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ABSTRACT

A self-similar theoretical model of propagation of strong plane shock waves in an
inhomogeneous, magneto-radiative, self-gravitating atmosphere in the direction of decreasing
density is considered.  The results discussed depend upon the variations of the flow variables
which are displayed graphically and the influences of the gravitation and radiation flux have
been studied.
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NOMENCLATURE

x Lagrangian coordinate

Scale height

* Arbitrary reference density

t Time

Similarity exponent

m Mass Lagrangian coordinate

M Total mass ahead of the gas

Similarity variable

K Planck mean absorption coefficient

1 . INTRODUCTION

In many astronomical phenomena, the temperature
involved is of the order of 106 degree. In such a
high temperature, one does not know the details
of processes by which a shell or very extensive

SHORT COMMUNICATION

atmosphere surrounding a star is formed, ie, how
the star splits out an appreciable amount of its
material back to the interstellar space. The phenomenon
of doubling of lines suggests violent outburst of
gas in some stars. These observations appear to
be the indication of propagation of shock waves
through the surface layers of the stars. These
suggest inclusion of radiation effects in shock wave
theory. These effects are important even for supersonic
aerodynamics, nuclear explosions, and nuclear energy
devices, because the theory deals with very high
temperature. Radiation effects were included as
in Zel'dovich and Raizer1 through radiation pressure
and radiation energy. The difficulty with radiation
gas dynamics or radiation magneto-gas dynamics
is that in thermodynamic equilibrium, radiation pressure
and radiation energy are given as functions of
temperature and frequency of radiation. Ideal
thermodynamic equilibrium never exists in the universe.
But for a number of astrophysical phenomena, it
is nearly in thermodynamic equilibrium. In the case
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of shock waves, radiation variables are not in
thermodynamic equilibrium even if gas variables
are in equilibrium. When the radiation at each point
of a medium with a nonuniform temperature is
close to equilibrium, then the medium is spoken of
as being in a state of local thermodynamic equilibrium
between the radiation and the fluid1. Further the
necessary condition for the existence of local equilibrium
also serves as a justification for the use of the
diffusion approximation when considering radiative
transfer. Diffusion approximations to include radiation
flux in energy equation of motion for shock waves
are through Rosseland's diffusion approximation
and Planck diffusion approximation.

An extensive study of strong magneto-radiative
shock wave with the inclusion of the assumption
that the radiation is assumed to be in local
thermodynamic equilibrium with the fluid, as in
Zel'dovich and Raizer1, were undertaken recently
by Singh and Pandey2, Ganguly and Jana3, Jana
and Ganguly 4, Jana5,6, and Jana7, et al. In these
studies, the influence of radiation flux or radiation
pressure, radiation energy was noticeable on the
flow variables. In fact, these strengthen the shock.

In this study, the propagation of strong plane
shock wave in an exponentially decreasing density
with time has been investigated in radiative magneto-
gas dynamics with self-gravitation. The radiation
pressure and radiation energy have been ignored
in comparison to radiation heat flux. Also, it is
assumed that the gas is optically thin. This study
is important to understand the effects of explosions
in stars and the atmosphere of earth.

2 . BASIC EQUATIONS AND BOUNDARY
CONDITIONS

Let the gas density be distributed in the atmosphere
following the exponential law as:

x

e*
0                                                    (1)

This distribution has the property that the mass
of gas concentrated in a column of unit cross-
sectional area, from x = – , (where , to
x = X, is equal to a mass of gas of density (X)
in a column whose length is 
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one assumes that the shock wave emerges at the
boundary of the atmosphere x = – , where ,
at the time t = 0; thus one takes the time prior to
emergence as negative. Thus the front velocity is:

  0D   ,  0       ,      
.

t
t

XD           (3)

where 

 

is the similarity exponent and is a positive
constant such that  dX/dt = D is negative. Hence
the coordinate of the shock front is now given by:

X = In(-t) + constant                            (4)

Differentiating Eqn (2) wrt t and using Eqn
(1), one gets
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from which M = A(-t)

                                      

(5)

where A is the constant of integration which characterises
the strength of the impact.

Substituting Eqn (5) in Eqn (2), one gets:

 

0
tAM
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In Lagrangian coordinates, the motion is self-
similar in usual sense. The Lagrangian coordinate
is given by: 

dxxm
x

)(                                              
(7)

The equations of motion governing the one-
dimensional flow behind the shock wave in terms
of the mass m and time t are:
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where u, , p, h, F are particle velocity, density,
pressure, magnetic field, and radiation flux, respectively.

 

is the ratio of the specific heats. G represents
the gravitational constant.

Assuming the local thermodynamic equilibrium
and using the Planck's diffusion approximation,
one has:

4   4  TK
m

F

                                         

(12)

where 

 

is the Stefan-Boltzman constant and T is
the absolute temperature. Now the equation of
state for ideal gas is given by: 

p = RT                                   (13)

where R is the gas constant per unit mass.

Now one takes K as a power-law function of
the density and temperature as:

K =K0
T

                             

(14)

where K 0 
, d and 

 

are constants.

For a strong shock, the boundary conditions
are:

1
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and the subscripts 1 and 0 denote the values of
the variables just behind and ahead of the shock,
respectively. 

The Alf'ven Mach number and the usual Mach
number are defined respectively as:

 
2

0

2
02

h

D
M A

  
and  

0

2
02

1 M
p

D
(16)

where D = dX/dt is the speed of the shock. Alf’ven
speed and sound speed are respectively given by
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Under the equilibrium condition, from Eqn(9)
one has
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3 . SIMILARITY SOLUTIONS

Let one assumes the solutions of the fundamental
Eqns (8)-(14) in the similarity form [c.f. Zel'dovich
and Raizer 1]:
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where the dimensionless reduced functions U, W,
P, H, and Q depend on 

 
and on the similarity

variable , the dimensionless distance measured
from the shock front.

The Lagrangian coordinate m as defined in
Eqn (7) can be written with the help of Eqn (18)
as:

 

.  .constant  )( dWMdxxm
x 

(19) 

Thus U, W, P, H, and Q are functions of the
similarity variable

tA

m

M

m 
(20)

Substituting Eqn (18) in the fundamental Eqns
(8)-(14), one gets:
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where 4
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and 5.2    , 1

The above set of differential Eqns (21)-(25)
can be put in the following forms:
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= -2.5

The boundary conditions are given by:

U(1) =1 , W(1) =1 , P(1) =1, 
AM

H
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Applying the conservation equations to the shock
front, one has
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Here, the heat flux F is positive in the direction
of shock propagation. When the second term in the
above bracket is small, this discloses.

 
1

1

                                
(33)

which is the Hugoniot shock density ratio.

4 . RESULTS AND DISCUSSIONS

The differential Eqns (26)-(30) with the help
of the boundary conditions [Eqn (31)] have been
integrated numerically by the wellknown Runga-
Kutta method for M A

2 = 5, 

 

=1, 

 

= –2.5,
M

1
2 = 2, N = 0,10, 25, 

 

= 1.2.

Other values of 

 

may be taken for calculation
and it lies between 1< 

 

< 2 for gases.

The values of , 

 

and 

 

have been borrowed
from Zel'dovich and Raizer5 and are given in Table 1.

Case II: Magneto-gas dynamic self-gravitating
plane shock waves propagating in
exponentially decreasing medium.(N=0)

In this case, propagation of magneto-gas dynamic
plane shock waves has been considered in the
absence of radiation flux and in the presence of
gravitation in an exponentially decreasing medium
and the line pattern used for this case is as follows:

Case III: Magneto-radiative plane shock waves
propagating in exponentially decreasing
medium. (N=10)

In this case, propagation of magneto-radiative
plane shock waves has been considered in the
presence of radiation flux and in the absence of
gravitation in an exponentially decreasing medium
and the line pattern used for this case is as follows:

Case IV: Magneto-radiative self-gravitating plane
shock waves propagating in exponentially
decreasing medium. (N=10)

In this case, propagation of magneto-radiative
plane shock waves has been considered in the
presence of radiation flux and gravitation in an
exponentially decreasing medium and the line pattern
used for this case is as follows:

Case V: Magneto-radiative plane shock waves
propagating in exponentially decreasing
medium. (N=25)

In this case, propagation of magneto-radiative
plane shock waves has been considered in the
presence of radiation flux and in the absence of
gravitation in an exponentially decreasing medium
and the line pattern used for this case is as follows:

Case VI: Magneto-radiative self-gravitating plane
shock waves propagating in exponentially
decreasing medium. (N=25)

 

1.2 0.0909 6.48

1.4 0.1660 5.45

1.6 0.2307 4.90

Table 1. Values of ratio of the specific heats ( ), Hugoniot
shock density ratio ( ) and similarity exponent ( )

The variations of the flow parameters with
distance are shown graphically in the Figs 1-10.

The following six cases have been considered:

Case I: Magneto-gas dynamic plane shock waves
propagating in exponentially decreasing
medium. (N=0)

In this case, propagation of magneto-gas dynamic
plane shock waves has been considered in the
absence of radiation flux and gravitation in an
exponentially decreasing medium and the line pattern
used for this case is as follows:
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In this case, propagation of magneto-radiative
plane shock waves has been considered in the
presence of radiation flux and gravitation in an
exponentially decreasing medium and the line pattern
used for this case is as follows:

From Figs 1-4, one may conclude for case I that
behind the shock front towards the centre of the
symmetry, radial velocity increases, density decreases,

magnetic field increases , and the pressure decreases.

In case II, one observes that radial velocity
increases, density decreases, magnetic field decreases,
and pressure decreases.

From Figs 1-5, for the case III , one concludes
that radial velocity increases, density increases
rapidly and then decreases, magnetic field increases
rapidly, pressure decreases, and the radiation flux
decreases behind the shock front.
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Figure 1. Variation of radial velocity with distance.

Figure 2. Variation of density with distance.

Figure 3. Variation of magnetic field with distance.

Figure 4. Variation of pressure with distance.
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In case IV, one observes that radial velocity
increases, density initially increases then decreases,
magnetic field increases, pressure decreases, and
the radiation flux decreases.

In case V, from Figs 6-10, one observes that
radial velocity increases, density increases rapidly,
magnetic field increases rapidly, pressure decreases
continuously, and the radiation flux decreases rapidly.

In case VI, one observes that radial velocity
increases, density increases rapidly, magnetic field
increases rapidly, pressure decreases, and the radiation
flux decreases.
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Figure 5. Variation of radiation flux with distance (N=25).

Figure 7. Variation of density with distance (N=25).

Figure 6. Variation of radial velocity with distance (N=25).
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Figure 8. Variation of magnetic field with distance (N=25).
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Figure 9. Variation of pressure with distance (N=25).
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Moreover, comparing the line patterns of
case I and case III, one concludes that the influence
of radiation flux is to decrease radial velocity, density,
magnetic field and increase pressure. 

Similarly, comparing the line patterns of
case I and case II, one concludes that the influence
of gravitation is to increase radial velocity, density,
pressure, and magnetic field.

However, as seen in the cases V and VI, it is
to be noted that for higher values of N as 25 onwards
except for pressure, the influence of gravitation seems
to be negligible upon the variation of flow parameters.
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