
Revised 22 March 2006

Defence Science Journal, Vol. 57, No. 1, January 2007, pp. 133-138
2007, DESIDOC

133

SHORT COMMUNICATION

Database-centric Development of Menus and
Graphic User Interfaces

R.B. Aggarwal, Amit Dhawan, and Jay Shankar Kumar
Institute for Systems Studies and Analyses, Delhi-110 054

ABSTRACT

The database-centric approach to graphic user interface (GUI) development, quickly and
easily manages standardisation and modification of labels and look and feel of controls by
keeping various control-creation data into the database. The runtime generation of controls
provides the flexibility to control their creation and modification issues. This method freezes the
application code once the development is over. The process of recompilation is eliminated when
creation or modification of controls is done. Dynamic controls such as menus, label, text box,
button, combo box, list box, group box, check box, radio button, tab control, spin button, tree
control can be easily formed and controlled using this approach.

 Keywords: Graphic user interface, dynamic controls, database, menu, hierarchy code, link table

1 . INTRODUCTION

The traditional way of developing graphic user
interfaces1 is a straightforward method of WYSWYG
(What You See is What You Get). A tool box is
used for drag and drop of controls on the screen.
The menu items are arranged on the menu bar by
clicking on the menu editor. The moment any
modification is done on the screen, the whole application
needs to be recompiled.

A deeper insight into this approach shows that
it poses great difficulties when a request for change
is made. Such requests may be, for example, change
in menu items, changes in their sequencing on
screen or change in their types. Since the entire
set of menu items are hard-coded, it is very difficult
to make all the changes on the fly. This leads to
opening the source code and making changes not
only to the menu item, but also in the associated
identifications and links to the associated callback

functions, leading to difficulties in software
maintenance.

When one talks about screens, the problems
associated are even more complex. There may be
request to change a label which has been used in
several screens. This leads to the change of labels
at all the places where it occurs. This is a cumbersome
task since one has to navigate through various
front end screens for implementing the changes,
leading to poor quality of software. Many a times,
there is a request to change the field type from
integer to string. Here, the screen has to be virtually
redesigned. The difficulty increases manifold if
the software deployment is carried out in geographically
different locations and the change request has to
be executed at several places.

There may be a request to make an application
having n number of text box controls. The code

134

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

has to be duplicated n times, for the same type of
control. The traditional approach increases the code
size as the number of controls increases, leading
to duplication of code in the application.

To overcome these difficulties, an approach
for development of menus and graphic user interfaces
using a database-centric solution is proposed. It
will lead to faster development of applications.

2 . DATABASE-DRIVEN APPROACH FOR
MENUS/GRAPHIC USER INTERFACES

The approach has been implemented for the
following three related aspects:

Label: To centrally control the labels in menus and
screens, each label is given a unique code. The
code is used as a part of procedure, whereas label
description is used for display on the menu or
screen. The reusability of label increases as these
are standardised using this approach. Moreover,
user-specific installation can be configured.

Menu: All the menu items are placed in a database
table. One row of records is required to create a
new menu. Each menu is assigned a hierarchy
code. This specially designed code links the position
of menu in different sequences of occurrence. This
approach facilitates centralised control of a large
number of menus and submenus at different levels.
A convention for hierarchy code is followed. The
first menu at each level starts from 01 followed by
others, i.e., 02, 03, and so on, depending on the
number of menus appearing initially. The submenus

to the main menus are coded as 0101, 0102, 0103,
and so on. As an example, the third level of submenu
can be coded as 06020304 which correspond to the
highlighted menu of Fig. 1.

06 - Top-level menu position

02 - First-level submenu position

03 - Second-level submenu position

04 - Third-level submenu position

Re-sequencing of menus can be done by changing
the hierarchy code. To modify a menu item, menu
name in the table is changed and application is run.
The changed menu is reflected in the application.
The name of the procedure to be called on the leaf
menu item is also stored in the table, leading to
higher order of reusability of the procedure written
in the application.

Screen: A graphic user interface may contain various
types of controls such as label, button, text box,
combo box, etc. These controls–creation mechanism2

is stored as a procedure in the library. Each control
item has several attributes, e.g., position on screen,
size, field type, display characters, etc. All the
control-related information is placed in a table.
One row of records is required for each control
feature. Position of control is adjusted from the X
and Y coordinates of the top left corner of the
screen. The size is controlled from control length
and control width values. These parameters are
being shown in Fig. 2 for a text box control. The
default value and scroll size (number of characters)
can be set and modified for text box control. The

06

0602 060203

06020304

Figure 1. Hierarchy code structure for dynamic menu design.

135

AGGARWAL, et al.: DATABASE-CENTRIC DEVELOPMENT OF MENUS AND GRAPHIC USER INTERFACE

controls like combo box and list box can be populated
with user chosen table data by mentioning the
name of the table. The field type of text box can
be set either as string or as an integer.

3 . FLEXIBLE PART TO BE STORED IN
THE DATABASE

As stated earlier, database plays an important
role in this approach. The data structure along
with some sample data for implementation is given
in Tables 1, 2, and 3. The menu name and hierarchy
code data in the menu table corresponds to the
highlighted menus, as shown in Fig. 1.

Apart from the tables storing flexible part,
various libraries have been used as stated below:

(a) Control library–where all the control-creation
codes have been written

MENU_NAME MENU_CODE

HIERARCHY_CODE

Actions 139 060000000000

New mail message 140 060200000000

MS Office 152 060203000000

MS Word document 168 060203040000

Table 1. Menu table description

LABEL_NAME LABEL_CODE

Junk e-mail 62

Plain text 16

Table 2. Label table description

CONTROL WIDTH

CONTROL LENGTH

(X

POSITION, Y

POSITION)

Figure 2. Position and dimension of control for dynamic design.

SCREEN_CODE CONTROL_TYPE CONTROL_ID LABEL_CODE

957 Label 1271 249

957 Textbox 1273 0

X POSITION Y POSITION CONTROL_LENGTH CONTROL_WIDTH

10 10 200 20

150 10 100 20

SCROLL_SIZE FIELD_TYPE DEFAULT_VALUE LINK_TABLE

0 Null Null Null

8 Number Select Null

Table 3. Screen table description

(b) Application library–used to call the control
library function

(c) Menus as executable file (.exe)–a main program
where menu creation code has been written.

136

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

The menu item calls the application library,
which in turn calls the control library.

4 . BENEFITS ACCRUED USING THIS
APPROACH

The approach has been designed in a way to
provide some of the following benefits:

• Labels codified to centrally update the label
without changing each GUI and recompilation
of source code: All the labels are stored in
a separate table with corresponding label code
which is used to form specific controls like
buttons, check boxes, radio buttons, etc. The
centralised control of labels helps in easy
modification. A single change in a label is reflected
at all the places where it occurs.

• Multi-layer library created to increase the
reusability for the code: The code has been
written in the form of a library which can be
used anywhere and any number of times. The
library comprises different segments for different
types of control. Any number of controls can
be generated with the fixed volume of the
code.

• Software management-related tables loaded
in the RAM at initiation of application to
avoid multiple data access: The data relevant
to the particular screen being displayed are
fetched from the table and loaded in RAM.
So, there is a one-time database I/O which is
used for further manipulations.

5 . CONSTRAINTS OBSERVED

The approach is quite robust. However, some
constraints observed in the process are as follows:

• Close knitting with database: Since placing
of control requires pixel values on the screen,
the exact position can be found only by some
hit and trial of pixel values in the database.

• Longer time spent in initiation of application:
If a large number of data is needed for a
particular screen, the database I/O consumes
more time and the application may become
slower.

6 . CASE STUDIES

6. Land Weapon Performance Evaluation Menu

The data-centric, dynamic menus have been
generated which can pop up to four submenu levels.
A sample is given in Fig. 3. The analysis domain
is grouped to perform four distinct functions, namely,
‘Weapon Evaluation’, ‘Force Multiplier’, ‘Force
Potential’, and ‘Weapon Deployment’. Weapon
Evaluation can be performed by four proposed
approaches like expert opinion, simulation, empirical,
and analytical. Further, simulation can be carried
out in four steps of ‘Session Option’, ‘Weapon
Selection’, ‘Scenario Template’, and ‘Simulation
Control Parameters’. To create a ‘Scenario Template’,
four issues of ‘Environment Setting’, ‘Orbat Generation’,
‘Force Deployment’, and ‘Combat Plan Preparation’
have been considered.

6.2 Adaptive Dynamic Model Screen

Adaptive dynamic model (ADM) is an analytical
approach to perform weapon evaluation. Dynamic
controls are used for every screen in ADM module.
A sample screen shot is given in Fig. 4. This screen
is used to organise the red and blue forces by
selecting arm type, weapon category, weapon name,

Figure 3. Dynamic menu implementation

137

AGGARWAL, et al.: DATABASE-CENTRIC DEVELOPMENT OF MENUS AND GRAPHIC USER INTERFACE

and force formation and entering number of fighting
formations. An implementation of labels, radio buttons,
text boxes, combo boxes and some additional buttons
is displayed in this screen. This screen has been
developed using the approach outlined for labels
and screens.

6.3 Static Data Management

This requires large data entry for creating
multiple screens. To automate this data entry, a
GUI is used which handles all the data required
to form the specific control and stores these in a
screen table just by click of the mouse. The screen

shot for this purpose is given in Fig. 5. This screen
uses three different groups, namely, ‘New Screen’,
‘Generate Label’, and ‘Generate Control’ along
with their ‘Apply’ button. One can place the control
either on a ‘New Screen’ or can add to an existing
screen. To create a label, a particular label is
selected from the list of labels and ‘Generate Label’
button is used. The default values are set in the
screen parameters. Then ‘Apply’ button is used to
store all the parameters in the database. The ‘Generate
Control’ button is used for creating controls other
than labels. The ‘Preview’ button is used to see
the created controls on the fly.

Figure 5. GUI to create dynamic screen.

Figure 4. Dynamic controls implementation.

138

DEF SCI J, VOL. 57, NO. 1, JANUARY 2007

7 . COMPARISON WITH TRADITIONAL
APPROACHES

By comparing various aspects of the traditional
approach, vis-à-vis the proposed approach, one
can assess the strength of this approach as presented
in Table 4.

8 . CONCLUSION

The above strength of the database-centric
approach leads to various advantages. It is found
helpful in:

(a) Time saving in modification and sequencing of
label names

(b) Faster development

(c) Better quality control

(d) More manageable

(e) Eliminating hard coding.

REFERENCES

1. Kruglinski, David J. Programming Visual C++'.
109 p.

2. Schildt, Herbert. MFC programming, Ed. 2.
Tata McGraw Hill, 2000. 467 p.

Mr R.B. Aggarwal obtained his MSc (Mathematics) from the University of Delhi
in 1974. He joined DRDO in 1976 and presently working as Scientist F at the
Institute for Systems Studies and Analyses (ISSA), Delhi. He has developed
various management information systems (MIS) packages in the area of personnel
information system, project management, activity plan and monitoring of progress,
etc. He is presently working on project Land Weapons Performance Evaluation.
He has developed systems analysis/scientific software in the area of optimal force
mix, ionospheric area prediction, etc.

Mr Amit Dhawan obtained his BTech (Computer Science) from the Aligarh Muslim
University in 1997. He joined DRDO in 1998 and presently working as Scientist D
at the ISSA. He is qualified internal quality auditor from IIQM, Jaipur. His area
of interest is: Global information system and databases.

Mr Jay Shankar Kumar obtained his BTech (Computer Science) from the National
Institute of Technology (NIT), Jamshedpur, in 2002. He joined DRDO in 2002
and presently working as Scientist C at ISSA. He has developed various mathematical
models using Visual C++.NET and Oracle. His areas of research are: Software
design and development, database management and crystal reporting.

Contributors

Traditional approach Database approach

Requires tool box for drag and
drop of controls

Does not need tool box

Opens editor for any modification Does not open editor
for modification

Requires recompilation No need of recompilation

Changes to the label names are
local

Changes to the label names
are global

Table 4. Comparision between traditional and database

approach of GUI development

