing the kind of building (s)he wants to
deploy), the building is placed at the appropriate
position over the 3-D terrain.

The user can change various parameters associated
with different buildings such as width, height or
depth and then save the changes appropriately. An
object may have its multiple instances with possibly
different scaling factors. If an object is already
been loaded into memory, on its subsequent
occurrences, simply the pointer of object memory
is returned for further processing and its counter
is incremented by one. Thus the multiple loading
of the same objects can be avoided.

For many objects, the technique of billboarding
has been used (which is sometimes of great use
as the loss in frame rate is quite negligible) and
it shows the 2-D images just like 3-D objects.



156

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

Billboarding is a technique that adjusts an object's
orientation so that it faces some target, usually the
camera. Billboarding can be used to cutback on the
number of polygons required to model a scene by
replacing geometry with an impostor texture.
Billboarding guarantees that the texture is always
facing the camera, therefore the user never realises
that the tree is in fact a flat texture quad. This
particular technique can be used in the cases when
finer details are not required about the object. In
this study small size .bmp or .tga images has been
used as textures, which takes very less space and
hence helps in achieving a better frame rate, i.e.,
faster rendering of the terrain with objects.

5.1.2 Paging and Display of Objects Data

When user opens the model layer, a message
is sent to ‘Objects’ class to open the particular file,
followed by loading of names and locations of all
the objects those are there in the file. These all
objects (i.e., their geometry and texture) are not
loaded into memory, but the objects of same tiles
are grouped together, so that objects of current
nine tiles can be loaded into memory. The software
internally manages a dynamic data structure to
store tile-wise objects details (without their geometry
and topology information). The geometry and topology
information of only those objects are kept in main
memory which are inside current active nine tiles.

When new tiles are loaded and old are deleted,
'AddModel' function is called to add new models
and "RemoveModel" is called to remove old models
of corresponding tiles. The 'AddModel' function is
called prior to 'RemoveModel' function to optimise
the time by avoiding loading and unloading overheads.
Objects paging helps in out-of-core management
of large objects data on secondary storage.

5.2 Rendering Polyline Vector Data

Polyline vector data represents one major category
of geographic information and defines geometry as
lists of 2-D coordinates. Narrow linear features
such as roads, railway lines, etc are usually not
visible on a satellite remote sensing image used in
creating 3-D phototextured views of the terrain.

Other vector features such as state or country
boundaries, property lines, etc, usually used for
logical demarcation, are also required to be overlaid
on top of the 3-D views with different type, shape,
and display properties. These vector features are
separately digitised from corresponding topographic
map.

There are two options to render polyline vector
data on a 3-D mesh. One option is to convert the
polyline data to a texture image layer and combine
this polyline image layer with the primary terrain
texture image layer (e.g., from a satellite/aerial
photograph). The second option is to render the
polyline data as separate 3-D geometric primitives.
One may call these two approaches as polyline-as-
texture solution22 and polyline-as-geometry solution21

respectively. The second approach was preferred
as it supports interactive enabling and disabling of
the display of different subsets of polyline data and
interactive adjustment of line styles such as line
colour, width, and stipple patterns to distinguish
and highlight different geographic data. The approach
suggested by Zachary21, et al. is not directly usable
in the present case because multiresolution LOD
mesh simplification scheme is different.

Displaying 2-D polyline data on top of 3-D
terrain becomes challenging in the terrain
visualisation system for several reasons. First, the
display of vector layer should be limited to current
nine raster tiles active at a time. Second, in the
polyline-as-geometry solution, the 2-D polyline data
should be treated independently from the raster
data, and therefore, should be rendered as separate
geometry by the graphics pipeline. This presents
a challenge because terrain artifacts are likely to
occur unless vector-data is mapped consistently
and exactly to current LOD of terrain geometry.

5.2.1 Interactive Capture of Vector Data

The software helps a user to digitise linear
vector features to overlay on top of the 3-D views.
It displays the 2-D scanned topographic map or
raster image in the background. A user may select
the vector digitisation option and capture a linear
feature as collection of 2-D points on a polyline.



157

AGRAWAL, et al.: VISUALISING MULTIRESOLUTION TERRAIN MODELS

The user may choose varying spacing between
points based on the curvature of the vector layer.
It automatically computes the intermediate points
between two successive points. The height of terrain
on all the points over the polyline vector feature
can be retrieved from the DEM quadtree during
run-time. After digitisation of different vector features,
the vector layer may be saved in a file.

5.2.2 Data Storage and Display of Vector Data

Internally the digitised vector data is stored as
per tile layout of corresponding geometry and texture
image data. Hence a vector feature, which is extending
between two tiles, will be stored as two vector
segments. Whenever the user opens a vector data
file, a linked-list is created in primary memory to
store vector segments for all the tiles. Tile-wise
vector segments information helps to display selective
vector information based on current active nine
tiles. A user may add new vector features in the
existing vector file. In the multiresolution LOD
rendering framework, the underlying mesh geometry
(due to patch resolution) is changing at nearly
every frame. Therefore for the polyline data to
appear smoothly overlaid on the 3-D mesh, the
rendered polyline geometry (i.e., height values at
points) should therefore also change at each frame.
The algorithm of multiresolution modelling of vector
data allows the system to adapt the visual mapping
without rendering artifacts to the context and user
needs while maintaining interactive frame rates25.

6 . SOFTWARE ARCHITECTURE, USER
INTERFACE, AND NAVIGATION

6.1 Software Architecture

The software TREND (acronym for Terrain
Rendering) is an object-oriented 3-D application
that can be used to model and interactively visualise
real-world environments on a desktop PC. Architecture
of the system is shown in Fig. 5.

To achieve real-time performance even on very
large data size, TREND Data Modeller organises
the geographic raster and vector data in tiles of
size 256*256 grid-cells. User can selectively display
different types of data as per the requirement. For

example, user can visualise the terrain height map
data in triangulated wireframe form and then drape
satellite phototexture over it, if required. Similarly,
user can switch-on and switch-off object layer
(containing various objects such as buildings, trees,
lampposts, etc) as well as vector layer (representing
polyline features such as roads, district boundaries,
etc) over the level of detail mesh. Subsequently,
a user may enable or disable various special effects
such as fog, multitexturing etc. Multiresolution
Extractor module helps to decide the resolution
level of a terrain patch based on its distance from
the camera and user-specified image quality metric
( ). LOD Constructor and Terrain Simplifier module
generates LOD representation of the mesh under
view-frustum and removes possible artifacts such
as cracks between different resolution patches
and also constructs long triangle strips of the LOD
mesh. Rendering Manager module displays various
types of views of the terrain as explained above.
The Frame Rate Controller and Dynamic Terrain

 
Raw Terrain

 
Raster & Vector 

 
Data

 

VISUALISATION

 

F
ra

m
e 

R
at

e 
C

on
tr

ol
le

r 
&

 

D
yn

am
ic

 T
er

ra
in

 P
ag

in
g

 

Multiresolution Extractor

 

LOD Constructor and Terrain 

 

Simplifier

 

Rendering Manager

 

Rendering of

 

LOD Triangulated

 

Mesh

 

Rendering

 

with  Photo

 

Textures

 

Rendering of

 

External Objects 

 

& Environment

 

T
E

R
R

A
IN

 N
A

V
IG

A
T

IO
N

 G
U

I

   
Tiled Terrain

 
Raster & Vector 

 
Data

 
DATA MODELER

   
Convert to Tiled Raster Data

 
Convert to Tiled Vector Data

 

Figure 5. System architecture diagram.



158

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

Paging modules help Rendering Manager to control
frame rate based on user-specified image quality
metric ( ) and maintain required nine tiles in main
memory based on user (or camera) position respectively.

6.2 User Interface and Navigation

The software supports different user-interaction
modes for terrain navigation through keyboard, mouse
and also through voice.

7 . RESULTS AND ALGORITHM PERFORMANCE
ANALYSIS

The software TREND is developed in the Microsoft
Visual C++ using the OpenGL 3-D API libraries
for a Win32 environment. Microsoft speech SDK
5.1 is used for designing voice interface to the
software. The software has been tested with 4K*2K
terrain raster dataset of Grand Canyon and 16K*16K
terrain data set of Puget Sound area obtained from
Georgia Institute of Technology website. The height
map of Dehradun (India) area has also been generated
using digitised contours on Survey of India supplied
topographic map. The corresponding geo-referenced
IRS-1D FCC satellite imagery has been used for
image draping.

The images in Figs 6 and 7 show the height
map (DEM) of Grand Canyon area and corresponding
false colour composite satellite imagery respectively.
Figures 8(a) and 8(b) show the overlay of polyline
vector data on top of 3-D level of detail wireframe
display of terrain mesh geometry and corresponding
phototextured terrain view respectively. Without
multiresolution modelling of the polyline vector data,
the visual artifacts are visible in the vector data

Figure 7. FCC satellite imagery of Grand Canyon area
(size 4K*2K).

Figure 6. DEM (height map) of Grand Canyon area
(size 4K*2K).

display. Figures 9(a) and 9(b) show the views
obtained after the geometry-based mapping of polyline
vector data over multiresolution 3-D terrain as
discussed in Section 5.2. The visual appearance of
the displayed vector data is now much improved.

Figure 8. Display of vector data over LOD 3-D terrain (without
multiresolution modelling).

(a)

(b)



159

AGRAWAL, et al.: VISUALISING MULTIRESOLUTION TERRAIN MODELS

Figure 10 (a) shows a view with point-location-
based simple objects (OpenGL and billboard-drawn
objects). A complex object (a building designed
using AutoCAD) is shown over the terrain in Fig.
10 (b). Figure 10(c) shows the effect of fog and
multitexturing to increase photorealism in the scene.

The performance of the software has been
evaluated on a Pentium IV 2.4 GHz computer with
512MB RAM and Intel 82865G onboard Graphics
Controller on 865GL motherboard. The performance
of the algorithm on raster data is independent of
size of terrain data as with the tiles indexing scheme,
the algorithm only keeps nine tiles active in the
main memory. The organisation of the terrain data
in tiles of defined size is required to be done only
once on the same data set. For raster data, the
number of frames rendered per second mainly

depends on the complexity of the terrain (roughness)
under the view-frustum and the user-defined image
quality metric ( ). Table 1 shows performance
analysis of the adaptive LOD algorithm for 3-D
visualisation of the raster data set.

Figure 9. Display of vector data over LOD 3-D terrain (with
multiresolution modelling).

Figure 10. Display of point-location-based objects: (a) with
simple objects, (b) with complex objects, and (c)
with special effects.

(a)

(b)

(a)

(b)

(c)



160

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

The results of testing the same adaptive LOD
algorithm using triangle strip (with indexed vertex
array) in conjunction with object management algorithm
are shown in Table 2. Vector overlay has been
performed using the proposed geometry-based mapping
of polyline vector data over the 3-D LOD mesh.

in 3-D. To increase photorealism in the scene,
various special effects such as fog, multitexturing
etc. have been included. As a next step to further
improve the rendering performance and quality of
visualization, we are currently investigating rendering
using state-of-the-art programmable GPU cards
through vertex and fragment programs. Complex
3D objects such as buildings and trees with large
number of polygons, severely affect the rendering
performance. Discrete multiresolution representation
of these objects and their run-time selection may
further increase the rendering speed.

ACKNOWLEDGEMENTS

The research reported here has been partially
supported by the Ministry of Human Resource
Development (MHRD), Govt. of India under contract
F.26-4/2002.TS.V (R&D Scheme). The authors
express their sincere gratitude to Dr M.D. Tiwari,
Director, Indian Institute of Infomation Technology,
Allahabad, for his encouragement and support
throughout the course of this study.

Terrain rendering without objects Avg. no. of 
triangles 

Avg. frames 
per second 

Full resolution (considering 9 tiles only) 1327104.00 1.72 
View-frustum culled surface 268120.70 7.18 

Adaptive LOD algorithm ( =4) 
1. Using triangle list 
2. Using triangle fan 
3. Using triangle strip (without using indexed vertex array) 
4. Using triangle strip (with using indexed vertex array)  

20368.45 
20368.44 
23655.06 
23733.79  

57.23 
74.11 

114.33 
130.79 

 
Table 1. Performance analysis of the adaptive LOD algorithm (without objects and vector data)

8. CONCLUSIONS AND FUTURE WORK

The proposed methodology and algorithm produce
real-time frame rates during terrain navigation showing
3-D phototextured views of the surface on large
terrain data sets. User can make trade-off between
image quality and rendering time by specifying
quality metric 

 

(maximum error permissible in
terms of number of screen pixels) for terrain raster
data. Tile-based approach is used to organise terrain
raster and vector data, and dynamic paging scheme
is used for out-of-core management of data between
secondary storage and main memory. This allows
smooth interactive terrain visualisation on desktop
PCs even with massive terrain data sets. In contrast
to conventional algorithms, in the present algorithm
the LOD computations are not performed on a per-
triangle basis, but rather on larger chunks of data.
Hence, the amount of work the CPU must perform
is greatly reduced. The problem of limited memory
bandwidth is handled by supplying the geometry to
the graphic card in the form of long triangle strips.

Terrain rendering with objects Avg. frames  
per second 

1. Using total 758 objects (Opengl: 39, Billboards: 719) 

2. Using total 763 objects (Complex: 5, Opengl: 39, Billboards: 719) 

3. Using multiresolution vector polyline (total 573 points) and 758 objects 
(OpenGL: 39, Billboards: 719) 

117.17 

111.32 

85.16 

 

Table 2. Performance analysis of the adaptive LOD algorithm (with objects and vector data)

The polyline vector display algorithm maps the
vector data consistently and exactly to the current
of terrain geometry, and thus minimises the rendering
artifacts. The software provides the facility to the
user to populate the terrain with various types of
point-location based objects and to visualize these



161

AGRAWAL, et al.: VISUALISING MULTIRESOLUTION TERRAIN MODELS

REFERENCES

1. Akenine-Moller, T. & Haines, E. Real-time
rendering, Ed. 2. A.K. Peters, 2002.

2. Anupam, Delaunay. Triangulation-based surface
modelling and three-dimensional visualisation
of landforms. IETE Tech. Rev., 1998, 15(6),
pp. 425-33.

3. Anupam. Application of three-dimensional
computer graphics in terrain visualisation. In
Computer Science Section of 84th Indian Science
Congress Symposium, 3-8 January 1997, Delhi
University, Delhi.

4. Luebke, D., et al. Level of detail for 3-D graphics.
Morgan Kaufmann Pub, 2003.

5. Cohen, J., et al. Appearance-preserving simplification.
In Proceedings of SIGGRAPH. 1998. pp. 59-66.

6. Chen, B., et al. LOD-sprite technique for
accelerated terrain rendering. In Proceedings
of IEEE Visualisation, 1999. pp. 291-98.

7. Lindstrom, P., et al. Real-time continuous
level of detail rendering of height fields. In
Proceedings of ACM SIGGRAPH, August 1996,
pp. 109-18.

8. Duchaineau, M., et al. ROAMing terrain: real-
time optimally adapting meshes. In Proceedings
of IEEE Visualisation, 1997. pp. 81-88.

9. Pajarola R. Large scale terrain visualisation
using the restricted quadtree triangulation. In
Proceedings of IEEE Visualisation, 1998. pp.
19-26.

10. Lindstrom, P. & Pascucci, V. Terrain simplification
simplified: A general framework for view-dependent
out-of-core visualisation. IEEE Trans. V&CG,
2002, 8(3), 239-54.

11. Puppo, E. Variable resolution terrain surfaces.
In Proceedings of 8th Canadian Conference on
Computational Geometry, 1996. pp. 202-10.

12. Xia, J.C. & Varshney, A. Dynamic view-dependent
simplification for polygonal models.   In Proceedings
of IEEE Visualisation, 1996. pp. 327-34.

13. Cignoni, P., et al. Representation and visualisation
of terrain surfaces at variable resolution. The
Visual Computer, 1997, 13(5), 199-217.

14. Hoppe, H. Smooth view-dependent level-of-
detail control and its application to terrain
rendering. In Proceedings of IEEE Visualisation,
1998. pp. 35-42.

15. Agrawal, Anupam, et al. Dynamic multiresolution
level-of-detail mesh simplification for real-time
rendering of large digital terrain models. In
Proceedings of IEEE INDICON-2004, 20-22
December 2004, IIT Kharagpur. pp. 278-82.

16. Agrawal, Anupam, et al. TREND: Adaptive
real-time view-dependent level-of-detail-based
terrain rendering. In Proceedings of IT++: The
Next Generation. 39th Annual National Convention
of CSI, 1-4 December 2004, Mumbai. pp. 146-57.

17. Agrawal, Anupam, et al. An approach to improve
rendering performance of large multiresolution
phototextured terrain models using efficient triangle
strip generation. In IEEE IGARSS-2005 held
in Seoul, Korea, during July 25-29, 2005.
pp. 4984-4987.

18. Mason, Woo, et al. OpenGL programming guide:
The official guide to learning OpenGL, Ver
1.2, Ed. 3. Addison-Wesley, 2000.

19. Szenberg, Flávio, et al. An algorithm for the
visualisation of a terrain with objects. http://
www.tecgraf.puc-rio.br/~szenberg/artigo_sib97/
artigo_sib97.html.

20. Douglass, D., et al. Real-time visualisation of
scalably large collections of heterogeneous
objects. In Proceedings of IEEE Visualisation,
1999. pp. 437-40.

21. Zachary, W., et al. Rendering vector data over
global, multiresolution 3-D terrain. In Proceedings
of Joint EUROGRAPHICS- IEEE TCV Symposium
on Visualisation, 2003. pp. 213-22.

22. Kersting, O. & Dollner, Jurgen. Interactive 3-D
visualisation of vector data in GIS. In Proceedings
of the 10th ACM International Symposium on



162

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

Advances in Geographic Information Systems,
November 2002. pp. 107-12.

23. Anupam, et al. Representation techniques for
topographic surfaces: An overview and an efficient
TIN algorithm. In Proceedings of the International
Conference on Geoinformatics for Natural Resource
Assessment, Monitoring and Management, 9-11
March 1999, IIRS, Dehradun, India. pp. 490-97.

24. Agrawal, Anupam et al. Additive wavelet
decomposition-based resolution merge for remote
sensing images. In Proceedings of International

Symposium on Information Technology: Emerging
Trends, 19-21 September 2003, Indian Institute
of Information Technology, Allahabad, India,
2003. pp. 156-67.

25. Agrawal, Anupam, et al. Geometry-based
mapping and rendering of vector data over
level-of-detail phototextured terrain models. In
Proceedings of WSCG-2006, 14th International
Conference in Central Europe on Computer
Graphics, Visualisation and Computer Vision,
Plzen, Czech republic, Jan 30-Feb 03, 2006
pp.1-8

Contributors

Mr Anupam Agrawal received his MS(Computer Science) from the J.K. Institute
of Applied Physics and Technology, University of Allahabad in 1988 and MTech
(Computer Sc & Engg) from the IIT Madras, Chennai in 1995. He is presently
working as Assistant Professor at the Indian Institute of Information Technology,
Allahabad. Earlier, he was working as Scientist D at the DEAL, Dehradun. His
research interests include: real-time 3-D graphics, computer vision, artificial intelligence
and soft computing, data mining, GIS and remote sensing image processing. He
has more than 30 research papers to his credit. He is a member of the IEEE
Computer Society, USA, CSI, Mumbai, IETE, New Delhi, IE(I), Kolkata, and ISTE,
New Delhi.

Mr R.C. Joshi received his ME and PhD (Electronics and Computer Engg) from
the University of Roorkee, [now Indian Institute of Technology, Roorkee (IITR)]
in 1970 and 1980, respectively. He joined E&CE Dept., IITR as Lecturer in 1970.
His research interests include: Computer graphics and image processing, parallel
and distributed processing, artificial intelligence, databases and bioinformatics.

Mr M. Radhakrishna received his MSc (Nuclear Physics) from the Andhra University
in 1962. Currently, he is Advisor and Professor at the Indian Institute of Information
Technology, Allahabad. He is also Technology Advisor to Aptech, Mumbai. His
research interests include: Artificial intelligence, automation, cognitive sciences,
computer graphics and image processing, modelling and simulation, computer
networks. He has published more than 60 papers.




