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Abstract

 This paper discusses a Unified Modelling Language (UML) based formal verification methodology for early 
error detection in the model-based software development cycle. Our approach proposes a UML-based formal 
verification process utilising functional and behavioural modelling artifacts of UML. It reinforces these artifacts with 
formal model transition and property verification. The main contribution is a UML to Labelled Transition System 
(LTS) Translator application that automatically converts UML Statecharts to formal models. Property specifications 
are derived from system requirements and corresponding Computational Tree Logic (CTL)/Linear Temporal Logic 
(LTL) model checking procedure verifies property entailment in LTS. With its ability to verify CTL and LTL 
specifications, the methodology becomes generic for verifying all types of embedded system behaviours. The steep 
learning curve associated with formal methods is avoided through the automatic formal model generation and thus 
reduces the reluctance of using formal methods in software development projects. A case study of an embedded 
controller used in military applications validates the methodology. It establishes how the methodology finds its use 
in verifying the correctness and consistency of UML models before implementation.     
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1.	 Introduction
Unified modelling language (UML) is a widely accepted 

modelling language, with versatile capabilities for visualising, 
specifying, constructing, and documenting software systems1. 
It provides artifacts that can represent structural, temporal, and 
functional views of the system under modelling. Currently, 
UML models are used for modelling all kinds of systems, 
including real time and embedded systems. In safety critical 
embedded software development, model verification and its 
validation are vital, particularly for warranting safety and 
reliability requirements during operation. UML models need 
to be verified formally before implementation, because they 
may contain unforeseen behaviour, leading to unexpected 
system states and error conditions. This has made verification 
and validation integrated development process like V-Model 
prevalent in industry. Formal methods provide effective 
verification techniques and integration of these techniques 
in early development stages increases quality and reliability, 
for lesser budgets2. This paper proposes a methodology for 
UML model verification using temporal logic (TL) property 
specifications. The technique is unique for its spontaneous 
transition from UML to formal domain and consistency across 
UML artifacts such as, Use Case diagrams and Statechart 
Diagrams. The method can fit in any Software Development 
Life Cycle (SDLC), making it practicable in real-world 
software development projects. 

UML based model driven software development is 
prevalent in the embedded system industry. These models need 
to be verified formally, before code generation to mitigate the 
risk of software errors. Many studies have been reported in 
the past, discoursing the application of model checking and 
formal techniques in UML artifacts. Majority of the tools and 
techniques discussed, revolve around the idea of translating 
various UML artifacts to an input formal specification 
language, comprehensible by a model checking tool. Johan 
and Paltor3 converts UML state machines to formal semantics 
in PROMELA and then uses SPIN for model checking. The 
vUML tool as reported by Johan and Paltor4 is also based on this 
technique. Translation of UML Statecharts to input specification 
language of SPIN model checker is detailed by Latella5,6, et al.. 
In another study by Gihwon7, he describes a technique, which 
translates UML Statecharts to input language of SMV model 
checker. In a later study by David8, Statecharts are converted to 
Timed Automata for model checking by UPPAAL. Zhang and 
Liu9 discusses a technique which translates statecharts to the 
input language of another model checker, PAT. 

Zamira10, et al. have studied the UML-VT environment 
for translating UML models to input specification language 
of SPIN, UPPAAL and NuSMV. To assess the efficacy of 
activity diagrams in behavioural modelling of requirements, 
Eshuis11 translated these diagrams for use by NuSMV model 
checker. Santos12 et al., reported the transformation of UML 
behavioural diagrams to support model checking using 
NuSMV. All these approaches rely on model transformation to Received : 16 June 2021, Revised : 04 August 2021 
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an input specification language of model checking tools like, 
SPIN, UPPAAL, NuSMV, rCOS, etc. Importantly, considering 
the past studies, this paper proposes a relatively robust process, 
integrated with formal verification, for detecting defects early 
in UML model driven SDLC.

In another recent study by Kochaleema and 
Santhoshkumar13, a UML model-based formal verification 
methodology is described, translating UML diagrams to formal 
models and thus incorporating semantics to them. Specifically, 
this approach commences with Use case modelling and 
analyses the chosen critical behaviour using UML Statecharts. 
A State Transition Matrix is derived from this, and a Translator 
application translates this matrix to Labelled Transition System 
(LTS). Formal properties are derived from performance 
specifications and are expressed as Computational Tree Logic 
(CTL) formulae. The existing CTL model checking algorithm 
verifies property entailment in the LTS generated.  The 
methodology is validated using the case study of an embedded 
controller widely used in military applications.  

Existing approaches in past literature are tightly coupled 
with the input specification language of model checking tools 
and need UML model transformation amenable by the model 
checker. This demands knowledge in formal languages and 
can only be performed by an expert. This technology gap 
is addressed by Kochaleema and Santhoshkumar13 in their 
recent study on Methodology for integrating Computational 
Tree Logic in UML artifacts.  It synergises UML models with 
formal methods through an automatic translator application and 
combines the advantages of Model-Driven Engineering with 
formal methods; and supports analysis, design, Verification 
and Validation (V&V) activities of the embedded software 
development cycle.

Embedded systems used in military applications are 
mainly developed using UML based CASE tools, and validation 
of these models is mandatory for flawless implementation and 
consequent reliable system performance13. Though integration 
of formal methods with UML is a promising technique, its 
practice in the embedded software development domain is 
minimal. Embedded system developers avoid using model 
checking tools mainly for their steep learning curve and lack 
of tool support. Automation of formal verification methods can 
increase the use of formal methods in software development, 
especially for safety-critical software applications used in 
military systems14,15. The methodology proposed in this study 
makes a greater step in solving this concern. It provides user-
friendly formal method integrated UML artifacts that can be 
used for model checking both Linear Temporal Logic (LTL) 
and CTL specifications. It conceals formal aspects in an engine, 
making it a practitioner-friendly modelling methodology.   

The LTL based approach discussed in this study extends 
the methodology for Integrating CTL Model Checking in 
UML Artifacts, with sequential behaviour model checking 
feature, enhancing the verification capability to both sequential 
and branching-time behaviour. The method proposed by 
Kochaleema and Santhoshkumar13 has three layers, viz., UML 
Layer, Interface Layer, and a Formal Verification layer. The 
Formal Verification layer caters for CTL property specification, 
followed by CTL model checking. However, sequential 

timeline system dynamics will also be there for embedded 
software systems, influencing the modelling requirements. 
Consequentially, the reasoning over linear time scale becomes 
binding, suggesting itself with the extension of this methodology 
with LTL specifications. The modelling methodology applied 
for both CTL and LTL specifications led to the conception of a 
generic model verification approach, comprehensive enough to 
capture all kinds of behaviour. 

The main contribution of our method is a UML-LTS 
(Labelled Transition System) Translator application, making 
formal method integration possible with UML artifacts. In 
addition, the proposed methodology is process-oriented. It 
commences with system requirements, progresses through 
functional and behavioural modelling, and maintains 
consistency across phases in scenario names, state labels, 
events, and associated expressions. It offers modularity while 
modelling systems with complex behaviour through the 
innate selection of critical behaviour for formal verification.  
Automation achieved in the formal model generation reduces 
the reluctance of using formal methods for verification and 
validation, escalating the application of formal methods in 
software development projects

2.	 Formal Verification Integrated 
UML Model Checking Methodology 
The workflow of the proposed methodology is shown in 

Fig. 1. It puts forward an approach to integrate UML-based 
visual abstraction models with LTS. The steps involved are 
listed below.
(i) 	 Use case modelling of scenarios, selected through 

Figure 1.  Methodology workflow.
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criticality assessment.
(ii) 	 Behavioural modelling using Statechart diagrams. 
(iii) 	UML model to formal model transformation using UML-

LTS Translator.
(iv)	 Property specification in CTL syntax for branching 

behaviour or LTL syntax for sequential behaviour.
(v)	 Formal verification using CTL or LTL model checking.

Primarily, the chosen specification is analysed using UML 
Use cases and Statecharts. From Statecharts, the modeller 
generates a Transition Matrix, enumerating source state, state 
labels, transitions and target states. A UML-LTS Translator 
application converts this matrix to LTS automatically. Now, 
modeller can make use of system performance requirements 
and derive corresponding property specifications in Temporal 
Logic (TL) syntax16,17. CTL/LTL model checker18 verifies for 
CTL/LTL property entailment in the LTS generated by UML-
LTS translator.

The approach finds its application in requirement 
modelling and analysis of safety-critical systems. The most 
critical behaviour shall be chosen from system specifications. 
As guided by the Failure Mode Effect Analysis (FMEA) of the 
system, the modeller can make this selection.

The methodology chooses the most challenging system 
behaviour whose failure can cause the most catastrophic 
consequence during operation and conducts a  lightweight 
formal abstraction i. It simplifies the process of formal 
verification by modelling selected safety-critical behaviour. 
Model verification can bring substantial benefits in proving the 
reliable operation of the system much before implementation. 
The method ensures correctness and robustness attributes 
during the requirement analysis phase itself, remarkably 
reducing the probability of failures and debugging efforts.

In the next section, a case study for demonstrating the 
feasibility of the proposed approach is illustrated.  A real-life 
system used for naval applications is considered for grander 
impact during the illustration.  

3.	 Methodology Validation using LTL 
Case Study 
The methodology mentioned above was reported13  

 recently with branching time abstraction and CTL model 
checking, stating its suitability for model checking decisive 
behaviour. The present study adds to this workflow, with 
sequential behaviour modelling and LTL model checking 
functions, making it suitable for modelling all types of embedded 
system behaviours. The addition of this feature expands its 
scope and applicability in model- driven engineering. The 
enhancements are made in property specification and formal 
verification phases. The property specification is comprehended 
using LTL, for linear time system behaviour. Therefore, formal 
verification is accomplished by LTL model checking. The UML-
LTS translator can generate the formal model, irrespective of 
branching or linear time behaviour. 

Application of this approach in modelling and verifying 
an embedded controller behaviour is delivered in the following 
subsections. The context of operation of the controller is 
given in section 3.1, followed by other subsections illustrating 
successive steps in the methodology. 

3.1 Embedded Controller - System Description
Sensor deployment controller (SDC) is an embedded 

controller used in airborne sensor processing systems. It 
controls the deployment of acoustic sensor structures in deep-
sea from an airborne platform. The context of operation of SDC 
is shown in Fig. 2. GUI provides necessary operator interface 
for SDC. Sensor is deployed underwater using Winch, mainly 
for data collection and further processing by Data Acquisition 
System onboard. Assuring safe and secure operation is very 
critical for Sensor assembly as well as aircraft. SDC monitors 
various winch sensor parameters as a safety measure. The 
speed with which the Sensor is deployed and hoisted is also 
a critical parameter, controlled by SDC. The speed values are 
generated based on progressive depth values of the immersed 
sensor structure. This particular requirement is reasoned over 
sequential timeline, setting up an LTL specification scenario. 

Figure 3. Lowering sensor structure - use cases.

Figure 2. Sensor deployment controller - context of operation.

3.2	 Methodology Workflow
The five-step workflow stated in Section 2 is firmly 

complied and discoursed in subsequent sections. 

3.2.1	 Use Case Modelling of Selected Scenario
The four use cases identified are shown in Fig. 3.
WinchMotorHandling handles all the functionalities 

involved in controlling the electric motor and its speed during 
operation. 
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WinchSensorHandling takes care of mechanical sensor 
interfacing and safety interlocking requirements.

ArraySensorDataHandling encompasses the data 
communication with on-board data acquisition system. 

AutopilotDataHandling abstracts the interface 
requirements with Flight Control System/Auto-Pilot System 
onboard aircraft.

3.2.2	 Behavioural Modelling using State Charts 
Lowering Sensor Structure has composite behaviour 

with four independent sub-behaviour branches, each with its 
own dynamic behaviour. WinchMotorHandling sub-behaviour 
is linear, whereas WinchSensorHandling sub-behaviour is 
branching in nature. 

In this case study, WinchMotorHandling is chosen as 
sample behaviour, for its linear time dynamics. The sequences 
of states and the progressive transitions of these states, 
following the submerged depth values are shown in Fig. 4. 
SDC maintains the motor speed at given values at specific 
depth of immersion. As the depths of immersion increases, the 
speed also changes, as indicated in Fig. 4.

(a) 	 Sequentially visit states in Statechart Diagram. Enter state 
visited in source state column, say S1. 

(b)	 Fill up label Arithmetic Proposition (AP) column with 
invariant conditions of this state. 

(c) 	 Enter next state S2 in target state column. Also fill up 
transition condition in transition AP column. 

(d)	 Continue generating subsequent rows of the matrix, 
repeating steps (a), (b) and (c) till all states are visited.

(ii)	 STM to LTS Translation 
In this step, the UML-LTS translator application program 

developed by authors, converts the STM to LTS. The automatic 
conversion from STM to LTS is the most inventive step in 
this approach. The UML-LTS translator (Fig. 1) scans input 
STM and generates LTS automatically; serving as an interface 
between UML and formal domains.

The output of the UML-LTS translator appears as shown 
in Fig. 5, clearly showcasing state transitions. The LTS  
generated is perceptibly a formal representation of the Statechart 
in Fig. 4. They both have same number of states, transitions, 
and labels, underscoring the smooth transition from UML to 
the formal domain.

Figure 5. LTS for WinchMotorHandling.

Figure 4. WinchMotorHandling Statechart.

3.2.3	 UML Model to Formal Model Translation
The novelty of the methodology lies in this stage. The 

visual model in UML notations is transformed to formal 
notations, comprehensible by the  model checking algorithm. 
It is a two-step process, with following micro-steps. 
(i)	 UML Statechart to State Transition Matrix (STM) 

Translation. 
(ii)	  State Transition Matrix to LTS Translation.

(i)	 UML Statechart to STM Translation 
The STM tabulates the progressive behaviour of the 

controller over time. The statechart in Fig. 4 is mapped to STM 
in Table 1, following the procedure given:

Table 1. State transition matrix

Source 
state

Label  
AP

Transition 
 AP

Target 
state

S1 CD = Depth CD < D1 S2

S2 Speed = StartSpeed CD < D2 S3

S3 Speed = LowSpeed1 CD < D3 S4

S4 Speed = LowSpeed2 CD < MaxD S5

S5 Speed = DSSpeed CD = MaxD S6

3.2.4	 Formal Property Specification
The modeller can deduce the formal property, right from 

requirement specification. In this case, the specification states 
that the embedded controller shall control the speed of electric 
motor to safe limiting values during lowering, following the 
position of the immersed sensor structure. Based on the depth 
values received, the motor speed can only be at limiting values 
or within allowable values.  The same, when expressed as a 
logical expression, will turn out to be:

MotorSpeed ≤ AllowedSpeed
This becomes the safety property that must always hold 

during lowering operation. Using LTL syntax, formalise this 
expression as given in equation (1).

Gφ:-¬φ(MotorSpeed ≤ AllowedSpeed)                         (1)
MotorSpeed ≤ AllowedSpeed is Globally TRUE.                                             

3.2.5	 Formal Verification
The objective of this phase is to verify that the formal 

model generated satisfies the above safety property during 
various runs of the system. The LTS generated from UML 
Statechart (Fig. 5) is the formal model M and equation (1) 
becomes the formal property specification φ. LTL model 
checking algorithm as defined in literature18 verifies that all 
traces of M satisfy φ. If any trace is not satisfying φ, it can be 
used as a counterexample, and the model can undergo revisions 
until there are no counterexamples.
LTL Model Checking Algorithm
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The execution sequence obtained while verifying the 
entailment of LTL property φ in model M (M |= φ) adhering 
to the LTL model Checking algorithm is given below. It shows 
that all infinite executions of M satisfy φ, and therefore, the 
model M is correct. The UML Statechart model from which 
this LTS is generated is thereby claimed to be correct. Code 
generated faithfully from this model assures reliable operation 
while exhibiting this behaviour. 

Model Execution
Step 1 - Convert M to automaton AM

WinchMotorHandling LTS in Fig. 5 is converted to 
automaton AM, with initial state S0 and final state S6 (Fig. 6). 
Step 2 - Convert negated property ¬φ to automaton 

A¬φ
The property φ given in equation (1) is negated and 

corresponding automaton A¬φ is shown in Fig. 7. When the 
depth values received are less than MaxD, it remains in q1 
and on the reception of MaxD depth value, it goes to q2. In 
negated property automaton, the non-final state of the original 
automaton becomes the final state, and therefore, q1 is marked 
as the final state. 

Step 3 - Compute product of AM and A ¬φ 
Pair states t of AM and A of A ¬φ together iff the set of 

propositions P (φ in this case), true in t is exactly (AM ∩ P).

The product automaton obtained by taking cross product 
of AM in Fig. 6 and A¬φ in Fig. 7 is drawn in Fig. 8. 

AM             = {S0, S1, S2, S3, S4, S5, S6}                         (2)
A¬φ            = {q1, q2} 	    	                        (3)
AM X A¬φ = {S0q1, S1q1, S2q1, S3q1, S4q1,S5q1}            (4)
These are the states in AM X A ¬φ where φ is true and is 

exactly AM ∩ P.

Step 4 - Look for an accepting path in the product. If 
such a path exists, there is a counterexample 
to the claim that M satisfies the property φ.

Equation (4) shows that there are no accepting paths in 
the set obtained by taking AM X A ¬φ and hence it is stated 
that model M in Fig. 5 satisfies the property given in equation 
(1). The above illustration leads to the following conclusion. 
Based on the depth parameter, the controller always maintains 
the motor speed at limiting values during lowering operation.     

Step 5 - If no such path exists, then M satisfies φ
Obeying step 4, there are no counterexamples in this 

case, and therefore the formal model M in Fig. 5 satisfies the 
property φ in Eqn (1). 

Figure 8.  AM x A ¬φ.

Figure 7. Negated property automaton, A ¬φ.

Figure 6. Automaton AM.

Model Checking Result
According to Step 4 of the algorithm, no counterexample 

exists for the claim, since there are no accepting paths in 
the product automata (Equation (4). M satisfies the property 
φ and therefore Step 5 is fully complied. Hence, the formal 
model of WinchMotorHandling behaviour satisfies the 
safety property, MotorSpeed <= AllowedSpeed in all its 
infinite executions. This proves that the source behavioural 
specification, abstracted in UML Statechart, satisfies the  
above property.
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Inference: Formal Model M entails φ, and hance the 
source UML model satisfies φ.

This step completes the case study and validates the 
methodology for modelling and verifying LTL behaviour. To 
demonstrate and confirm the generic nature of the methodology, 
the same procedure is applied in CTL model checking, and 
appropriate steps alone from the methodology is illustrated in 
Section 4 and sub-sections.

4.	T emporal Logic Model Checking
The linear time behaviour modelling and case study 

discussed above are part of the study towards generalising 
the proposed methodology, primarily for promoting its use in 
software projects. The sequential modelling add-ons, along 
with branching time behaviour modelling, offers a unified  
UML-based model checking solution suitable for all types of 
embedded system behaviours. It has a generic UML-formal 
model Translator, CTL, LTL property specification and 
model checking, together in one package. It can exhaustively 
explore all possible system behaviours, distinctly different 
from test scenario simulation and testing, wherein only 
some of the possible behaviours can be analysed. Embedded 
systems do exhibit branching time and linear time behaviours 
during operation, and formal verification of LTL and CTL 
property specifications in one common methodology is very 
advantageous, especially from a usability perspective. To 
establish the generic nature of the methodology, a concise 
description of CTL behaviour specification and model checking 
using the proposed methodology is given below. 

4.1	 Behavioural Modelling using UML Statechart 
Diagram
The Lowering Sensor operation embodies a composite 

behaviour with sequential and branching-time behaviour, as 
discussed in section 3.2.2. The branching time sub-behaviour, 
WinchSensorHandling, is chosen as demonstrator Statechart, 
with branching- time behaviour. The exact sequence of states 
and transitions taking place upon reception of various events are 
shown in Fig. 9. There are three inputs, In1, In2 and MSwitch. 
A status parameter is set if In1 values are within the expected 
range; otherwise, it goes to an error state. Similar is the case for 
the In2 sensor also. The ON status of MSwitch also leads to the 
error state. . If all three sequences are behaving normal, it goes 
to compute speed state, S7. 

4.2 Formal Model Generation 
The UML to formal model translation is achieved through 

the same steps, as described in section 3.2.3. The LTS generated 
using UML-LTS translator program is shown in Fig. 10. 

4.3	 Formal Property Specification
The decisive nature of the model led to CTL property 

specification and for demonstration, only one safety property 
is considered here. 

SafetyProperty1 (ɸ1)
According to system safety specifications, if I1 sensor 

value goes beyond permissible limits (I1 >Angle), lowering 
shall be suspended and Error is indicated to Operator. This 

requirement is translated into CTL formula, given in (5).  
ɸ1 = AG ((I1 >Angle) → AF (STOP˄ERROR))             (5)                                   

4.4	 Formal Verification
Formal verification is carried out using CTL model 

checking algorithm18. This algorithm checks that the initial 
states of M during model executions, satisfy the CTL formula 
ɸ, (M |= ɸ). The LTS generated from UML Statechart (Fig. 9) 
is the formal model M and equation (5) becomes the formal 
property specification ɸ.

Model-checking Algorithm
(i)	 Construct the denotation of ɸ where the formula holds: 

	 [ɸ] :={s ∈  S:M,s|= ɸ}
(Denotation [ɸ] is the set of states where ɸ holds)

(ii)	 Then compare with the set of initial states:

Figure 9. WinchSensorHandling – Statechart.

Figure 10. WinchSensorHandling – LTS.
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	 I ⊆  [ɸ]?
To compute[ɸ]:
Proceed “bottom-up” on the formula structure, computing 

[ɸi] for each sub formula ɸi.

Model Execution
Starting from posterior of ɸ1 in Eqn. (5), progressively 

derive subformulae and generate [ɸi], the set of states in M, 
where each subformula holds. Denotation [ɸi] generated in this 
case is enumerated in model execution sequence shown. The 
execution stops when the subformula grows to ɸ1. 

The first subformula (STOP ˄ ERROR) holds in state S2. 
(i)	 (STOP ˄ ERROR)];                                           [S2] 
(ii)	 [AF (STOP ˄ ERROR)]                                     [S0, S2] 
(iii)	 [(I1 > Angle)]                                                     [S0, S2]
(iv)	 [(I1>Angle) → AF(STOP˄ERROR)]                 [S0, S2]  
(v)	 [AG ((I1>Angle)→AF(STOP ˄ ERROR))]        [S0, S2]

Model Checking Result
Denotation [ɸ5] = [S0, S2]
Initial state S0 is a subset of [ɸ5] and satisfies step 2 of the 

CTL model checking algorithm. Therefore, model M in Fig. 10 
satisfies safety property ɸ1 given in equation (5).

Inference: Formal Model M entails φ1 and hence the 
source UML model satisfies φ1.

5.	R esults and Discussion
The present study led to the invention of a formal method 

integrated visual modelling and verification methodology for 
embedded software development. It can exhaustively explore 
all possible behaviour of the system under all input conditions 
and lead to verified and validated system specifications well 
before implementation. This ensures reliable and fail-safe 
systems during operation. The methodology complies well 
with the V-model development process. 

The characteristic features of the methodology are:
-	 A generic approach capable of modelling and verifying 

sequential and branching behaviours.
-	 Refine requirements formally and integrate this formal 

specification with UML.
-	 Verifies and validates performance requirements in the 

Requirement Analysis phase itself.
-	 Explores all system behaviours exhaustively, ensuing 

robust design.
-	 Generates formal model automatically, promoting the use 

of formal methods in SDLC.
-	 Gels smoothly with the model-driven development 

process.
-	 Maintains consistency across the modelling phases.
-	 Enables modular approach while dealing with complex 

embedded system behaviour. 
In general, model checking poses a state explosion 

problem if the system under modelling has many input variables 
or includes many components with numerous behaviours in 
parallel. But the methodology discussed here begins with the 
behavioural abstraction of the most critical system behaviour, 
and the selection is made based on Failure Mode Effect Analysis 
(FMEA) results of the system. The methodology chooses the 

most challenging system behaviour whose failure can cause 
catastrophic consequences during operation and performs 
a  lightweight formal abstraction. It simplifies the process 
of formal verification by modelling selected safety-critical 
behaviour, for which model verification can fetch substantial 
benefits in proving reliable system operation well ahead of 
implementation. Overall, the study offers an absolutely feasible 
formal verification integrated visual modelling methodology 
for embedded system development.

6.	C onclusion 
In this study, the two case studies discoursed underscore 

the suitability of the approach in modelling and verification 
of embedded software, irrespective of the temporal nature of 
modelling requirements, sequential or branching time. Formal 
modelling, along with CTL, LTL property verification, are 
inherent in the methodology through the procedure. This 
characteristic feature makes it a unified Temporal Logic-
based methodology, which is practicable in the model-driven 
development process.  The conclusions drawn from the present 
study are given:
•	 The study presents a new methodology, with hands-on 

application of formal methods in the UML model-driven 
software development process. It is achieved through 
automation. We developed a UML-LTS Translator 
application that automatically generates Transition 
Systems from UML Statecharts.  The modeller can verify 
his/her models before coding, residing in the UML domain 
itself, because the application accepts UML Statecharts 
and State Transition Matrix as inputs.   

•	 Formal verification of performance requirements is an 
integral part of the methodology, making it suitable 
for property validation in the safety-critical system 
development cycle. Besides, the generic nature of 
methodology, addressing sequential and branching property 
specifications, increases the scope of its application in a 
broader range of systems. Thus, our methodology has 
great potential for use in quality concerned software 
engineering and model-based software development 
process. This study, along with the analysis results, finds 
widespread applications and can readily be applied for 
verification and validation of performance requirements 
of safety-critical software in the requirement analysis 
phase itself.

7.	 Future Work 
The lightweight formalism integrated formal verification 

methodology can be proved to be thorough once it is 
implemented to the full appreciation of the targeted audience. It 
is intended to be used by the embedded software development 
community.  To make things easier and promote the use of 
formal methods in software development projects, we are 
working on the complete automation of this methodology. We 
have already developed a UML-LTS Translator, which can 
interpret UML Statecharts and generate Transition Systems 
automatically. A GUI for this Translator and automation of 
model checking procedure and TL property specification will 
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lead to a generic tool that can formally verify UML models. It 
will execute with UML as a rear engine and be accessible to the 
modeller through GUI. Customised menus and toolbar options 
will be designed and included in UML GUI for this purpose.   
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