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ABSTRACT

The problem of calculating the equatorial damping moment during trajectory flight is an actual problem in 
ballistic studies of the rotational motion of artillery projectiles. The practice of ballistic research needs short algorithms 
that make it possible to calculate the damping moment together with the calculations of the trajectory parameters 
under conditions of continuously changing characteristics of the oncoming flow. In this regard, a simplified method 
for calculating the equatorial damping moment of artillery projectiles in the oncoming flow is proposed, based on 
the differentiation of the dependence for the overturning aerodynamic moment by the angle of attack and the Mach 
number of the oncoming flow. Calculations of the parameters of the rotational motion of the 155-mm artillery 
projectile on the flight trajectory have been carried out. The influence of the equatorial damping moment on the 
periodic components of the angular displacements of the projectile is revealed. The results of ballistic calculations 
with the loss of stability of the rotational motion of the projectile showed the destabilizing effect of the equatorial 
damping moment on the boundary parameters in terms of stability in the case of opposite directions of rotation of 
the projectile and crosswind.
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1. INTRODUCTION
The task of ensuring the stability of the movement of 

rotating artillery projectiles remains of particular relevance 
due to the constant striving to increase the firing range and 
power of rifled artillery charges. Numerous scientific works 
are devoted to the theoretical study of the disturbed rotational 
motion of a gyroscopically stabilized rotation bodies of the 
artillery projectile type, for example1-5. The results of these 
works contain linearized differential equations describing the 
perturbed precessional rotational motion of the projectile in the 
presence of the spatial angle of attack. For these systems of 
differential equations, analytical solutions are found1-5, which 
determine the frequencies and amplitudes of the components 
of the precessional motion. 

A significant number of works are devoted to the 
computational analysis of the precessional rotational motion 
of the projectile on the flight trajectory.6,7,8 For example, the 
paper6 presents results of numerical research on the effect of 
the twist rate, muzzle velocity, cross and longitudinal wind on 
the stability of flight of the 155- mm artillery projectile for 
flat and steep trajectories. The computational analysis of the 
component spatial angle of attack in pitch and yaw throughout 
the computational trajectory of the projectile is presented in 
reference.8 Classical works on the study of the angular motion 
of fast rotating projectiles using the theory of stability of 

Lyapunov, it was established that with a full system of forces 
acting on the artillery projectile, the motion corresponding to 
the ideally correct flight is asymptotically unstable according 
to Lyapunov4. The motion, unstable according to Lyapunov, 
on a limited time interval can satisfy the criterion of technical 
stability4. Analysis of the solutions of the systems of differential 
equations of the perturbed precessional rotational motion of 
the projectile made it possible to establish a number of similar 
criteria for the gyroscopic stability of the projectile1,2,4,6,8, the 
fulfillment of which ensures the stability of motion over a 
finite time interval of flight along the trajectory. The existence 
of modern computer technologies for numerical simulation 
changes the approach to solving many applied problems 
of aerodynamics and external ballistics. In this regard, it 
is important to use the results of modeling the aerodynamic 
characteristics of supersonic rotation bodies for the purposes 
of ballistic design.

 A review of works devoted to the ballistic study of the 
rotational motion of artillery projectile indicates that one of the 
topical problems is the problem of calculating the equatorial 
damping moment on the calculated flight trajectory. The 
solution to this problem is seen in the development of methods 
for calculating the equatorial damping moment, which make 
it possible to implement them together with algorithms for 
calculating the parameters of the trajectory under conditions of 
continuously changing characteristics of the oncoming flow.

The purpose of this work is to develop a simplified 
method for calculating the equatorial damping moment of 
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an axisymmetric rotation body in the counterflow and the 
ballistic study of the perturbed rotational motion of the artillery 
projectile, taking into account the equatorial damping moment. 
The proposed calculation method is based on the differentiation 
of the dependence for the overturning aerodynamic moment by 
the angle of attack and the Mach number of the oncoming flow. 
In this case, a differentiable dependence can be obtained both by 
numerical simulation and on the basis of existing computational 
and experimental techniques or special experiments. The 
purpose of the computational ballistic research is to study the 
influence of the equatorial damping moment on the magnitude 
of the periodic and non-periodic components of the angular 
displacements and on the stability-limiting parameters of the 
rotational precessional motion of the projectile under the action 
of various destabilizing factors.

2. METHODOLOGY
In this work, for the computational study of the perturbed 

rotational motion of a gyroscopically stabilized dynamically 
balanced artillery projectile relative to its center of mass, we 
use equations obtained from the equations of the spatial motion 
of an artillery projectile in the form of V. S. Pugachev4. To 
write these equations, the starting system of axes OXYZ  (not 
shown), the trajectory system of axes CTNB  and the semi-
connected system of axes Cζξη  (moves with the body, but does 
not participate in its rotation) are used (Fig. 1(a)). In Fig. 1(a,b) 

shows an attached starting coordinate system OX Y Z′ ′ ′  that is 
parallel to the starting system Oxyz  and moves translationally 
together with the center of mass.                                              

The position of the velocity vector of the center of mass 

of the projectile V


 in the starting coordinate system is found 
using the angle θ of inclination of the velocity vector to the 

horizon and the turning angle 1Ψ  of the velocity vector in 
the inclined plane, the positive direction of which is shown in 
Fig. 1. The position of the longitudinal axis of the projectile ζ  

relative to the velocity vector V


 of the center of mass is set 
in two ways. using the Euler angles - the angles of precession 
ν and nutation δ, using the Krylov angles δ1 and δ2

4,9. The 
equations of motion of the center of mass and the equations of 
rotational motion relative to the center of mass are written in 
the trajectory system of axes CTNB . In this case, the values of 

the vector of the overturning aerodynamic moment sM


 and the 

vector of the equatorial damping moment dM


 as components 

of the total aerodynamic moment s dM M M= +
  

 are4:

( , )s SM q S L m M∞= ⋅ ⋅ ⋅ δ ;  

( , ) ,dìM q S L m Mω
∞= ⋅ ⋅ ⋅ δ ⋅ω                                         (1)

where, q – velocity head of the oncoming air flow; S– 
projectile midship area; d –diameter of the projectile midship; 

L – length of the projectile; δ  – nutation angle; ( , )Sm M∞ δ  
– dimensionless coefficient of the overturning aerodynamic 
moment, the values of which are determined depending on 
the angle of attack δ  and the Mach number of the oncoming 

flow M V a∞ ∞= ; a∞  – is the sound velocity in the oncoming 

air flow; ìmω  – derivative of the coefficient of aerodynamic 
moment to the relative dimensionless angular velocity; 

/L Vω = ω⋅  – relative dimensionless angular velocity; 
ω  – equatorial component of the angular velocity of the 
projectile; V  – the velocity of the center of the mass of the 
projectile.

At small angles δ1 and δ2, the system of linearized 
differential equations of the rotational motion of the projectile 
with respect to its center of mass in projections on the N and B 
axes of the trajectory system can be written in the form4:

1 1 2 1 2 1

2 2 1 2 1 2

b g c p

b g c p

δ + ⋅δ − ⋅δ + ⋅δ + ⋅δ = ∆

δ + ⋅δ + ⋅δ + ⋅δ − ⋅δ = ∆

  

  
 ,                          (2)                                                          

                                                                                                  
where,

      2 7 ;b f f= +  2 ;g a= 4 ;c f= − ( 2 )a C A r= ⋅ ;      
              22 ;p af= −

     
1

1 2 cos ;a g V −∆ = − ⋅ ⋅ ⋅ θ                 

              [ ]2
2 7 1sin(2 ) cosf g V g f∆ = − ⋅θ + ⋅ ⋅ θ + ⋅ θ ;

     

(а)  

(b)  
Figure 1. Schemes of coordinate axes and angles. 
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      r – angular velocity of rotation of the projectile  
      relative to the longitudinal axis; 

      C– axial moment of inertia of the projectile;      
              A – equatorial moment of inertia of the projectile.

The relative values 1 2 4 7, , ,f f f f  of the components 
of aerodynamic forces and moments (f1 – longitudinal 
aerodynamic force; f2 – transverse aerodynamic force; 
f4 – overturning aerodynamic moment; f7 – equatorial 
damping moment) are determined by the dependences:

2
20

1 / / ( ) , ;
8

N r
r

Vdf R m q S C m H y V C
m aζ ζ ζ

∞

 π ⋅ρ
= = ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ δ 

                                       

       

2
0

2 / ( ) / ( ) ( ) , ;
8

N r
n r n r r n

Vdf R m V q S C m V H y V C
m aζ ζ ζ

∞

 π ⋅ρ
= δ ⋅ ⋅ = ⋅ ⋅ δ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ δ δ ⋅                                                                                                      

2
20

4 / ( ) / ( ) ( ) , ;
8

N r
s r sS

Vd Lf M A q S L m A H y V m
A a∞

 π ⋅ρ ⋅
= δ ⋅ = ⋅ ⋅ ⋅ δ ⋅ = ⋅ ⋅ ⋅ ⋅ δ δ ⋅  

2 2
0

7 / ( ) / ( ) , ;
8

N r
d M rì

VL d Lf M A q S L m A H y V m
V A a

ω ω

∞

 π ⋅ρ ⋅
= ω⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ δ 

 

              (3)

The quantities included in expression (3): Rζ  – 

longitudinal aerodynamic force; nR ζ  – transverse aerodynamic 
force; rV  – velocity of the center of the mass of the projectile 
relative to the atmosphere, which is equal to the velocity of 

the oncoming flow; , nC Cζ ζ  – coefficients of longitudinal 

aerodynamic force and transverse aerodynamic force; ( )H y  
– function of atmospheric air density from altitude; m – mass 

of the projectile; 0( ) ( ) NH y y= π ⋅ τ τ , where ( )yπ  – pressure 

function, 0Nτ  – temperature of the atmospheric air under 
normal terrestrial conditions; τ  – temperature at the calculated 
point of the trajectory. The notations adopted in4 is retained.

Expression (1) for the equatorial aerodynamic damping 
moment 

dM  contains the derivative of the aerodynamic moment 
coefficient to the relative dimensionless angular velocityω
. Let us consider possibility of quantitatively estimating the 
value of the equatorial damping moment for an axisymmetric 
rotation body, using the results of numerical calculations of 

the overturning aerodynamic moment coefficient ( , )sm M∞ δ
, the values of which are determined depending on the angle 
of attack δ  and the Mach number of the oncoming air flow 

M V a∞ ∞= . The presence of the equatorial angular velocity 
of the rotation body leads to a change in the local angles of 
attack and normal forces on its surfaces (Fig. 2). 

The appearance of additional local angles of attack leads 
to the appearance of additional elementary normal aerodynamic 
forces and moments, which are a consequence of the presence 
of the angular velocity of rotation. An additional value of the 
aerodynamic moment, depending on the angular velocity of 
rotation of the body, is the damping moment:

( ) ( )
0 0

S S
d

dM dM
M d d M

d d Mω ∞ ω
∞

  = ⋅ δ + ⋅    δ                   
(4)  

                     

              

 

We assume that the equivalent elementary increment 
in the angle of attack d ωδ  of all points of the surface of the 
rotation body, averaged over the body length, is equal to the 
average value of the range of variation in the angle of attack 
due to the presence of the rotational velocity of points on the 
surface of the rotation body:

( )0.5 0.5 L Rd d d dω Σδ = ⋅ δ = ⋅ δ + δ ; L Ldδ = δ − δ ;  

R Rdδ = δ − δ (Fig. 2). In this case:

1 cos
L

Ld
V

δ ⋅ ⋅ δ
δ =


; 2 cos

R
Ld

V
δ ⋅ ⋅ δ

δ =
 ;   δ⋅

⋅δ
⋅=δω cos

V
L5.0d

                   
 
              (5)

Similarly, we find the elementary increment in the Mach 

number in the oncoming air flow ( )d M∞ ω
, averaged over the 

body length, due to the presence of the rotational velocity of 
points on the body surface:

( ) 0.5 0.5sin sinLd M L
a a∞ ω
∞ ∞

⋅ω ⋅
= ⋅ ⋅ δ = ⋅ δ ⋅δ                                             

                                         
(6) 

                                                                          
Determining the necessary derivatives and substituting 

them together with (5) and (6) in (4), we will have the following 

expression for the damping moment dM  and the damping 

moment coefficient 7 ( )df M A= δ ⋅  in Eqns. (2) ( sin δ ≈ δ ,

cos 1δ ≈ , iω = δ ):

( )
2 2

0 0

0.25 2s S
d S

dm dm
M SL V a M M m

d d M ∞ ∞
∞

     = ρ + δ ⋅ + ⋅ δ      δ       



                                                 

Figure 2. Elementary local angles of attack δR,δL and normal 
forces ±dRn during rotation of the body in the 
oncoming flow with the angle of attack δ.
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( )
2

2
7

0 0

0.25 2s S
S

dm dmSLf V a M M m
A d d M ∞ ∞

∞

   ρ   = + δ ⋅ + ⋅      δ       
                 

              (7)

The decrease in the angular velocity r  of rotation of 
the projectile relative to its longitudinal axis as a result of the 
action of the moment of surface friction was determined by the 
theoretical Slezkine’s formula4:

4 5
4 50.598

2
0

d t V dt
qr r e

⋅
− ⋅ ⋅ ⋅∫

= ⋅
 ,

where 0r  – initial angular velocity; d – the diameter of the 
projectile amidships; q – weight of the projectile; V – flight 
velocity; t – flight time

If we consider as the unperturbed rotational motion of 
the artillery projectile, the rotational motion, in which 1 0;δ =

2 0;δ = 1 0;δ =
2 0δ = , then the system of equations of the 

perturbed rotational motion of the first approximation is 
obtained from the system of linearized Eqns. (2) by zeroing 
the right-hand sides and reducing the resulting system of 
homogeneous differential equations to the canonical form:

 1 1 1 1 2 1 2; ;b g c pδ = ε ε = − ⋅δ + ⋅δ − ⋅δ − ⋅δ                                          

              2 2 2 2 1 2 1; .b g c pδ = ε ε = − ⋅δ − ⋅δ − ⋅δ + ⋅δ               
(8)

                     
                

The characteristic equation of the system of differential 
equations of the first approximation takes the form:

4 3 2 2 2 2 2( ) 2 ( 2 ) ( ) 2 0D b g b c c b g p c pτ τ τ τ τ τ τ τ τ τλ = λ + λ + + + ⋅λ + − ⋅ λ + + =           
                                          (9)

;b bτ = ν      ;g gτ = ν     
2/ ;c cτ = ν      

2p pτ = ν

We introduced a dimensionless time tτ = ν ⋅ , where ν  
is the parameter with the dimension of frequency (1/s). In this 
case, the system of differential Eqns. (2) will contain derivatives 
by the dimensionless time. Substituting the imaginary number 

jλ = ω  in (9), we obtain the complex frequency function (ω  
– frequency parameter):

( ) ( ) ( )D j X j Yω = ω + ⋅ ω ,                                            (10)

where,                                          

  4 2 2 2 2 2( ) ( 2 ) ( );X g b c c pτ τ τ τ τω = ω − + + ⋅ω + +

       ( )3( ) 2 [ ]Y b g p c bτ τ τ τ τω = − ⋅ ⋅ω +ω⋅ ⋅ − ⋅                      
The computational model4, adopted for writing Eqns. (2) 

of the perturbed rotational motion of the projectile relative to 
its center of mass, does not provide for the presence of wind. 
At the same time, it is known that the wind has a significant 
effect on the flight of the projectile both in the longitudinal 
and lateral directions. Let us consider an alternative system of 
equations for the perturbed rotational motion of the projectile 
and write the right-hand sides of the equations of the system 

in a form that allows us to apply them in the presence of wind 
disturbances. The equations of the perturbed rotational motion 
of the projectile relative to its center of mass in projections on 
the axes of a semi-connected system of axes Cζξη , obtained on 
the basis of the dynamic equations of Euler’s rotational motion, 
can be written in the form4:        

   
( )

1

cos 2 sin ( sin )
i

i
n

A C M
=

ξ⋅ ψ ⋅ ϑ− ⋅ψ ⋅ϑ⋅ ϑ + ⋅ϑ⋅ φ +ψ ⋅ ϑ = ∑     ;       (11)               

( )
1

2 cos sin ( sin ) cos
i

i
n

A C M
=

η⋅ ϑ+ψ ⋅ ϑ⋅ ϑ − ⋅ψ ⋅ φ +ψ ⋅ ϑ ⋅ ϑ = ∑   
         

                      

where ψ  – the yaw angle of the projectile axis in the starting 
coordinate system; ϑ  – the pitch angle of the projectile axis in 
the starting coordinate system; φ  – the angle of rotation of the 
projectile around the longitudinal axis (Fig. 1(b)).

The right-hand sides of Eqns. (11) contain the moments 
of the forces acting on the projectile relative to the axes ξ and 
η. The moments of the gravity mg  and of the longitudinal 

aerodynamic force Rζ


, provided that there are no corresponding 

eccentricities, are equal to zero. Consider the action of the 

aerodynamic overturning moment sM


. In the presence of 
wind, the vector of the velocity of the center of mass relative 
to the atmosphere 

rV V W= −
   , where V

  – the vector of the 
absolute velocity of the center of mass of the projectile, W


 

– the vector of the wind velocity. The line of direction of the 
velocity vector 

rV
  and the axis of the projectile ζ form a plane, 

which is commonly called the resistance plane (Fig. 3(a)). In 
this plane, the main components of aerodynamic forces and 

moments operate. The transverse aerodynamic force nR ζ


 acts 

in the plane of resistance of the projectile at point D (Fig. 3(a)), 
which is commonly called the center of pressure, and creates 
the overturning aerodynamic moment. We write the vector of 

this moment sM


 using the unit vector l


 of the projectile axis 

and the unit vector rτ
  in the direction of the relative airspeed 

rV


 of the projectile center of mass (Fig.3(a)):

( )/s s rM M m l= ⋅ τ ×
  ,                                                  (12)          

( ),s sM m M q S L∞= δ ⋅ ⋅ ⋅

where ( ),sm M∞δ  – dimensionless coefficient of the 
aerodynamic overturning moment, determined from the results 
of aerodynamic calculations or tests, depending on the angle 
of attack δ  and the Mach number M∞

 of the incoming flow; 
2 2rq V= ρ  – velocity head of the oncoming air flow; S – the 

projectile midsection area; L – the length of the projectile, 

( )mod sinr rm l= τ × = δ
  – module of the vector multiplication of 

vectors rτ
  and l


;

To find the projections of the aerodynamic overturning 
moment vector sM

  on the axes of the semi-connected system 
Cζξη , we write the product of vectors ( )rl × τ

   in the semi-
connected system of axes using a well-known determinant. 

;
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Expanding the determinant, we have the following values of 
the projections of the aerodynamic overturning moment on the 
axеs of the semi-connected system:

( )/s r rM M m l lζ η ξ ξ η= τ − τ ; ( )/s r rM M m l lξ ζ η η ζ= τ − τ                              

( )/s r rM M m l lη ξ ζ ζ ξ= τ − τ
                                          (13)              

Since the projections of the unit vector l


 onto the semi-

connected axes Cζξη  have obvious values 1lζ = , 0lξ = , 0lη =
, then expressions (13) for the moments are simplified:

0M ζ = ;  /s rM M mξ η= ⋅ τ ;    /s rM M mη ξ= − ⋅ τ      (14)                   
          

We find the projections rητ  and rξτ  of the unit vector rτ
  

on the axes of the semi-connected system Cζξη . For this, we 

project the vector equality rV V W= −
  

 on the x,y,z axes of the 
starting system. As a result, we get the projections of the vector 

rτ


 onto these axes in the presence of wind: ( ) / ;rx c x rx W Vτ = −  

( ) / ;ry c y ry W Vτ = −  ( ) / ,rz c z rz W Vτ = −  where: , ,c c cx y z  – 
coordinates of the center of mass of the projectile in the starting 

coordinate system;
 

2 2 2( ) ( ) ( )r c x c y c zV x W y W z W= − + − + −  

, , ,x y zW W W  – wind components in the direction of the x, y, z 
coordinate axes of the starting system.

using the known coordinate transformation, we find the 

projections rξτ  and rητ :

sin cos cos sin sinr rx ry rzξτ = −τ ⋅ ϑ⋅ ψ + τ ⋅ ϑ+ τ ⋅ ϑ⋅ ψ                                                                                                                      
   sin cosr rx rzητ = τ ⋅ ψ + τ ⋅ ψ                        (15)

To analyze the precessional rotational motion of the 
projectile axis, one can use the projections of the unit vector 

l


 on the axes of the CTNB trajectory system (Fig. 1(b)). 

At small angles of nutation, we can assume that 1Bl = δ  and 

2Nl = δ . Taking into account that the projections of the unit 

vector l


 on the axes of the semi-connected system of axes 

Cζξη  have obvious values 1, 0, 0l l lζ ξ η= = = , and making 
the transition to the starting coordinate system, we obtain the 

values of the projections of the unit vector l


 on the axes of 
the starting coordinate system in the form: cos cos ;xl = ϑ⋅ ψ  

sin ;yl = ϑ  cos sinzl = − ϑ⋅ ψ .

Now we find the projections of the unit vector l


 on the 
axes of the trajectory coordinate system, using the well-known 
transition formulas:

cos cos sin cos sin ;T x y zl l l l= ⋅ θ ⋅ Ψ + ⋅ θ − ⋅ θ ⋅ Ψ

sin cos cos sin sin ;N x y zl l l l= − ⋅ θ ⋅ Ψ + ⋅ θ + ⋅ θ ⋅ Ψ    

       sin cosB x zl l l= ⋅ Ψ + ⋅ Ψ                                               (16)                           

The obtained values of the projections 1Bl = δ  and 2Nl = δ  
can be used for numerical and visual graphical analysis of 
the precessional rotational motion of the projectile axis in an 
undisturbed atmosphere and in the presence of wind.

The system of Eqns. (2), (11) of the rotational motion of 
the projectile relative to the center of mass is supplemented by 
the well-known equations of motion1,2,4 of the center of mass. 
In particular, the kinematic equations of motion of the center 
of mass in projections on the axes of the starting coordinate 
system and the dynamic equations of motion of the center of 
mass in projections on the axes of the trajectory coordinate 
system have the form4: 

1) sin ; 2) cos cos ; 3) cos sin ;c c cy V x V z V= ⋅ θ = ⋅ θ ⋅ Ψ = − ⋅ θ ⋅ Ψ                
         
4) / ; 5) / ( ); 6) / ( cos ) ,T N BV F m F m V F m V= Σ θ = Σ ⋅ Ψ = −Σ ⋅ ⋅ θ 

                                                                                                                                                      
                                                                                         (17)        
where , ,c c cx y z  – coordinates of the center of mass of the 
rotation body in the starting coordinate system; θ  and Ψ  are 
the velocity angles of pitch and yaw, which determine the 
direction of the velocity vector V


 of the center of mass of the 

projectile in the starting coordinate system; m is the mass of 
the projectile; TFΣ , NFΣ , BFΣ  are the sums of the projections 
of forces on the axes of the CTNB trajectory system. When 
finding the projections of the longitudinal aerodynamic force 

Rζ

  and transverse aerodynamic force 
nR ζ

 , it is convenient to use 

the vector expressions: R R lς ς= − ⋅
 ;

 
[ ( )]n n rR R m l lς ς= ⋅ × × τ
   .

Ballistic calculations were preceded by aerodynamic 
calculations of the flow around an axisymmetric rotation 
body of the 155-mm caliber artillery projectile type with a 
«cone-cone-ogive» head part in the interval of sub-, trans-, 
and supersonic flow velocities in the presence of angles of 
attack according to the drawing of its external contours. 
The approximate dimensions of the outer contours of the 
artillery shell were taken from the study.7 According to these 
approximate dimensions, the sketch of the external contours of 
the projectile was developed, which was used for calculations. 

As a result of the calculations, the values of the aerodynamic 

longitudinal force Rζ , the aerodynamic transverse force nR ζ , 
the coordinates of the center of pressure and the values of the 

overturning aerodynamic moment sM  relative to the center of 
mass (Fig. 3(a)) were obtained with the subsequent calculation 
of the coefficients of the aerodynamic forces and the moment 
in accordance with dependencies (1) and (3) at the number of 
values of the angle of attack within the limits 00 6≤ δ ≤  and Mach 
numbers of the oncoming flow 0.1 3.0M∞≤ ≤ . Calculations of 
aerodynamic forces, overturning moment and their coefficients 
were performed by numerically solving of the Reynolds-
averaged Navier-Stokes equations using the ANSyS CFX 
software package. Aerodynamic coefficients were calculated 
as functions of the Mach number М∞ and the angle of attack 
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δ . In Fig. 3(b) shows the dependence of the coefficient ms of 
the aerodynamic overturning moment for the angle of attack 

02.0δ =  on the freestream Mach number M∞.

of the 4th order under initial conditions 10 0;δ ≠ 20 0;δ ≠ 10 0;δ =

20 0δ = . The frequency parameters were as follows: 110 s−ν =

, 0 200ω = ÷ . In Fig. 4(a) shows the results of calculations of 
the Mikhailov curve at the end of the first two seconds of flight. 

Figure 4. Mikhailov curves for the projectile: (a) at overturning 
aerodynamic moment (1 – r0 = 1800 rad/s; 2 – r0 =1440 
rad/s); (b) 1 – at restoring aerodynamic moment; 
2 – at overturning aerodynamic moment (r0 = 1800 
rad/s)

                                          (а)                                                               

                                          (b)                                                               

Figure 3. (a) Resulting aerodynamic forces and overturning 
moment in the drag plane, (b) Calculated dimensionless 
coefficient mS for overturning moment MS

.

(a)

(b)

3. RESULTS AND DISCUSSION
3.1 Analysis of Stability of  Rotational Motion of Projectile 

Based on Mikhailov’s Frequency Criterion10

The parameters of the flight trajectory and angular 
displacements of the projectile along the trajectory were 
calculated by numerical integration of the system of differential 
Eqns. (2), (11) and (17). The calculation of the parameters of the 
Mikhailov curve was carried out according to dependence (10) 
for the complex frequency function. Ballistic calculations were 
performed with the projectile mass m = 42.0 kg, the equatorial 
moment of inertia 21.95A kg m= ⋅ , the axial moment of inertia 

20.35C kg m= ⋅ , the initial projectile velocity V0 = 900 m/s and 
the elevation angle of the gun 0

0 35θ = . The system of differential 
equations was solved numerically by the Runge-Kutta method 

Curve 1 corresponds to the initial angular velocity of rotation of 
the projectile around the longitudinal axis r0 = 1800 rad/s, curve 
2 – reduced by 20 % angular velocity r0 (1440 rad/s). It can be 
seen that curves 1 and 2, starting their motion on the real positive 
semiaxis and rotating only counterclockwise, pass sequentially 
only two quadrants of the coordinate plane at the fourth degree 
of the characteristic equation. According to Mikhailov’s criterion, 
this indicates the asymptotic instability of the rotational motion of 
the projectile on the flight trajectory. 

To verify the correctness of using the Mikhailov criterion for 
assessing the stability of the rotational motion of the projectile, a 
comparative analysis of the results of calculating the Mikhailov 
curve for overturning and stabilizing moments was carried out 
by changing the sign of the aerodynamic moment coefficient 
f4. In Fig. 4(b) shows Mikhailov curves for these two cases at 
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r0 = 1800 rad/s. Curve 1 corresponds to an aerodynamically 
stabilized projectile. Curve 2 repeats curve 1 in Fig. 4(a) for 
an aerodynamically unstabilized projectile. It can be seen that 
in the case of an aerodynamically stabilized projectile, the 
Mikhailov curve (Fig. 4(b), curve 1), starting its motion on 
the real positive semiaxis and rotating only counterclockwise, 
successively passes through four quadrants of the coordinate 
plane at the fourth degree of the characteristic equation, which, 
according to the Mikhailov criterion, indicates asymptotic 
stability of the rotational motion of the projectile on the flight 
trajectory.

 
3.2  Comparative Analysis of Characteristics of Perturbed 

Rotational Movement of Projectile on Flight 
Trajectory
In accordance with the purpose of this work, a 

computational study of the characteristics of the disturbed 
rotational motion of a gyroscopically stabilized and dynamically 
balanced artillery projectile was carried out in individual 
sections of the flight trajectory in the presence of the following 
disturbances: the initial deviation of the projectile axis from 
the direction of motion, changes in the initial rotation velocity 
projectile, changes in the elevation angle of the gun barrel, the 
presence of wind. The values of the angles and components of 
the equatorial angular velocities of the rotational motion of the 
projectile when exiting the gun barrel, used in the calculations, 
were taken on the basis of the experimental data given in11,12.

Part of the performed calculations was devoted to 
studying the influence of the conditions of projectile departure 
from the gun barrel on its perturbed precessional motion. The 
main characteristics of the perturbed rotational motion are the 

angles 1δ  and 1δ . 
Below are some calculated graphical dependences for the 

angles δ1, δ2, obtained on the calculated flight trajectory. The 
two dependences 

2 1( )fδ = δ  shown in Fig. 5(a) were obtained 
for total flight time at 0 930V = m/s, r0=1860 rad/s, 0

0 45θ = , 

10 20 0.1δ = δ = deg., 10 20 0.15 /rad sδ = δ =  . Dependence 1 (black 
color) was obtained without taking into account, dependence 
2 (red color) – taking into account the equatorial damping 
moment. The two dependences 

2 1( )fδ = δ  shown in Fig. 5(b) 

were obtained for total flight time at 0
0 45θ = , 0 325V =  m/s, 

r0=650 rad/s, 10 20 0.15δ = δ = deg., 10 20 0.35 /rad sδ = δ =  . It can 
be seen that a decrease in the departure velocity V0 and the 
initial angular velocity of the projectile r0 led to a noticeable 

increase in the periodic components of the angles 1δ  and 2δ  
with a significant decrease in their non-periodic components 
(components of the dynamic equilibrium angle). As in the 
previous figures, dependence 1 (black color) was obtained 
without taking into account, dependence 2 (red color) – 
taking into account the equatorial damping moment. The two 
dependences 2 1( )fδ = δ  shown in Fig. 5(c) were obtained in 
the time interval 3÷10 seconds of flight at 0

0 35θ = , 0 930V =

m/s, r0=1860 rad/s, 10 20 0.1δ = δ = deg., 
10 20 0.15 /rad sδ = δ =  . As 

in the previous figures, one can see a decrease in the periodic 

components of the angles δ1 and δ2 when calculated taking into 
account the equatorial damping moment. In Fig. 5(d) shows 
the calculated dependences 

2 1( )fδ = δ  along the trajectory 
without taking into account and taking into account the 
equatorial damping moment at 0

0 35θ = , 0 930V =  m/s, r0=1860 
rad/s, 

10 20 0.15δ = δ = deg., 10 20 0.35 /rad sδ = δ =  . In Fig. 5(e) 
shows the calculated dependences of the angle δ1 on the time T 
for this case. It can be seen that an increase in the initial values 

of the angles 10δ , 20δ  and the initial components 10δ , 10δ  of the 
equatorial angular velocity of the projectile led to a noticeable 
increase in the influence of the equatorial damping moment on the 
periodic component of the angle 1δ , especially on the descending 
part of the trajectory. At the same time, there was a decrease in the 
non-periodic component of the angle δ1 compared to the result 
in Fig. 5(a), which can be explained by the decrease in the 
elevation angle from 0

0 45θ =  to 0
0 35θ = . For clarity, in Fig. 5(e) 

shows the calculated dependences of the angle δ1 on time T for 
a short time interval at the end of the descending section of the 
trajectory.

3.3 Loss of Stability at Changes in the Initial Rotation 
Velocity Projectile 
As known, a decrease in the initial velocity of rotation 

of the projectile can lead to a loss of stability of its rotational 
motion along the flight trajectory. In this work, the calculated 
loss of stability occurred taking into account the action of 
the equatorial damping moment at the initial section of the 
trajectory with a decrease in the initial rotation velocity from 
r0 = 1860 rad/s (Fig. 5(a)) to r0 = 1130 rad/s while maintaining 
the exit velocity from the gun barrel V0 = 930 m/s , initial values 

10 20 0.1δ = δ = deg., 10 20 0.15 /rad sδ = δ = 
 and the elevation angle 

of the gun barrel 0
0 45θ = . In Fig. 6 the results of calculations of 

the spatial nutation angle components are presented in the form 
of the dependence 2 1( )fδ = δ  (Fig. 6(a), Fig. 6(b), Fig. 6(c)) and 
dependence of the gyroscopic stability coefficient 2

41 f aσ = −  
on the flight time T (Fig. 6(d)), where ( ) (2 )a C r A= ⋅ 4, obtained 
along the trajectory at different initial angular velocities of the 
projectile. This criterion is effective in the initial section of the 
trajectory.4 

It can be seen that as the initial rotation velocity decreases, 
the non-periodic components of the nutation angle decreased 
and its periodic components increased. In this case, the 
criterion of gyroscopic stability 2

41 f aσ = −  at the initial part of 
the trajectory gradually approached the condition 0σ < .

Figure 6(c) shows the calculated dependence 2 1( )fδ = δ  
obtained at the initial angular velocity of the projectile 
r0 = 1130 rad/s in the calculated time interval of 0.5 second 
from the moment of departure. A sharp increase in the nutation 
angle can be seen, leading to the breakdown of the precessional 
motion of the projectile axis at the time T=0.49 seconds from 
the moment of departure. Fig. 6(d) shows the calculated time T 
dependence of the gyroscopic stability criterion σ  for this case. 
The given dependence shows that the condition of gyroscopic 
stability of a rotating projectile 2

41 0f aσ = − >  is not satisfied, 
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Figure. 5. Dependences for angles δ1 and δ2 on the flight trajectory: 1 – without equatorial damping moment; 2 – taking into account 
the equatorial damping moment.

   (a) Ө0=450; V0=930 m/s; r0=1860 c-1; δ0=0.1; 0δ  = 0.15 c-1.       (b) Ө0=450; V0=325 m/s; r0=650 c-1; δ0=0.1;  0δ = 0.35 c-1. 

 (c)  Ө0=350; V0=930 m/s;  r0=1860 c-1;  δ0=0.1; 0δ = 0.15 c-1.      (d) Ө0=350; V0=930 m/s;  r0=1860 c-1;   δ0=0.15; 0δ = 0.35 c-1.

(e) Ө0=350; V0=930 m/s;  r0=1860 c-1  ; δ0=0.15; 0δ = 0.35 c-1.               (f) Ө0=350; V0=930 m/s;  r0=1860 c-1;δ0=0.15; 0δ = 0.35 c-1.  
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Figure 6. Dependences demonstrating the loss of stability of the rotational movement of the projectile with a decrease in the initial 
rotation velocity (V0 = 930 m/s, ϴ0=450).

(c) 0.5 seconds of flight, r0 = 1130 rad/s    (d) 0.5 seconds of flight, r0 = 1130 rad/s

(а) Total flight time, r0 = 1260 rad/s            (b) Total flight time, r0 = 1170 rad/s

starting from the moment of departure. The calculation results 
obtained above show that the condition of gyroscopic stability 

of a rotating projectile 2
41 0f aσ = − > , obtained by N. V. 

Maievsky in the absence of trajectory curvature and given in4, 
can be applied at the initial segment of trajectory. 

3.4 Loss of Stability with Increasing Elevation 
Angle
In the case considered above, the loss of stability of the 

rotational movement of the projectile occurred immediately 
after the projectile exited the gun barrel at a constant 
elevation angle of the barrel, a constant departure velocity 
and a sequential decrease in the initial angular velocity of 
rotation. At the same time, it is known that as the curvature of 
the trajectory increases, the dynamic equilibrium axis of the 
rotating projectile deviates more and more from the velocity 
vector of its center of mass1 - 4. This leads to an increase in 
the spatial angle of attack of the oncoming flow and can cause 
loss of stability of the rotational motion of the projectile on 
steep trajectories (Fig. 7). In Fig. 7(a) shows the calculated 
dependence 2 1( )fδ = δ  at an elevation angle of 450, the exit 
velocity V0 = 330 m/s and the initial angular velocity r0 = 650 

rad/s. In Fig. 7(b) for comparison shows similar calculated 
dependence at the same velocities and an elevation angle of 

0
0 50θ = . One can see a significant increase in the angle 1δ  in 

the upper part of the trajectory at angle of 0
0 50θ = . A further 

increase of the elevation angle while maintaining the initial 
velocity V0=330 m/s and the initial angular rotation velocity 
r0=650 rad/s led to the calculated loss of stability in the region 
of the upper point of the trajectory, starting from the elevation 
angle 0

0 60θ = . It should be noted that the stability condition of 
a rotating projectile 2

41 0f aσ = − >  was obtained for movement 
on a straight section of the trajectory and should not be applied 
for the section of the trajectory in the region of the top. The 
independent calculated criterion evaluating the stability of 
rotating projectiles on a curved section of the trajectory can be 
the angle 

1δ
4. Fig. 7(с) corresponds to the time interval from 

the moment of departure to the moment of loss of stability of 
the rotational motion in the region of the upper point of the 
trajectory on its descending branch at the moment of flight 
T ≈ 24.2 s. It can be seen that at the moment of loss of stability, 
the angle 1δ  reaches the value 06.0≈ . With a further increase in 
the elevation angle of the gun barrel, the loss of stability occurs 
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earlier. Fig. 7(d) corresponds to the elevation angle 0
0 65θ =  and 

the time interval from the moment of departure to the moment 
of loss of stability of rotational motion when approaching the 
upper point of the trajectory along its ascending branch during 
the flight T = 21.9 s

Further calculation was performed at the angle 0
0 70θ = . 

In this case, the initial velocity and the initial angular velocity of 
rotation were respectively V0=930 m/s and r0=1860 rad/s. During 
the first calculation, the initial parameters of the rotational 
motion were: 10 20 0.15δ = δ = deg., 

10 20 0.35 /rad sδ = δ =  . The 
projectile lost stability of rotational motion on the ascending 
branch of the trajectory when approaching its upper point 
during the flight T=31.93 s. In Fig. 7(e) shows two dependences. 
As before, number 1 denotes the result of the calculation 
without the equatorial damping moment, number 2 – with the 
equatorial damping moment. In the second calculation, the 
initial parameters of the rotational motion were: 10 20 0.15δ = δ =

deg., 10 20 1.5 /rad sδ = δ =  . In Fig. 7(f) shows the results of this 

calculation. One can see an increase in the periodic components 
of the angular displacements of the projectile, caused by an 
increase in the components of the initial equatorial angular 
velocity, with a simultaneous noticeable increase in the 
influence of the damping moment on the amplitude of the 
angular oscillations of the projectile. At the same time, the non-
periodic components of the angles δ1 and δ2, which determine 
the angle of dynamic equilibrium, did not change noticeably. 
A slight decrease in time until the moment of loss of stability 
from 31.93 seconds to 31.09 seconds was recorded.

3.5  Wind Influence
All previous calculations were consistent with a stationary 

atmosphere. At the same time, the system of Eqns. (11), as 
noted, makes it possible to calculate the precessional motion 
of a gyroscopically stabilized projectile in the presence of 
wind. Below are the results of a number of calculations taking 
into account the longitudinal 

xW  and side wind 
zW  components 

on the flight trajectory at the elevation angle of 350, the exit 

Figure 7. Dependencies 2 1( )fδ = δ  at the different elevation angles of the gun barrel.

          (а) At the elevation angle 450                                     (b) At the elevation angle 500                                            (c) Elevation angle 600 
                                                      Flight time Т≤ 24.2 s  

(d) Elevation angle 650                                                                 (e) Elevation angle 700                                 (f) Elevation angle 700   

                         Flight time Т≤ 21.9 s             Fight time Т≤ 31.93 s                Flight time Т≤ 31.09 s   
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velocity V0 = 930 m/s, the initial angular velocity r0 = 1860 
rad/s, 

0 0.1δ =  deg. and 0 0.15 /rad sδ =  (Fig. 8). In Fig. 8(a) 
shows the dependence 

2 1( )fδ = δ  with a tailwind component of 
the longitudinal wind 10xW =  m/s and 0zW = . Figure 8(b) shows 
the dependence for the oncoming longitudinal wind component 

10xW = −  m/s and 0zW = . It can be seen that with a tailwind, the 
head of the projectile rises up (Fig. 8(a)). With a oncoming 
longitudinal wind, the head of the projectile descends by 
approximately the same amount (Fig. 8(b)). Dependences 
in Fig. 8(c) and Fig. 8(d) illustrate the calculations in the 
presence of a crosswind component. In Fig. 8(c) shows the 
dependence for the crosswind component 10zW =  m/s, directed 
at the starting position from left to right and 0xW =  in the time 
interval 0÷1.5 seconds. The dependence shown in Fig. 8(d) was 
obtained for the total flight time. In all the cases considered 
at the wind velocity of 10 m/s, the stability of the rotational 
motion was maintained throughout the entire flight trajectory. 
The direction of deflection of the head part of the projectile 

in the initial section of the trajectory is characteristic with the 
wind. In Fig. 8(d) it can be seen that with a left crosswind the 
head part deviates to the left towards the wind and somewhat 
downward. With a right-side wind, the head part deviates to the 
right towards the wind and slightly upward (Fig. 8(f)), which 
is consistent with the results given in [reference 5, p. 88] for 
a bullet fired from a rifled barrel. The analysis of the obtained 
dependences shows that the most dangerous is the right-side 
wind, which gives the greatest increase in the non-periodic 
component of the nutation angle and the corresponding value 
of the aerodynamic destabilizing moment. As before, number 
1 denotes the result of the calculation without the equatorial 
damping moment, number 2 – with the equatorial damping 
moment.

3.6 Loss of Stability in the Crosswind
With an increase in the velocity of the right-side wind 

up to 20 m/s, the calculated loss of stability of the right-
side rotational motion of the projectile was observed, which 

Figure 8. Dependencies 2 1( )fδ = δ for longitudinal Wx and crosswind Wz .

(а) Wind component Wx=10 m/s                                              (b) Wind component Wx= -10 m/s             (c) Wind component Wz=10 m/s
      0 ÷ 8 seconds of flight                                                                0 ÷ 8 seconds of flight               0 ÷ 1.5 seconds of flight   

(d) Wind component Wz=10 m/s                                              (e) Right side wind Wz= -10 m/s                  (f) Right side wind Wz= -10 m/s
      Total flight time                                                                         0 ÷ 1.5 seconds of flight                               Total flight time
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occurred in the immediate vicinity of the upper point of the 
trajectory. Fig. 9(a) and Fig. 9(b) shows the calculated loss of 
stability in the vicinity of the upper point of the trajectory at 
the right-side wind component 20zW = −  m/s ( 0xW = ) at the 
time T=27.46 s. The estimated time to pass the top point of the 
trajectory is about 27.83 seconds. Fig. 9(c) shows the calculated 
time T dependence of the nutation angle component 

1δ  at a 
side right wind with the velocity of 20 m/s from the moment 
of projectile departure to the moment of loss of stability. In 
Fig. 9(d) shows the calculated time T dependence of the the 
overturning aerodynamic moment SM  at the right-side wind 
with the velocity of 20 m/s from the moment of projectile 
departure to the moment of loss of stability. An increase in the 
non-periodic component 

1δ  of the angle of dynamic equilibrium 
to a value 06≈  and a corresponding increase in the overturning 
aerodynamic moment SM  to a value of the order 9.6 N m⋅  at the 
moment of loss of stability is seen.

Shown in Fig. 9 the results of ballistic studies of the right-
side rotational motion of the projectile at the righ-sidt wind 
velocity of 20 m/s (Wz = 20 m/s) were obtained taking into 
account the equatorial damping moment. Ballistic calculation 
at the right-side wind velocity of 20 m/s (Wz = -20 m/s) and 
the same initial conditions of the shot without taking into 
account the equatorial damping moment did not lead to the 
loss of stability of the projectile’s rotational motion throughout 
the entire trajectory. The maximum value of the non-periodic 
component of the angle δ1 (the angle of dynamic equilibrium) 
in the calculation without taking into account the damping 
moment was δ1≈6.50. In Fig. 10(a) shows together the results of 
this calculation (marked with 1 and in black) and dependence 
δ1=δ1(T) according to the calculation with damping moment, 
presented earlier in Fig. 9(c) (marked with 2 and in red). The 
further increase in the right-side wind up to 30 m/s (Wz = -30 
m/s) gave similar qualitative results (Fig. 10(b)). In this case, 
the loss of stability in the case of calculation with a damping 

Figure 9. The loss of stability at the right-side component of the wind WZ= -20 m/s. 

                                            (а) Time interval 0÷28 seconds                                            (b) Time interval 27÷28 seconds

                                           (с) Angle component )T(1δ                                                  (d) Overturning moment )T(Ms
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moment occurred earlier in time (T=17.24 s) in comparison 
with the calculation at Wz = -20 m/s. The maximum value of the 
non-periodic component of the angle δ1 (the angle of dynamic 
equilibrium) in the calculation without taking into account the 
damping moment increased to δ1≈8.50.

Ballistic calculations of the characteristics of the right-side 
rotational motion of the projectile in the left-side wind (Wz ≥20 
m/s) did not show the loss of stability both without and with 
allowance for the equatorial damping moment. In Fig. 10(c) 
shows two superimposed calculated dependences of the angle 
δ1 on the flight time T in the left-side wind with the velocity of 
20 m/s (Wz = 20 m/s). It can be seen that the projectile retains 
its motion stability throughout the entire flight time both in the 
calculation without and with the equatorial damping moment. 
In this case, the maximum value of the non-periodic component 
of the angle δ1 (angle of dynamic equilibrium) in both cases 
is δ1≈-3.30. In Fig. 10(d) shows two calculated dependences 
of the angle δ1 on the flight time T with a left-side wind with 
the velocity of 30 m/s (Wz = 30 m/s). It can be seen that the 
projectile also maintains stability of motion throughout the 
entire flight time both in the calculation without and with the 
equatorial damping moment. In this case, the maximum value 

of the non-periodic component of the angle δ1 increases to  
δ1≈-5.30.  

Once again, let’s pay attention to the fact that all previous 
graphic dependences, where only black color is present, were 
obtained when calculating taking into account the equatorial 
damping moment. In the case when, for comparison, two 
graphical dependencies are superimposed one on one, they 
should be distinguished as follows. Graphic dependences of 
red color (indicated by the number 2) were obtained during 
calculations taking into account the equatorial damping moment. 
They are superimposed on the black graphic dependences 
(indicated by the number 1) obtained in the calculations without 
taking into account the equatorial damping moment.

Presented in Figs. 9 and Fig. 10(a)-(d), the results revealed 
the loss of stability of the right-side rotational motion of the 
projectile when calculating taking into account the equatorial 
damping moment in the case of the presence of the right-
side wind with the velocity of 20 m/s or more, in contrast to 
calculations without a damping moment. This result requires 
further careful study. The reason for the loss of stability can 
be called the presence of dissipative forces in the structure of 
acting forces. A rigorous proof that dissipative forces destroy 

Figure 10. Results of stability calculations with and without taking into account the equatorial damping moment in the crosswind.

(a) Dependences of angle δ1 from time T      (b) Dependences of angle δ1 from time T           (c) Dependences of angle δ1 from time T
     Right-side wind component Wz= -20 m/s      Right-side wind component Wz= -30 m/s           Left-side wind component Wz= 20 m/s

(d) Dependences of angle δ1 from time T             (e) Dependences of angle δ1 from time T       (f) Dependences of angle δ1 from time T
      Left-side wind component Wz= 30 m/s                Right-side wind component Wz= -20 m/s        Right-side wind component Wz= -30 m/s
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the gyroscopic stabilization of an artillery shell was given by 
Chetaev13, who constructed the Lyapunov function for a system 
of equations of the form (2).

The right-side rotational motion of the projectile, which was 
unstable in a right-side wind, calculated taking into account the 
equatorial damping moment, became stable when the direction 
of rotation changed to left-side. And vice versa, the unstable 
left-side rotational motion of the projectile with a left-side wind 
became stable when the wind direction changed to the right-side 
one. In Fig. 10(e) shows two calculated dependences δ1=δ1(T). 
Both dependences were obtained at the elevation angle of 
350, the exit velocity V0 = 930 m/s, the initial angular velocity 
r0 = 1860 rad/s, 0 0.15δ =  deg., 0 0.35 /rad sδ =  and the right-side 
wind of 20 m/s (Wz = -20 m/s). The dependence marked with 
number 1 (red) corresponds to the unstable right-hand rotation 
of the projectile. This buckling case was presented earlier in 
Fig. 9(c) and Fig. 10(a). The number 2 (brown) indicates the 
dependence corresponding to the stable left-side rotation of the 
projectile (r0 = -1860 rad/s). In Fig. 10(f) shows two similar 
calculated dependences δ1=δ1(T) with a right-side wind of 30 
m/s (Wz = -30 m/s) with a change in the initial rotation velocity 
from r0 = 1860 rad/s to r0 = -1860 rad/s.

5. CONCLUSIONS
The method is proposed for calculating the equatorial 

damping moment of an axisymmetric rotation bodies such 
as the artillery projectile in the counter flow on the flight 
trajectory. The method has been tested in ballistic studies of 
the rotational motion of the artillery projectile. The method is 
based on differentiation of the dependence of the overturning 
aerodynamic moment by the angle of attack and the Mach 
number of the oncoming flow. This dependence can be 
obtained by numerical simulation using modern software 
systems, existing calculation-experimental dependences or 
the results of special experiments. In this paper, the values of 
the aerodynamic overturning moment at given Mach numbers 
and angles of attack of the oncoming flow were determined 
by numerical simulation. The tabulated dependence of the 
aerodynamic overturning moment was differentiated on the 
calculated flight trajectory at the calculated Mach numbers 
and angles of attack. Based on the known criterion of dynamic 
stability using the proposed method for calculating the equatorial 
damping moment, a ballistic analysis of the rotational motion 
of a gyroscopically stabilized artillery projectile on the flight 
trajectory was carried out, which confirmed its asymptotic 
instability. Based on the known equations of motion, which 
take into account the action of the equatorial damping moment, 
ballistic studies of the parameters of the perturbed rotational 
motion of the 155-mm artillery projectile were carried out. 
A significant effect of the equatorial damping moment on 
the magnitude of the periodic components of the projectile 
precessional motion and the absence of the noticeable effect on 
their non-periodic components in comparison with calculations 
without taking into account the equatorial damping moment are 
shown. The given calculation examples of the loss of stability 
of the rotational motion of the projectile in the initial section 
of the trajectory as the result of the decrease in the initial 
projectile rotation velocity and at large angles of shot showed 

that the values of the parameters of the rotational motion of the 
projectile, which are boundary in terms of stability, obtained 
using the equatorial damping moment, do not noticeably differ 
from the values in the calculations without the equatorial 
damping moment. At the same time, the results of ballistic 
calculations with the loss of stability of the rotational motion 
of the projectile in the presence of the side wind showed the 
destabilizing effect of the equatorial damping moment in the 
case of the projectile spinning towards the side wind. The 
independent criterion for assessing the stability of rotating 
projectiles on the curved section of the trajectory can be the 
angle of dynamic equilibrium, which in all calculated examples 
showed the automodel properties with respect to the equatorial 
damping moment.
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