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ABSTRACT

Doping of lithium (Li+) cations results in stabilised zirconia, especially in tetragonal (t)
crystal structure, i.e., Li+: t-ZrO

2
. It is useful to vary oxygen vacancies in Li+: ZrO

2 
powders. The

Li+: t-ZrO
2 

powder having 1-5 mol per cent Li+, are obtained by using a novel chemical method
of a polymer precursor, which consists of Li+ and Zr4+ cations capping in polymer molecules of
polyvinyl alcohol (PVA) and sucrose. The results are analysed in terms of XRD and microstructure
of Li+: t-ZrO

2 
powders prepared under specific conditions of heating the precursor in air at

elevated temperatures. The polymer precursor consists of fibrils of average 120  m length and
0.5–1.0  m dia. A refined Li+: t-ZrO

2 
powder (15-25 nm crystallite size) occurs after heating the

precursor at 500–600 °C for 2 h in air.
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1 . INTRODUCTION

Interest in nanocrystalline zirconia (ZrO
2
) ceramics,

of average diameter in the 2–100 nm range, has
increased during recent years, because of their
properties (e.g., sintering ability, mechanical toughness,
superplastic behaviour) are significantly different
from those in a coarse grained structure1-4. At
atmospheric pressure, pure ZrO

2 
exists in three

well known polymorphs of P2
1/c 

monoclinic (m),
P4

2/nmc 
tetragonal (t), and F m3m cubic fluorite (c)

crystal structures, where m-ZrO
2 

is the equilibrium
bulk structure at low temperatures. Efforts have
been made to obtain the high temperature phase
t-ZrO

2 
or c-ZrO

2 
in a thermodynamically stable

state at low temperatures using doping of MgO,
CaO, Y

2
O

3
, or other similar oxides2-4. Emphasis

has been given for the synthesis of such
phases either by undersized or oversized
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cationic doping using hydrothermal processes, and
sol-gel processes5-7.

In this study, synthesis of a nanoceramic
t-ZrO

2 
powder has been carried out using doping

of undersized cations such as Li+. Murata8, et al.
reported that Li+–modified ZrO

2 
offers specific

catalytic activity in oxidative coupling of methane
to give C

2
- hydrocarbon8. A forced hydrolysis (by

adding NH
4
OH) of dispersed Li+ and Zr4+ cations

via polymer molecules of polyvinyl alcohol (PVA)
and sucrose in water was used to obtain a polymer
precursor. For Li+ limited to 5.0 mol per cent, no
Zr4+–Li+ phase separation encountered during the
reaction. Otherwise, Li+ hardly dissolves in zirconium
hydroxides9. A reconstructive decomposition follows
on heating the polymer gel (dried and pulverised
into a powder) in air, forming a refined Li+: t-ZrO

2

powder at temperatures as low as 500–600 °C.
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The results are analysed in terms of XRD and
microstructure of the Li+: t-ZrO

2 
powders.

2 . EXPERIMENTAL DETAILS

Separate solutions were obtained for ZrOCl
2
.8H

2
O

in distilled water and Li
2
CO

3 
in diluted HCl each

of 1.0 M concentration. A transparent colourless
solution appeared in homogeneous mixing in two
components. A similar mixed solution was obtained
in 3.0 g/dl PVA and 30.0 g/dl sucrose in distilled
water. To form a polymer precursor, the PVA-
sucrose solution was added dropwise to the aqueous
solution in ZrOCl

2
.8H

2
O and LiCl (Li

2
CO

3 
dissolved

in HCl) at room temperature. The obtained sample
was transferred to a water-cooled bath (Julabo
model HD-4) in part to hydrolyse the metal cations
by reacting with cold NH

4
OH (25 %) at 2–5 °C

average temperature. A transparent gel occurred
of hydrolysed metal cations as Li+–doped ZrO(OH)

2
·

H
2
O. As much as 5.0 mol per cent Li+ (as per

the final Li+: ZrO
2 

product) could be incorporated
in ZrO(OH)

2
· H

2
O in a mixed hydroxyl gel

(amorphous). Requisite amounts of the reagents

used in forming a typical polymer gel (3.0 mol %
Li

2
O) are given in Table 1. It was observed that,

in the solution, the product Li+:ZrO(OH)
2
· H

2
O

continues to react with the water by polycondensation
and polymerisation processes. Average pH at this
stage had been reduced to 3.5 as we observed and
modelled in the case of a monolithic ZrO(OH)

2
·

H
2
O gel10. Washing in cold water separated byproduct

chlorides, resulting in a colorless transparent hydroxyl
gel, which was then dried at 90-100 °C over a sand
bath (Fig. 1).

The process of forming Li+:ZrO(OH)
2
· H

2
O

gel and derived Li+: t-ZrO
2 

powder is summarised
in Fig. 1. The Li+ stabilised t-ZrO

2 
occurred of

nanoparticles by reconstructive thermal decomposition
of gel after heating in air at temperatures in the
500–600 °C range. Structures of precursor gels
and of those transformed into Li+: t-ZrO

2 
were

studied in terms of XRD using Philips P.W.1710
diffractometer with filtered 0.15418 nm CuK  radiation.
Microstructures of the samples were studied by
scanning electron micrographs using a JEOL model
JSM-5800 SEM. Average Li+: t-ZrO

2 
crystallite 
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   AFTER DRYING (90-100 ºC) 

STIRRING 
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       SOLUTION 
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Figure 1. Schematic diagram for preparing a Li+-modified Zr4+ polymer precursor and derived Li+: ZrO
2 

powder.
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size (D) was calculated from fwhm-values (full
width at half-maximum values) in the diffraction
peaks using the Debye-Scherrer relation.

3 . RESULTS AND DISCUSSION

3.1 Formation of Hydroxyl Gel and Derived
Li+: t-ZrO2 Powder

Under favorable conditions of temperature and
pH, dispersed Zr4+ and Li+ cations in an aqueous
solution undergo hydrolysis reaction with the H

2
O

molecules. The reaction, especially in the presence
of NH

4
OH (having a high 12 pH value induces a

local chemical potential between the reacting species)
in cold condition, can be expressed in this example
as follows:

xLiCl + xH
2
O 

 

xLi(OH) + xHCl

(1-x)ZrOCl
2 

+ 2(1-x)H
2
O 

(1-x)ZrO(OH)
2 

+ 2(1-x)HCl

(1-x)ZrOCl
2 

+ xLiCl + (2-x)H
2
O 

Li
x
Zr

1-x
O

1-z
(OH)

2-x 
+ (2-x)HCl  (1)

At room temperature, a hydroxyl compound
formed in this reaction simultaneously encounters
a thermal-induced disintegration as follows:

Li
x
Zr

1-x
O

1-x
(OH)

2-x 

Li
x
Zr

1-x
O

2-1.5 x
+ (1-0.5x) H

2
O  (2)

At low temperature, an interbridging in
Li

x
Zr

1-x
O

1-x
(OH)

2-x 
molecules succeeds in support

of mobile H
2
O molecules in solution, forming a

polymer gel. It plays a crucial role in devising an
amorphous gel, which can be expressed as
Li

x
Zr

1-x
O

1-x
(OH)

2-x
. H

2
O. A value of 

 

= 4–5 is

Reagents   Solvent   Volume (ml) 

 
 Concentration 

 
ZrOCl2.8H2O   Water   1470   1.0 M 

Li2CO3   Dil HCl   45   1.0 M 

PVA   Water   885   3.0 g/dl 

Sucrose   Water   885   30.0 g/dl  

 
Table 1. Experimental conditions for forming a polymer

precursor of Li+ -modified Zr4+ hydroxyl gel with
PVA-sucrose in cold water

estimated from thermogravimetric analysis of a
dried sample at reduced pressure (1-5 mbar) at
room temperature.

In the gelation process, Li+ as Li(OH) gets
trapped in ZrO(OH)

2
· H

2
O, forming a Li

x
Zr

1-x
O

1-x

(OH)
2-x

. H
2
O glass gel. Notice ZrO(OH)

2
· H

2
O

is a glass gel former whereas Li(OH), which is an
ionic compound, serves as a glass modifier. Presence
of the polymer molecules of PVA-sucrose during
the hydrolysis templates ZrO(OH)

2
· H

2
O in a

polymer of extended network over their molecular
surfaces. The original sol-gel method involves alkoxides
and is expensive one7. The present method offers
a simple process of hydrolysis type for processing
a hydroxyl gel, especially involving the reactions
in aqueous medium.

In this method, Li+-modified ZrO(OH)
2
· H

2
O

molecules interbridge by means of polycondensation
or polymerisation in shape of fibrils (as evidenced
from the microstructure in Fig. 2). It is a Li+:
[ZrO(OH)

2
· H

2
O]

n 
polymer template in support

over PVA-sucrose of effectively planar surfaces.
In water, sucrose was hydrolysed to fructose and
glucose, which was ultimately oxidised to gluconic
acid11. A metal-ion complex was formed in the
reaction with Zr4+ and Li+ cations. It frames a co-
branched polymer (planar) with PVA molecules
(of otherwise linear structure), offering a multifunctional
role in templateing Zr4+ and Li+ in a metal-ion
complex over PVA-gluconic acid polymer molecules.

Another advantage of the organic polymer part
is that it serves as a dispersoid and an internal fuel
in producing Li+: t-ZrO

2 
by autocombusting

Li+:[ZrO(OH)
2
· H

2
O]

n 
templates at moderate

temperatures as low as 500-600 °C in air. Decomposition
and in-situ combustion of the precursor evolve a
plenty of heat of the combustion, which induces
reconstructive Li+: t-ZrO

2 
nucleation and growth

of limited particle sizes by reaction of small fragmented
species of precursor over these temperatures. A
high degree of gelation following the hydrolysis of
the metal cations in reaction with NH

4
OH appears

to be an important factor in this example of deriving
Li+: t-ZrO

2
 of nanoparticles at such low temperatures.

Virgin ZrO(OH)
2
· H

2
O yields m-ZrO

2 
or a mixture

A reaction batch of a 100 g sample in a typical LixZr1-xO2-1.5x
composition, with x = 0.02 or 3.0 mol per cent Li+.
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a

  
b

 

Figure 2. SEM of: (a) Li
x
Zr

1-x
O

1-x
(OH)

2-x
· H

2
O (x = 0.02) polymer precursor gel and (b) derived Li+: t-ZrO

2 
powder after heating

the precursor (dried at room temperature) at 600 °C in air.

with t-ZrO
2
5-9,12,13. Marote9, et al. reported a t-/m-

ZrO
2 

mixture by heating ZrOCl
2
. 8H

2
O or ZrCl

4

in a molten LiNO
3 

flux at 450 °C. As much Li+ as
3.4 at per cent incorporates in ZrO

2 
in this method.

It is not a very viable way for producing Li+: ZrO
2
.

Most of Li+ involved in refluxing evaporates as a
byproduct (toxic).

3.2 Microstructure and XRD

Figure 2(a) shows a typical SEM microstructure
of polymer precursor gel Li

x
Zr

1-x
O

1-x
(OH)

2-x
. H

2
O

(x = 0.02), which has been dried at room temperature.
It consists of a peculiar polymeric structure of
fibrils or thin layers of average 0.5-1.0 m dia. As
long fibrils as 120 m are present. These fibrils are
developed in directional growth and by polycondensation
of Li

x
Zr

1-x
O

1-x
(OH)

2-x
. H

2
O molecules in an

interconnected network structure (amorphous) over
PVA-sucrose polymer molecules of effectively
planar surfaces. This involves formation and
in situ polycondensation processes of dispersed
Li

x
Zr

1-x
O

1-x
(OH)

2-x
. H

2
O in the solution.

On heating, a controlled reconstructive molecular
decomposition occurs from the polymer gel of
thin fibrils, resulting in a Li+: t-ZrO

2 
powder. A

typical micrograph in Fig. 2(b) shows clusters of
Li+: t- ZrO

2 
crystallites in derived shapes (100 -

500 nm dia) of precursor of thin fibrils. As can
beseen by a close-up of the micrograph in
Fig. 2(b), the sample has Li+: t-ZrO

2 
crystallites of

rectangular bars (or prisms) of 15-25 nm average
dia, which has been correlated to fwhm-values in
the XRD peaks in the Debye-Scherer formula (D~20

nm) value. It demonstrates the sample consisting
of mostly single crystallites. The final Li+: t- ZrO

2

size and morphology vary sensitively depending on
the Li+ content and the final calcination temperature.

X-ray diffractogram in Li+:ZrO
2 

powder, after
heating the polymer precursor at 500–600 °C in air,
has a total of 19 peaks in the 20-100 ° range of
the diffraction angle 2 . A typical diffractogram
for 3.0 mol  per cent Li+: t-ZrO

2 
powder, heated

at 600 °C for 2 h, is given in Fig. 3. As marked
by the (hkl) values, all the major peaks are indexed
in terms of the lattice reflections from the P4

2/nmc

tetragonal crystal structure as in the monolithic
ZrO

2
12. No diffraction peak is visible in independent

Li
2
O, confirming the fact that most of the Li+ used

in this reaction is consumed in forming Li+–doped
t-ZrO

2
.

In Table 2, the observed values of the interplanar
spacings d

hkl 
are fairly reproduced, within a standard

deviation of ± 0.0010 nm, assuming average lattice
parameters a = 0.3615 nm and c = 0.5201 nm, with
volume V = 0.0680 nm3 and density 

 

= 6.01g/cm3.
In comparison to 

 

= 6.10 g/cm3 in monolithic
t-ZrO

2
14, a smaller -value observed in this example

is according to smaller ionic size of Li+ relative to
the Zr4+ value. As can be analysed by intensities
in the diffraction peaks, as described earlier10-12,
the sample has a small impurity ~ 5  per cent due
to incipient growth of m-ZrO

2
.

The diffractogram of the precursor gel powder
consists of three halos, as shown in the inset of
Fig. 2, at wave vectors 18.7 nm-1, 29.3 nm-1 and
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Figure 3. (a) X-ray diffractogram in Li+: t-ZrO
2
 nanopowder

after 2 h of heating a precursor {of diffractogram
in the inset (b)} at 600 °C in air.
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DIFFRACTION ANGLE 2

 

(degree) 

IN
T

E
N

S
IT

Y
 (

ar
b.

 u
ni

ts
)

dhkl (nm)  

Nanopowder  Bulk  Ip  h  k  l  

0.3636*  0.3630  08  1  1  0 

0.3160*  0.3156  18  1  1  1 

0.2956  0.2952  100  1  0  1 

0.2843*  0.2842  16  1  1  1 

0.2600  0.2593  14  0  0  2 

0.2540  0.2537  19  1  1  0 

0.1790  0.1800  44  1  1  2 

0.1810   0.1803   35   2  0   0 

0.1560   0.1557   16   1  0   3 

0.1540   0.1534   28   2  1  1 

0.1481   0.1476   11   2  0   2 

0.1305   0.1296   05   0   0  4 

0.1272   0.1268   07   2   2  0 

0.1178   0.1177   10   2   1  3 

0.1168   0.1167   09   3   0  1 

0.1547   0.1545   06   1   1  4 

0.1372   0.1369   07   3   1  0 

0.1053   0.1051   06   2   0  4 

0.1045   0.1041   10   3   1  2 

 

Table 2. Interplanar spacing (d
hkl

) and relative peak intensities
(I

p
) in XRD peaks in 3.0 mol per cent Li+: t-ZrO

2
 powder

The bulk values, with a = 0.3592 nm and c = 0.5168 nm, are
reported from literature14. *m-ZrO

2
.

which plays a crucial role in deriving Li+–doped
t-ZrO

2 
in this experiment. Otherwise, the precipitate

often decomposes to hydrated zirconia ZrO
2
· H

2
O,

which hardly crystallises into t-ZrO
2
.

4 . CONCLUSION

A novel chemical method, using hydrolysis of
dispersed Zr4+ and Li+ cations via polymer molecules
of PVA and sucrose in cold water, is developed
and explored to obtain Li+-doped t-ZrO

2
. Adding

NH
4
OH hydrolyses Zr4+ and Li+ as a hydroxyl

compound Li
x
Zr

1-x
O

1-x
(OH)

2-x
. 

 

H
2
O, which occurs

in shapes of thin fibrils in support over the PVA-
sucrose polymer molecules. A Li+: t-ZrO

2 
powder

occurs on heating the precursor at temperature as
low as 500 °C in air. The PVA-sucrose polymer
molecules offer three important functions: (i) a
solid dispersoid, (ii) a templateing agent, and (iii)
a solid fuel. The sample, having 3-5 mol per cent
Li+, consists of as small crystallites as 10-25 nm,
in shape of the tetraoids, unless heating above
600 °C. In comparison to traditional sol-gel process,
this is a rather simple method for processing of
shape-controlled ceramics such as ZrO

2 
and its

derivatives.
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