Defence Science Journal, Vol. 57, No. 1, January 2007, pp. 41-46 © 2007, DESIDOC

Synthesis of Lithium-doped Zirconia Nanoceramics of Controlled Oxygen Vacancies

S. Mohapatra and S. Ram

Indian Institute of Technology, Kharagpur-721 302

ABSTRACT

Doping of lithium (Li^+) cations results in stabilised zirconia, especially in tetragonal (t) crystal structure, i.e., Li^+ : t- ZrO_2 . It is useful to vary oxygen vacancies in Li^+ : ZrO_2 powders. The Li^+ : t- ZrO_2 powder having 1-5 mol per cent Li^+ , are obtained by using a novel chemical method of a polymer precursor, which consists of Li^+ and Zr^{4+} cations capping in polymer molecules of polyvinyl alcohol (PVA) and sucrose. The results are analysed in terms of XRD and microstructure of Li^+ : t- ZrO_2 powders prepared under specific conditions of heating the precursor in air at elevated temperatures. The polymer precursor consists of fibrils of average 120 m length and 0.5–1.0 m dia. A refined Li^+ : t- ZrO_2 powder (15-25 nm crystallite size) occurs after heating the precursor at 500–600 °C for 2 h in air.

Keywords: Stabilised zirconia, ceramics, nanoceramics, microstructure, synthesis, cationic doping

1. INTRODUCTION

Interest in nanocrystalline zirconia (ZrO_2) ceramics, of average diameter in the 2-100 nm range, has increased during recent years, because of their properties (e.g., sintering ability, mechanical toughness, superplastic behaviour) are significantly different from those in a coarse grained structure¹⁻⁴. At atmospheric pressure, pure ZrO_2 exists in three well known polymorphs of $P2_{1/c}$ monoclinic (m), $P4_{2/nmc}$ tetragonal (t), and F m3m cubic fluorite (c) crystal structures, where $m-ZrO_2$ is the equilibrium bulk structure at low temperatures. Efforts have been made to obtain the high temperature phase t- ZrO_2 or c- ZrO_2 in a thermodynamically stable state at low temperatures using doping of MgO, CaO, Y_2O_3 , or other similar oxides²⁻⁴. Emphasis has been given for the synthesis of such phases either by undersized or oversized

cationic doping using hydrothermal processes, and sol-gel processes⁵⁻⁷.

In this study, synthesis of a nanoceramic t-ZrO₂ powder has been carried out using doping of undersized cations such as Li^+ . Murata⁸, et al. reported that Li^+ -modified ZrO_2 offers specific catalytic activity in oxidative coupling of methane to give C_2 - hydrocarbon⁸. A forced hydrolysis (by adding $NH_{A}OH$) of dispersed Li^+ and Zr^{4+} cations via polymer molecules of polyvinyl alcohol (PVA) and sucrose in water was used to obtain a polymer precursor. For Li^+ limited to 5.0 mol per cent, no $Zr^{4+}-Li^{+}$ phase separation encountered during the reaction. Otherwise, *Li*⁺ hardly dissolves in zirconium hydroxides⁹. A reconstructive decomposition follows on heating the polymer gel (dried and pulverised into a powder) in air, forming a refined Li+: t- ZrO_2 powder at temperatures as low as 500-600 °C.

The results are analysed in terms of XRD and microstructure of the Li+: t- ZrO_2 powders.

2. EXPERIMENTAL DETAILS

Separate solutions were obtained for ZrOCl₂.8H₂O in distilled water and Li_2CO_3 in diluted HCl each of 1.0 M concentration. A transparent colourless solution appeared in homogeneous mixing in two components. A similar mixed solution was obtained in 3.0 g/dl PVA and 30.0 g/dl sucrose in distilled water. To form a polymer precursor, the PVAsucrose solution was added dropwise to the aqueous solution in ZrOCl₂.8H₂O and LiCl (Li₂CO₃ dissolved in HCl) at room temperature. The obtained sample was transferred to a water-cooled bath (Julabo model HD-4) in part to hydrolyse the metal cations by reacting with cold NH_4OH (25 %) at 2–5 °C average temperature. A transparent gel occurred of hydrolysed metal cations as Li^+ -doped $ZrO(OH)_2$. αH_2O . As much as 5.0 mol per cent Li+ (as per the final Li+: ZrO_2 product) could be incorporated in $ZrO(OH)_2 \cdot \alpha H_2O$ in a mixed hydroxyl gel (amorphous). Requisite amounts of the reagents used in forming a typical polymer gel (3.0 mol % Li_2O) are given in Table 1. It was observed that, in the solution, the product $Li+:ZrO(OH)_2 \cdot \alpha H_2O$ continues to react with the water by polycondensation and polymerisation processes. Average pH at this stage had been reduced to 3.5 as we observed and modelled in the case of a monolithic $ZrO(OH)_2$. αH_2O gel¹⁰. Washing in cold water separated byproduct chlorides, resulting in a colorless transparent hydroxyl gel, which was then dried at 90-100 °C over a sand bath (Fig. 1).

The process of forming $Li^+:ZrO(OH)_2 \cdot \alpha H_2O$ gel and derived $Li^+: t$ - ZrO_2 powder is summarised in Fig. 1. The Li^+ stabilised t- ZrO_2 occurred of nanoparticles by reconstructive thermal decomposition of gel after heating in air at temperatures in the 500–600 °C range. Structures of precursor gels and of those transformed into $Li^+: t$ - ZrO_2 were studied in terms of XRD using Philips P.W.1710 diffractometer with filtered 0.15418 nm CuK α radiation. Microstructures of the samples were studied by scanning electron micrographs using a JEOL model JSM-5800 SEM. Average $Li^+: t$ - ZrO_2 crystallite

Figure 1. Schematic diagram for preparing a Li^+ -modified Zr^{4+} polymer precursor and derived Li^+ : ZrO_2 powder.

PvA-sucrose in cold water						
Reagents	Solvent	Volume (ml)	Concentration			
$ZrOCl_2.8H_2O$	Water	1470	1.0 M			
Li_2CO_3	Dil HCl	45	1.0 M			
PVA	Water	885	3.0 g/dl			
Sucrose	Water	885	30.0 g/dl			

Table 1. Experimental conditions for forming a polymerprecursor of Li^+ -modified Zr^{4+} hydroxyl gel withPVA-sucrose in cold water

A reaction batch of a 100 g sample in a typical $Li_xZr_{1-x}O_{2-1.5x}$ composition, with x = 0.02 or 3.0 mol per cent Li^+ .

size (D) was calculated from fwhm-values (full width at half-maximum values) in the diffraction peaks using the Debye-Scherrer relation.

3. RESULTS AND DISCUSSION

3.1 Formation of Hydroxyl Gel and Derived Li⁺: t-ZrO, Powder

Under favorable conditions of temperature and pH, dispersed Zr^{4+} and Li^+ cations in an aqueous solution undergo hydrolysis reaction with the H_2O molecules. The reaction, especially in the presence of NH_4OH (having a high 12 pH value induces a local chemical potential between the reacting species) in cold condition, can be expressed in this example as follows:

$$\begin{aligned} xLiCl + xH_2O &\rightarrow xLi(OH) + xHCl \\ (1-x)ZrOCl_2 + 2(1-x)H_2O &\rightarrow \\ (1-x)ZrO(OH)_2 + 2(1-x)HCl \\ (1-x)ZrOCl_2 + xLiCl + (2-x)H_2O &\rightarrow \\ Li_xZr_{1-x}O_{1-z}(OH)_{2-x} + (2-x)HCl \end{aligned}$$
(1)

At room temperature, a hydroxyl compound formed in this reaction simultaneously encounters a thermal-induced disintegration as follows:

$$Li_{x}Zr_{1-x}O_{1-x}(OH)_{2-x} \to Li_{x}Zr_{1-x}O_{2-1.5\ x} + (1-0.5x)\ H_{2}O$$
(2)

At low temperature, an interbridging in $Li_x Zr_{1-x}O_{1-x}(OH)_{2-x}$ molecules succeeds in support of mobile H_2O molecules in solution, forming a polymer gel. It plays a crucial role in devising an amorphous gel, which can be expressed as $Li_x Zr_{1-x}O_{1-x}(OH)_{2-x}$. φH_2O . A value of $\varphi = 4-5$ is

estimated from thermogravimetric analysis of a dried sample at reduced pressure (1-5 mbar) at room temperature.

In the gelation process, Li^+ as Li(OH) gets trapped in $ZrO(OH)_2 \cdot \alpha H_2O$, forming a $Li_x Zr_{1-x}O_{1-x}$ $(OH)_{2-x} \cdot \varphi H_2O$ glass gel. Notice $ZrO(OH)_2 \cdot \alpha H_2O$ is a glass gel former whereas Li(OH), which is an ionic compound, serves as a glass modifier. Presence of the polymer molecules of PVA-sucrose during the hydrolysis templates $ZrO(OH)_2 \cdot \alpha H_2O$ in a polymer of extended network over their molecular surfaces. The original sol-gel method involves alkoxides and is expensive one⁷. The present method offers a simple process of hydrolysis type for processing a hydroxyl gel, especially involving the reactions in aqueous medium.

In this method, Li^+ -modified $ZrO(OH)_2 \cdot \alpha H_2O$ molecules interbridge by means of polycondensation or polymerisation in shape of fibrils (as evidenced from the microstructure in Fig. 2). It is a Li^+ : $[ZrO(OH)_2 \cdot \varphi H_2O]_n$ polymer template in support over PVA-sucrose of effectively planar surfaces. In water, sucrose was hydrolysed to fructose and glucose, which was ultimately oxidised to gluconic acid¹¹. A metal-ion complex was formed in the reaction with Zr^{4+} and Li^+ cations. It frames a cobranched polymer (planar) with PVA molecules (of otherwise linear structure), offering a multifunctional role in templateing Zr^{4+} and Li^+ in a metal-ion complex over PVA-gluconic acid polymer molecules.

Another advantage of the organic polymer part is that it serves as a dispersoid and an internal fuel in producing Li^+ : t- ZrO_2 by autocombusting Li^+ : $[ZrO(OH)_2 \cdot \varphi H_2O]_n$ templates at moderate temperatures as low as 500-600 °C in air. Decomposition and *in-situ* combustion of the precursor evolve a plenty of heat of the combustion, which induces reconstructive Li^+ : t- ZrO_2 nucleation and growth of limited particle sizes by reaction of small fragmented species of precursor over these temperatures. A high degree of gelation following the hydrolysis of the metal cations in reaction with NH_4OH appears to be an important factor in this example of deriving Li^+ : t- ZrO_2 of nanoparticles at such low temperatures. Virgin $ZrO(OH)_2 \cdot \alpha H_2O$ yields m- ZrO_2 or a mixture

Figure 2. SEM of: (a) $Li_x Zr_{1,x}O_{1,x}(OH)_{2,x} \circ \theta H_2O$ (x = 0.02) polymer precursor gel and (b) derived $Li^+: t$ - ZrO_2 powder after heating the precursor (dried at room temperature) at 600 °C in air.

with t- $ZrO_2^{5-9,12,13}$. Marote⁹, et al. reported a t-/m-ZrO₂ mixture by heating $ZrOCl_2$. $8H_2O$ or $ZrCl_4$ in a molten $LiNO_3$ flux at 450 °C. As much Li^+ as 3.4 at per cent incorporates in ZrO_2 in this method. It is not a very viable way for producing Li^+ : ZrO_2 . Most of Li^+ involved in refluxing evaporates as a byproduct (toxic).

3.2 Microstructure and XRD

Figure 2(a) shows a typical SEM microstructure of polymer precursor gel $Li_xZr_{1-x}O_{1-x}(OH)_{2-x}$. $\varphi H_2O(x=0.02)$, which has been dried at room temperature. It consists of a peculiar polymeric structure of fibrils or thin layers of average 0.5-1.0 µm dia. As long fibrils as 120 µm are present. These fibrils are developed in directional growth and by polycondensation of $Li_xZr_{1-x}O_{1-x}(OH)_{2-x}$. φH_2O molecules in an interconnected network structure (amorphous) over PVA-sucrose polymer molecules of effectively planar surfaces. This involves formation and *in situ* polycondensation processes of dispersed $Li_xZr_{1-x}O_{1-x}(OH)_{2-x}$. φH_2O in the solution.

On heating, a controlled reconstructive molecular decomposition occurs from the polymer gel of thin fibrils, resulting in a Li^+ : t- ZrO_2 powder. A typical micrograph in Fig. 2(b) shows clusters of Li^+ : t- ZrO_2 crystallites in derived shapes (100 - 500 nm dia) of precursor of thin fibrils. As can beseen by a close-up of the micrograph in Fig. 2(b), the sample has Li^+ : t- ZrO_2 crystallites of rectangular bars (or prisms) of 15-25 nm average dia, which has been correlated to fwhm-values in the XRD peaks in the Debye-Scherer formula (D~20)

nm) value. It demonstrates the sample consisting of mostly single crystallites. The final Li^+ : t- ZrO_2 size and morphology vary sensitively depending on the Li^+ content and the final calcination temperature.

X-ray diffractogram in $Li^+:ZrO_2$ powder, after heating the polymer precursor at 500–600 °C in air, has a total of 19 peaks in the 20-100 ° range of the diffraction angle 20. A typical diffractogram for 3.0 mol per cent $Li^+: t$ - ZrO_2 powder, heated at 600 °C for 2 h, is given in Fig. 3. As marked by the (*hkl*) values, all the major peaks are indexed in terms of the lattice reflections from the P4_{2/nmc} tetragonal crystal structure as in the monolithic ZrO_2^{12} . No diffraction peak is visible in independent Li_2O , confirming the fact that most of the Li^+ used in this reaction is consumed in forming Li^+ -doped t- ZrO_2 .

In Table 2, the observed values of the interplanar spacings d_{hkl} are fairly reproduced, within a standard deviation of ± 0.0010 nm, assuming average lattice parameters a = 0.3615 nm and c = 0.5201 nm, with volume V = 0.0680 nm³ and density $\rho = 6.01$ g/cm³. In comparison to $\rho = 6.10$ g/cm³ in monolithic t- ZrO_2^{14} , a smaller ρ -value observed in this example is according to smaller ionic size of Li^+ relative to the Zr^{4+} value. As can be analysed by intensities in the diffraction peaks, as described earlier¹⁰⁻¹², the sample has a small impurity ~ 5 per cent due to incipient growth of m- ZrO_2 .

The diffractogram of the precursor gel powder consists of three halos, as shown in the inset of Fig. 2, at wave vectors 18.7 nm⁻¹, 29.3 nm⁻¹ and

Figure 3. (a) X-ray diffractogram in Li^+ : t- ZrO_2 nanopowder after 2 h of heating a precursor {of diffractogram in the inset (b)} at 600 °C in air.

38.3 nm⁻¹ in three prominent pair distribution functions in the Zr^{4+} and O^{2-} ions in an amorphous structure,

Table 2. Interplanar spacing (d_{hkl}) and relative peak intensities (I_p) in XRD peaks in 3.0 mol per cent Li^+ : t-Zr O_2 powder

d_{hkl} (nm)					
Nanopowder	Bulk	I_p	h	k	l
0.3636*	0.3630	08	1	1	0
0.3160*	0.3156	18	1	1	1
0.2956	0.2952	100	1	0	1
0.2843*	0.2842	16	1	1	1
0.2600	0.2593	14	0	0	2
0.2540	0.2537	19	1	1	0
0.1790	0.1800	44	1	1	2
0.1810	0.1803	35	2	0	0
0.1560	0.1557	16	1	0	3
0.1540	0.1534	28	2	1	1
0.1481	0.1476	11	2	0	2
0.1305	0.1296	05	0	0	4
0.1272	0.1268	07	2	2	0
0.1178	0.1177	10	2	1	3
0.1168	0.1167	09	3	0	1
0.1547	0.1545	06	1	1	4
0.1372	0.1369	07	3	1	0
0.1053	0.1051	06	2	0	4
0.1045	0.1041	10	3	1	2

The bulk values, with a = 0.3592 nm and c = 0.5168 nm, are reported from literature¹⁴. **m*-ZrO₂.

which plays a crucial role in deriving Li^+ -doped t- ZrO_2 in this experiment. Otherwise, the precipitate often decomposes to hydrated zirconia $ZrO_2 \cdot \gamma H_2O$, which hardly crystallises into t- ZrO_2 .

4. CONCLUSION

A novel chemical method, using hydrolysis of dispersed Zr^{4+} and Li^+ cations via polymer molecules of PVA and sucrose in cold water, is developed and explored to obtain Li^+ -doped t-ZrO₂. Adding $NH_{A}OH$ hydrolyses Zr^{4+} and Li^{+} as a hydroxyl compound $Li_r Zr_{1-r}O_{1-r}(OH)_{2-r}$. φH_2O , which occurs in shapes of thin fibrils in support over the PVAsucrose polymer molecules. A Li^+ : t- ZrO_2 powder occurs on heating the precursor at temperature as low as 500 °C in air. The PVA-sucrose polymer molecules offer three important functions: (i) a solid dispersoid, (ii) a templateing agent, and (iii) a solid fuel. The sample, having 3-5 mol per cent Li^+ , consists of as small crystallites as 10-25 nm, in shape of the tetraoids, unless heating above 600 °C. In comparison to traditional sol-gel process, this is a rather simple method for processing of shape-controlled ceramics such as ZrO_2 and its derivatives.

ACKNOWLEDGEMENTS

This study was financially supported by the Council of Scientific and Industrial Research, Govt of India.

REFERENCES

- 1. Yashimura, M. Phase stability of zirconia. Am. Ceram. Soc. Bull., 1988, 67, 1950-955.
- Chen, I. & Xue, L.A. Development of superplastic structural ceramics. J. Am. Ceram. Soc., 1990, 73(9), 2585-609.
- Minh, N.Q. Ceramic fuel cells. J. Am. Ceram. Soc., 1993, 76(3), 563-88.
- Igawa, N. & Ishii, Y. Crystal structure of metastable tetragonal zirconia at 1472 K. J. Am. Ceram. Soc., 2001, 84(5) 1169-171.
- 5. Murase, Y. & Kato, E. Role of water vapour in crystalline growth and tetragonal-monoclinic

transformation of zirconia. J. Am. Ceram. Soc., 1983, **66**(3), 196-200.

- Ashoka, H. Sol-gel synthesis of crystalline ZrO₂ with partial replacement of zirconium with Al, Nb, Si, and Ta. Materials Letters, 1994, 19, 213-16.
- Coracoche, M.C.; Ravas, P.C. & Cervera, M.M. Zirconium oxide structure prepared by sol-gel route. *J. Am. Ceram. Soc.*, 2000, 83(2), 377-84.
- 8. Murata, K.; Hayakawa, T. & Suzuki, K. Lithiumdoped sulphated zirconia catalysts for oxidative coupling of methane to give ethylene and ethane. *Catalysis Today*, 1998, **45**, 41-45.
- 9. Marote, P.; Durand, B. & Deloume, J.P. Reactions of metal salts and alkali metal nitrates. Role of the metal precursors and alkali metal ions in the resulting phase of zirconia. *J. Solid State Chem.*, 2002, **163**, 202-09.

- Mondal, A. & Ram, S. Monolithic *t-ZrO*₂ nanopowder through a *ZrO(OH)*_{2,x} *H*₂*O* polymer precursor. *J. Am. Ceram. Soc.*, 2004, **87**, 2187-94.
- 11. Ram, S. Synthesis and structure and optical properties of metastable ZrO_2 nanoparticles with intergranular Cr^{3+}/Cr^{4+} doping and grain surface modification. J. Mater. Sci., 2003, **38**, 643-55.
- 12. Mondal, A. & Ram, S. Controlled phase transformation in Al^{3+} -stabilised ZrO_2 nanoparticles via forced hydrolysis of metal cations. *Materials Letters*, 2003, **57**, 1696-706.
- Hong, J.S.; De la Torre, S.D.; Miyamoto, K.; Miyamoto, H. & Gao, L. Crystallization of *Al₂O₃/ZrO₂* solid solution powders prepared by co-precipitation. *Materials Letters*, 1998, **37**, 6.
- 14. McClume, W.F. Powder diffraction files JCPDS (Joint Committee on Powder Diffraction Standards). *In* International Centre for Diffraction Data, Swarthmore, PA. (a) 24-1164 $(t-ZrO_2)$ and (b) 13-307 $(t-ZrO_2)$.

Contributors

Ms S. Mohapatra obtained her MSc (Chemistry) from the Utkal University, Bhubaneswar. Currently, she is pursuing PhD in Materials Science at the Materials Science Centre, IIT Kharagpur. She is the recipient of Senior Research Fellowship (CSIR). Her research areas include: Synthesis and characterisation of lithium and scandiumdoped zirconia nanoceramics for applications as solid electrolytes.

Prof S. Ram obtained his PhD (Physics) from the Banaras Hindu University, Varanasi. He was Visiting Scientist at the McMaster University, Canada (1988-89), and Associate Professor at Domain University, France (1989-92). He was Alexander von Humboldt Research Fellow, Germany, 1994-96 and 2004. Presently, he is working as Professor at the IIT Kharagpur. He has published 150 research articles in refereed journals. His research interests include: Synthesis and characterisation of nanomaterials of metals, alloys, ceramics, and composites for practical applications.