
40

Generic Methodology for Formal Verification of UML Models

K.H. Kochaleema#,* and G. Santhosh Kumar#

#Department of Computer Science, Cochin University of Science and Technology, Kochi - 682 022, India
*DRDO-Naval Physical and Oceanographic Laboratory, Kochi - 682 021, India

*E-mail: kochaleema@npol.drdo.in

Abstract

 This paper discusses a Unified Modelling Language (UML) based formal verification methodology for early
error detection in the model-based software development cycle. Our approach proposes a UML-based formal
verification process utilising functional and behavioural modelling artifacts of UML. It reinforces these artifacts with
formal model transition and property verification. The main contribution is a UML to Labelled Transition System
(LTS) Translator application that automatically converts UML Statecharts to formal models. Property specifications
are derived from system requirements and corresponding Computational Tree Logic (CTL)/Linear Temporal Logic
(LTL) model checking procedure verifies property entailment in LTS. With its ability to verify CTL and LTL
specifications, the methodology becomes generic for verifying all types of embedded system behaviours. The steep
learning curve associated with formal methods is avoided through the automatic formal model generation and thus
reduces the reluctance of using formal methods in software development projects. A case study of an embedded
controller used in military applications validates the methodology. It establishes how the methodology finds its use
in verifying the correctness and consistency of UML models before implementation.

Keywords:	Formal verification; Computational tree logic; Linear temporal logic; Property specification, State chart
diagram; UML modelling

Defence Science Journal, Vol. 72, No. 1, January 2022, pp. 40-48, DOI : 10.14429/dsj.72.17228
© 2022, DESIDOC

1.	 Introduction
Unified modelling language (UML) is a widely accepted

modelling language, with versatile capabilities for visualising,
specifying, constructing, and documenting software systems1.
It provides artifacts that can represent structural, temporal, and
functional views of the system under modelling. Currently,
UML models are used for modelling all kinds of systems,
including real time and embedded systems. In safety critical
embedded software development, model verification and its
validation are vital, particularly for warranting safety and
reliability requirements during operation. UML models need
to be verified formally before implementation, because they
may contain unforeseen behaviour, leading to unexpected
system states and error conditions. This has made verification
and validation integrated development process like V-Model
prevalent in industry. Formal methods provide effective
verification techniques and integration of these techniques
in early development stages increases quality and reliability,
for lesser budgets2. This paper proposes a methodology for
UML model verification using temporal logic (TL) property
specifications. The technique is unique for its spontaneous
transition from UML to formal domain and consistency across
UML artifacts such as, Use Case diagrams and Statechart
Diagrams. The method can fit in any Software Development
Life Cycle (SDLC), making it practicable in real-world
software development projects.

UML based model driven software development is
prevalent in the embedded system industry. These models need
to be verified formally, before code generation to mitigate the
risk of software errors. Many studies have been reported in
the past, discoursing the application of model checking and
formal techniques in UML artifacts. Majority of the tools and
techniques discussed, revolve around the idea of translating
various UML artifacts to an input formal specification
language, comprehensible by a model checking tool. Johan
and Paltor3 converts UML state machines to formal semantics
in PROMELA and then uses SPIN for model checking. The
vUML tool as reported by Johan and Paltor4 is also based on this
technique. Translation of UML Statecharts to input specification
language of SPIN model checker is detailed by Latella5,6, et al..
In another study by Gihwon7, he describes a technique, which
translates UML Statecharts to input language of SMV model
checker. In a later study by David8, Statecharts are converted to
Timed Automata for model checking by UPPAAL. Zhang and
Liu9 discusses a technique which translates statecharts to the
input language of another model checker, PAT.

Zamira10, et al. have studied the UML-VT environment
for translating UML models to input specification language
of SPIN, UPPAAL and NuSMV. To assess the efficacy of
activity diagrams in behavioural modelling of requirements,
Eshuis11 translated these diagrams for use by NuSMV model
checker. Santos12 et al., reported the transformation of UML
behavioural diagrams to support model checking using
NuSMV. All these approaches rely on model transformation to Received : 16 June 2021, Revised : 04 August 2021

Accepted : 18 November 2021, Online published : 05 January 2022

Kochaleema & Santhoshkumar : Generic Methodology for Formal Verification of UML Models

41

an input specification language of model checking tools like,
SPIN, UPPAAL, NuSMV, rCOS, etc. Importantly, considering
the past studies, this paper proposes a relatively robust process,
integrated with formal verification, for detecting defects early
in UML model driven SDLC.

In another recent study by Kochaleema and
Santhoshkumar13, a UML model-based formal verification
methodology is described, translating UML diagrams to formal
models and thus incorporating semantics to them. Specifically,
this approach commences with Use case modelling and
analyses the chosen critical behaviour using UML Statecharts.
A State Transition Matrix is derived from this, and a Translator
application translates this matrix to Labelled Transition System
(LTS). Formal properties are derived from performance
specifications and are expressed as Computational Tree Logic
(CTL) formulae. The existing CTL model checking algorithm
verifies property entailment in the LTS generated. The
methodology is validated using the case study of an embedded
controller widely used in military applications.

Existing approaches in past literature are tightly coupled
with the input specification language of model checking tools
and need UML model transformation amenable by the model
checker. This demands knowledge in formal languages and
can only be performed by an expert. This technology gap
is addressed by Kochaleema and Santhoshkumar13 in their
recent study on Methodology for integrating Computational
Tree Logic in UML artifacts. It synergises UML models with
formal methods through an automatic translator application and
combines the advantages of Model-Driven Engineering with
formal methods; and supports analysis, design, Verification
and Validation (V&V) activities of the embedded software
development cycle.

Embedded systems used in military applications are
mainly developed using UML based CASE tools, and validation
of these models is mandatory for flawless implementation and
consequent reliable system performance13. Though integration
of formal methods with UML is a promising technique, its
practice in the embedded software development domain is
minimal. Embedded system developers avoid using model
checking tools mainly for their steep learning curve and lack
of tool support. Automation of formal verification methods can
increase the use of formal methods in software development,
especially for safety-critical software applications used in
military systems14,15. The methodology proposed in this study
makes a greater step in solving this concern. It provides user-
friendly formal method integrated UML artifacts that can be
used for model checking both Linear Temporal Logic (LTL)
and CTL specifications. It conceals formal aspects in an engine,
making it a practitioner-friendly modelling methodology.

The LTL based approach discussed in this study extends
the methodology for Integrating CTL Model Checking in
UML Artifacts, with sequential behaviour model checking
feature, enhancing the verification capability to both sequential
and branching-time behaviour. The method proposed by
Kochaleema and Santhoshkumar13 has three layers, viz., UML
Layer, Interface Layer, and a Formal Verification layer. The
Formal Verification layer caters for CTL property specification,
followed by CTL model checking. However, sequential

timeline system dynamics will also be there for embedded
software systems, influencing the modelling requirements.
Consequentially, the reasoning over linear time scale becomes
binding, suggesting itself with the extension of this methodology
with LTL specifications. The modelling methodology applied
for both CTL and LTL specifications led to the conception of a
generic model verification approach, comprehensive enough to
capture all kinds of behaviour.

The main contribution of our method is a UML-LTS
(Labelled Transition System) Translator application, making
formal method integration possible with UML artifacts. In
addition, the proposed methodology is process-oriented. It
commences with system requirements, progresses through
functional and behavioural modelling, and maintains
consistency across phases in scenario names, state labels,
events, and associated expressions. It offers modularity while
modelling systems with complex behaviour through the
innate selection of critical behaviour for formal verification.
Automation achieved in the formal model generation reduces
the reluctance of using formal methods for verification and
validation, escalating the application of formal methods in
software development projects

2.	 Formal Verification Integrated
UML Model Checking Methodology
The workflow of the proposed methodology is shown in

Fig. 1. It puts forward an approach to integrate UML-based
visual abstraction models with LTS. The steps involved are
listed below.
(i) 	 Use case modelling of scenarios, selected through

Figure 1. Methodology workflow.

Def. SCI. J., Vol. 72, No. 1, January 2022

42

criticality assessment.
(ii) 	 Behavioural modelling using Statechart diagrams.
(iii) 	UML model to formal model transformation using UML-

LTS Translator.
(iv)	 Property specification in CTL syntax for branching

behaviour or LTL syntax for sequential behaviour.
(v)	 Formal verification using CTL or LTL model checking.

Primarily, the chosen specification is analysed using UML
Use cases and Statecharts. From Statecharts, the modeller
generates a Transition Matrix, enumerating source state, state
labels, transitions and target states. A UML-LTS Translator
application converts this matrix to LTS automatically. Now,
modeller can make use of system performance requirements
and derive corresponding property specifications in Temporal
Logic (TL) syntax16,17. CTL/LTL model checker18 verifies for
CTL/LTL property entailment in the LTS generated by UML-
LTS translator.

The approach finds its application in requirement
modelling and analysis of safety-critical systems. The most
critical behaviour shall be chosen from system specifications.
As guided by the Failure Mode Effect Analysis (FMEA) of the
system, the modeller can make this selection.

The methodology chooses the most challenging system
behaviour whose failure can cause the most catastrophic
consequence during operation and conducts a lightweight
formal abstraction i. It simplifies the process of formal
verification by modelling selected safety-critical behaviour.
Model verification can bring substantial benefits in proving the
reliable operation of the system much before implementation.
The method ensures correctness and robustness attributes
during the requirement analysis phase itself, remarkably
reducing the probability of failures and debugging efforts.

In the next section, a case study for demonstrating the
feasibility of the proposed approach is illustrated. A real-life
system used for naval applications is considered for grander
impact during the illustration.

3.	 Methodology Validation using LTL
Case Study
The methodology mentioned above was reported13

 recently with branching time abstraction and CTL model
checking, stating its suitability for model checking decisive
behaviour. The present study adds to this workflow, with
sequential behaviour modelling and LTL model checking
functions, making it suitable for modelling all types of embedded
system behaviours. The addition of this feature expands its
scope and applicability in model- driven engineering. The
enhancements are made in property specification and formal
verification phases. The property specification is comprehended
using LTL, for linear time system behaviour. Therefore, formal
verification is accomplished by LTL model checking. The UML-
LTS translator can generate the formal model, irrespective of
branching or linear time behaviour.

Application of this approach in modelling and verifying
an embedded controller behaviour is delivered in the following
subsections. The context of operation of the controller is
given in section 3.1, followed by other subsections illustrating
successive steps in the methodology.

3.1 Embedded Controller - System Description
Sensor deployment controller (SDC) is an embedded

controller used in airborne sensor processing systems. It
controls the deployment of acoustic sensor structures in deep-
sea from an airborne platform. The context of operation of SDC
is shown in Fig. 2. GUI provides necessary operator interface
for SDC. Sensor is deployed underwater using Winch, mainly
for data collection and further processing by Data Acquisition
System onboard. Assuring safe and secure operation is very
critical for Sensor assembly as well as aircraft. SDC monitors
various winch sensor parameters as a safety measure. The
speed with which the Sensor is deployed and hoisted is also
a critical parameter, controlled by SDC. The speed values are
generated based on progressive depth values of the immersed
sensor structure. This particular requirement is reasoned over
sequential timeline, setting up an LTL specification scenario.

Figure 3. Lowering sensor structure - use cases.

Figure 2. Sensor deployment controller - context of operation.

3.2	 Methodology Workflow
The five-step workflow stated in Section 2 is firmly

complied and discoursed in subsequent sections.

3.2.1	 Use Case Modelling of Selected Scenario
The four use cases identified are shown in Fig. 3.
WinchMotorHandling handles all the functionalities

involved in controlling the electric motor and its speed during
operation.

Kochaleema & Santhoshkumar : Generic Methodology for Formal Verification of UML Models

43

WinchSensorHandling takes care of mechanical sensor
interfacing and safety interlocking requirements.

ArraySensorDataHandling encompasses the data
communication with on-board data acquisition system.

AutopilotDataHandling abstracts the interface
requirements with Flight Control System/Auto-Pilot System
onboard aircraft.

3.2.2	 Behavioural Modelling using State Charts
Lowering Sensor Structure has composite behaviour

with four independent sub-behaviour branches, each with its
own dynamic behaviour. WinchMotorHandling sub-behaviour
is linear, whereas WinchSensorHandling sub-behaviour is
branching in nature.

In this case study, WinchMotorHandling is chosen as
sample behaviour, for its linear time dynamics. The sequences
of states and the progressive transitions of these states,
following the submerged depth values are shown in Fig. 4.
SDC maintains the motor speed at given values at specific
depth of immersion. As the depths of immersion increases, the
speed also changes, as indicated in Fig. 4.

(a) 	 Sequentially visit states in Statechart Diagram. Enter state
visited in source state column, say S1.

(b)	 Fill up label Arithmetic Proposition (AP) column with
invariant conditions of this state.

(c) 	 Enter next state S2 in target state column. Also fill up
transition condition in transition AP column.

(d)	 Continue generating subsequent rows of the matrix,
repeating steps (a), (b) and (c) till all states are visited.

(ii)	 STM to LTS Translation
In this step, the UML-LTS translator application program

developed by authors, converts the STM to LTS. The automatic
conversion from STM to LTS is the most inventive step in
this approach. The UML-LTS translator (Fig. 1) scans input
STM and generates LTS automatically; serving as an interface
between UML and formal domains.

The output of the UML-LTS translator appears as shown
in Fig. 5, clearly showcasing state transitions. The LTS
generated is perceptibly a formal representation of the Statechart
in Fig. 4. They both have same number of states, transitions,
and labels, underscoring the smooth transition from UML to
the formal domain.

Figure 5. LTS for WinchMotorHandling.

Figure 4. WinchMotorHandling Statechart.

3.2.3	 UML Model to Formal Model Translation
The novelty of the methodology lies in this stage. The

visual model in UML notations is transformed to formal
notations, comprehensible by the model checking algorithm.
It is a two-step process, with following micro-steps.
(i)	 UML Statechart to State Transition Matrix (STM)

Translation.
(ii)	 State Transition Matrix to LTS Translation.

(i)	 UML Statechart to STM Translation
The STM tabulates the progressive behaviour of the

controller over time. The statechart in Fig. 4 is mapped to STM
in Table 1, following the procedure given:

Table 1. State transition matrix

Source
state

Label
AP

Transition
 AP

Target
state

S1 CD = Depth CD < D1 S2

S2 Speed = StartSpeed CD < D2 S3

S3 Speed = LowSpeed1 CD < D3 S4

S4 Speed = LowSpeed2 CD < MaxD S5

S5 Speed = DSSpeed CD = MaxD S6

3.2.4	 Formal Property Specification
The modeller can deduce the formal property, right from

requirement specification. In this case, the specification states
that the embedded controller shall control the speed of electric
motor to safe limiting values during lowering, following the
position of the immersed sensor structure. Based on the depth
values received, the motor speed can only be at limiting values
or within allowable values. The same, when expressed as a
logical expression, will turn out to be:

MotorSpeed ≤ AllowedSpeed
This becomes the safety property that must always hold

during lowering operation. Using LTL syntax, formalise this
expression as given in equation (1).

Gφ:-¬φ(MotorSpeed ≤ AllowedSpeed) (1)
MotorSpeed ≤ AllowedSpeed is Globally TRUE.

3.2.5	 Formal Verification
The objective of this phase is to verify that the formal

model generated satisfies the above safety property during
various runs of the system. The LTS generated from UML
Statechart (Fig. 5) is the formal model M and equation (1)
becomes the formal property specification φ. LTL model
checking algorithm as defined in literature18 verifies that all
traces of M satisfy φ. If any trace is not satisfying φ, it can be
used as a counterexample, and the model can undergo revisions
until there are no counterexamples.
LTL Model Checking Algorithm

Def. SCI. J., Vol. 72, No. 1, January 2022

44

The execution sequence obtained while verifying the
entailment of LTL property φ in model M (M |= φ) adhering
to the LTL model Checking algorithm is given below. It shows
that all infinite executions of M satisfy φ, and therefore, the
model M is correct. The UML Statechart model from which
this LTS is generated is thereby claimed to be correct. Code
generated faithfully from this model assures reliable operation
while exhibiting this behaviour.

Model Execution
Step 1 - Convert M to automaton AM

WinchMotorHandling LTS in Fig. 5 is converted to
automaton AM, with initial state S0 and final state S6 (Fig. 6).
Step 2 - Convert negated property ¬φ to automaton

A¬φ
The property φ given in equation (1) is negated and

corresponding automaton A¬φ is shown in Fig. 7. When the
depth values received are less than MaxD, it remains in q1
and on the reception of MaxD depth value, it goes to q2. In
negated property automaton, the non-final state of the original
automaton becomes the final state, and therefore, q1 is marked
as the final state.

Step 3 - Compute product of AM and A ¬φ
Pair states t of AM and A of A ¬φ together iff the set of

propositions P (φ in this case), true in t is exactly (AM ∩ P).

The product automaton obtained by taking cross product
of AM in Fig. 6 and A¬φ in Fig. 7 is drawn in Fig. 8.

AM = {S0, S1, S2, S3, S4, S5, S6} (2)
A¬φ = {q1, q2} 	 	 (3)
AM X A¬φ = {S0q1, S1q1, S2q1, S3q1, S4q1,S5q1} (4)
These are the states in AM X A ¬φ where φ is true and is

exactly AM ∩ P.

Step 4 - Look for an accepting path in the product. If
such a path exists, there is a counterexample
to the claim that M satisfies the property φ.

Equation (4) shows that there are no accepting paths in
the set obtained by taking AM X A ¬φ and hence it is stated
that model M in Fig. 5 satisfies the property given in equation
(1). The above illustration leads to the following conclusion.
Based on the depth parameter, the controller always maintains
the motor speed at limiting values during lowering operation.

Step 5 - If no such path exists, then M satisfies φ
Obeying step 4, there are no counterexamples in this

case, and therefore the formal model M in Fig. 5 satisfies the
property φ in Eqn (1).

Figure 8. AM x A ¬φ.

Figure 7. Negated property automaton, A ¬φ.

Figure 6. Automaton AM.

Model Checking Result
According to Step 4 of the algorithm, no counterexample

exists for the claim, since there are no accepting paths in
the product automata (Equation (4). M satisfies the property
φ and therefore Step 5 is fully complied. Hence, the formal
model of WinchMotorHandling behaviour satisfies the
safety property, MotorSpeed <= AllowedSpeed in all its
infinite executions. This proves that the source behavioural
specification, abstracted in UML Statechart, satisfies the
above property.

Kochaleema & Santhoshkumar : Generic Methodology for Formal Verification of UML Models

45

Inference: Formal Model M entails φ, and hance the
source UML model satisfies φ.

This step completes the case study and validates the
methodology for modelling and verifying LTL behaviour. To
demonstrate and confirm the generic nature of the methodology,
the same procedure is applied in CTL model checking, and
appropriate steps alone from the methodology is illustrated in
Section 4 and sub-sections.

4.	T emporal Logic Model Checking
The linear time behaviour modelling and case study

discussed above are part of the study towards generalising
the proposed methodology, primarily for promoting its use in
software projects. The sequential modelling add-ons, along
with branching time behaviour modelling, offers a unified
UML-based model checking solution suitable for all types of
embedded system behaviours. It has a generic UML-formal
model Translator, CTL, LTL property specification and
model checking, together in one package. It can exhaustively
explore all possible system behaviours, distinctly different
from test scenario simulation and testing, wherein only
some of the possible behaviours can be analysed. Embedded
systems do exhibit branching time and linear time behaviours
during operation, and formal verification of LTL and CTL
property specifications in one common methodology is very
advantageous, especially from a usability perspective. To
establish the generic nature of the methodology, a concise
description of CTL behaviour specification and model checking
using the proposed methodology is given below.

4.1	 Behavioural Modelling using UML Statechart
Diagram
The Lowering Sensor operation embodies a composite

behaviour with sequential and branching-time behaviour, as
discussed in section 3.2.2. The branching time sub-behaviour,
WinchSensorHandling, is chosen as demonstrator Statechart,
with branching- time behaviour. The exact sequence of states
and transitions taking place upon reception of various events are
shown in Fig. 9. There are three inputs, In1, In2 and MSwitch.
A status parameter is set if In1 values are within the expected
range; otherwise, it goes to an error state. Similar is the case for
the In2 sensor also. The ON status of MSwitch also leads to the
error state. . If all three sequences are behaving normal, it goes
to compute speed state, S7.

4.2 Formal Model Generation
The UML to formal model translation is achieved through

the same steps, as described in section 3.2.3. The LTS generated
using UML-LTS translator program is shown in Fig. 10.

4.3	 Formal Property Specification
The decisive nature of the model led to CTL property

specification and for demonstration, only one safety property
is considered here.

SafetyProperty1 (ɸ1)
According to system safety specifications, if I1 sensor

value goes beyond permissible limits (I1 >Angle), lowering
shall be suspended and Error is indicated to Operator. This

requirement is translated into CTL formula, given in (5).
ɸ1 = AG ((I1 >Angle) → AF (STOP˄ERROR)) (5)

4.4	 Formal Verification
Formal verification is carried out using CTL model

checking algorithm18. This algorithm checks that the initial
states of M during model executions, satisfy the CTL formula
ɸ, (M |= ɸ). The LTS generated from UML Statechart (Fig. 9)
is the formal model M and equation (5) becomes the formal
property specification ɸ.

Model-checking Algorithm
(i)	 Construct the denotation of ɸ where the formula holds:

	 [ɸ] :={s ∈ S:M,s|= ɸ}
(Denotation [ɸ] is the set of states where ɸ holds)

(ii)	 Then compare with the set of initial states:

Figure 9. WinchSensorHandling – Statechart.

Figure 10. WinchSensorHandling – LTS.

Def. SCI. J., Vol. 72, No. 1, January 2022

46

	 I ⊆ [ɸ]?
To compute[ɸ]:
Proceed “bottom-up” on the formula structure, computing

[ɸi] for each sub formula ɸi.

Model Execution
Starting from posterior of ɸ1 in Eqn. (5), progressively

derive subformulae and generate [ɸi], the set of states in M,
where each subformula holds. Denotation [ɸi] generated in this
case is enumerated in model execution sequence shown. The
execution stops when the subformula grows to ɸ1.

The first subformula (STOP ˄ ERROR) holds in state S2.
(i)	 (STOP ˄ ERROR)]; [S2]
(ii)	 [AF (STOP ˄ ERROR)] [S0, S2]
(iii)	 [(I1 > Angle)] [S0, S2]
(iv)	 [(I1>Angle) → AF(STOP˄ERROR)] [S0, S2]
(v)	 [AG ((I1>Angle)→AF(STOP ˄ ERROR))] [S0, S2]

Model Checking Result
Denotation [ɸ5] = [S0, S2]
Initial state S0 is a subset of [ɸ5] and satisfies step 2 of the

CTL model checking algorithm. Therefore, model M in Fig. 10
satisfies safety property ɸ1 given in equation (5).

Inference: Formal Model M entails φ1 and hence the
source UML model satisfies φ1.

5.	R esults and Discussion
The present study led to the invention of a formal method

integrated visual modelling and verification methodology for
embedded software development. It can exhaustively explore
all possible behaviour of the system under all input conditions
and lead to verified and validated system specifications well
before implementation. This ensures reliable and fail-safe
systems during operation. The methodology complies well
with the V-model development process.

The characteristic features of the methodology are:
-	 A generic approach capable of modelling and verifying

sequential and branching behaviours.
-	 Refine requirements formally and integrate this formal

specification with UML.
-	 Verifies and validates performance requirements in the

Requirement Analysis phase itself.
-	 Explores all system behaviours exhaustively, ensuing

robust design.
-	 Generates formal model automatically, promoting the use

of formal methods in SDLC.
-	 Gels smoothly with the model-driven development

process.
-	 Maintains consistency across the modelling phases.
-	 Enables modular approach while dealing with complex

embedded system behaviour.
In general, model checking poses a state explosion

problem if the system under modelling has many input variables
or includes many components with numerous behaviours in
parallel. But the methodology discussed here begins with the
behavioural abstraction of the most critical system behaviour,
and the selection is made based on Failure Mode Effect Analysis
(FMEA) results of the system. The methodology chooses the

most challenging system behaviour whose failure can cause
catastrophic consequences during operation and performs
a lightweight formal abstraction. It simplifies the process
of formal verification by modelling selected safety-critical
behaviour, for which model verification can fetch substantial
benefits in proving reliable system operation well ahead of
implementation. Overall, the study offers an absolutely feasible
formal verification integrated visual modelling methodology
for embedded system development.

6.	C onclusion
In this study, the two case studies discoursed underscore

the suitability of the approach in modelling and verification
of embedded software, irrespective of the temporal nature of
modelling requirements, sequential or branching time. Formal
modelling, along with CTL, LTL property verification, are
inherent in the methodology through the procedure. This
characteristic feature makes it a unified Temporal Logic-
based methodology, which is practicable in the model-driven
development process. The conclusions drawn from the present
study are given:
•	 The study presents a new methodology, with hands-on

application of formal methods in the UML model-driven
software development process. It is achieved through
automation. We developed a UML-LTS Translator
application that automatically generates Transition
Systems from UML Statecharts. The modeller can verify
his/her models before coding, residing in the UML domain
itself, because the application accepts UML Statecharts
and State Transition Matrix as inputs.

•	 Formal verification of performance requirements is an
integral part of the methodology, making it suitable
for property validation in the safety-critical system
development cycle. Besides, the generic nature of
methodology, addressing sequential and branching property
specifications, increases the scope of its application in a
broader range of systems. Thus, our methodology has
great potential for use in quality concerned software
engineering and model-based software development
process. This study, along with the analysis results, finds
widespread applications and can readily be applied for
verification and validation of performance requirements
of safety-critical software in the requirement analysis
phase itself.

7.	 Future Work
The lightweight formalism integrated formal verification

methodology can be proved to be thorough once it is
implemented to the full appreciation of the targeted audience. It
is intended to be used by the embedded software development
community. To make things easier and promote the use of
formal methods in software development projects, we are
working on the complete automation of this methodology. We
have already developed a UML-LTS Translator, which can
interpret UML Statecharts and generate Transition Systems
automatically. A GUI for this Translator and automation of
model checking procedure and TL property specification will

Kochaleema & Santhoshkumar : Generic Methodology for Formal Verification of UML Models

47

lead to a generic tool that can formally verify UML models. It
will execute with UML as a rear engine and be accessible to the
modeller through GUI. Customised menus and toolbar options
will be designed and included in UML GUI for this purpose.

References
1.		 Bruce, Powel, Douglass. Real-Time UML: Developing

Efficient Objects for Embedded Systems, 2003.
2.		 Luciana, Brasil, Rebelo, dos, Santos., Eduardo, Rohde,

Eras.; Valdivino, Alexandre, de, Santiago, J´unior &
Nandamudi, Lankalapalli, Vijaykumar, A. Formal
Verification Tool for UML Behavioral Diagrams, ICCSA
2014. Part I LNCS. (8579), 2014, 696–711 .

3.		 Lilius, J & Paltor, I. P. Formalising UML State Machines
for Model Checking. Proceedings of UML’1999, Lecture
Notes in Computer Science. Springer-Verlag, 1999.

	 doi: 10.1007/3-540-46852-8_31
4.		 Lilius, J & Paltor, I. P. vUML: A tool for verifying

UMLmodels. Proceedings of 14th IEEE International
Conference on Automated Software Engineering. IEEE,
1999.

5.	H olzmann, G. The model checker SPIN. IEEE Transactions
on Software Engineering, 1997.

	 doi: 10.1109/32.588521
6.		 Latella, D.; Majzik, I & Massink., M. Automatic

verification of a behavioral subset of UML statechart
diagrams using the SPIN model-checker. Formal Aspects
of Computing, 1999, 11.

7.		 Kwon, Gihwon. Rewrite rules and operational semantics
for model checking UML statecharts. Proceedings of
UML’2000, Lecture Notes in Computer Science, 1939,
2000.

8.	 Alexander, David.; Oliver, Moller, M & Wang, Yi.
Formal verification of UML statecharts with Real-
Time extensions. Fundamental Approaches to Software
Engineering, LNCS, 2002.

		 doi: 10.1007/3-540-45923-5_15
9.		 Zhang, S. J & Liu, Y. An Automatic Approach to Model

Checking UML State Machines. 2010 Fourth International
Conference on Secure Software Integration and
Reliability Improvement Companion, Singapore, 2010.
doi: 10.1109/SSIRI-C.2010.11.

10.		 Zamira, Daw.; John, Mangino & Rance, Cleveland. UML-
VT: A Formal Verification Environment for UML Activity
Diagrams. In International Conference on Model Driven
Engineering, 2015.

11.		 Eshuis, R. Symbolic model checking of UML activity
diagrams. ACM Transactions on Software Engineering
and Methodology, 2006.

		 doi: 10.1145/1125808.1125809
12.		 Santos, L. B. R.; Jr., Santiago, V & A. Vijaykumar,

Nandamudi, Lankalapalli. Transformation of UML
Behavioral Diagrams to Support Software Model
Checking, EPTCS 2014.

	 doi: 10.4204/EPTCS.147.10
13.		 Kochaleema, K. H & Santhoshkumar, G. Methodology for

Integrating Computational Tree Logic Model Checking in
Unified Modelling Language Artifacts: A Case Study of

an Embedded Controller. Def. Sci. J.. 2019, 69(1), 58-64.
doi: 10.14429/dsj.69.12294

14.		 Vieri, Del, Bianco.; Luigi, Lavazza & Marco, Mauri.
Model checking UML specifications of real time
software. In Proceedings of IEEE International
Conference Complex Computer Systems, 2002.
doi: 10.1109/ICECCS.2002.1181513

15.		 Jozef, Hooman.; Hillel, Kugler.; Julian, Ober, I.; Anjelika,
Votintseva & Yuri, Yushtein. Supporting UML-based
development of embedded systems by formal techniques.
Softw. Syst. Model., 2008.

	 doi: 10.1007/s10270-006-0043-7
16.		 Clarke, E. M.; Emerson, E. A & Sistla, A.P. Automatic

verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Programming
Languages Syst., 1986, 8(2), 244-263.

17.		 Zohar, Manna & Amir, Pnueli. The Temporal Logic
of Reactive and Concurrent Systems, Specification.
Springer-Verlag. 1992.

	 doi: 10.1007/978-1-4612-0931-7
18.		 Edmund, M. Clarke, Jr.; Orna, Grumberg & Doron, A.

Peled. Model Checking. 1999. ISBN: 9780262032704
19.		 Object Management Group, UML Specification

1.5, available at http://www.omg.org/uml 2003.
doi: 10.1016/j.entcs.2004.04.008

20.		H amilton, R. K. Miles. Learning UML 2.0, 1st Edition,
O’Reilly Media, Sebastopol. 2006. Print ISBN-13: 978-
0-59-600982-3

21.		 Berardi, Daniela.; Calvanese, Diego & De, Giacomo,
Giuseppe. Reasoning on UML class diagrams. Artificial
Intelligence, 2005.

	 doi: 10.1016/j.artint.2005.05.0
22.		 Beato, Encarnacion, Ma.; Solorzano, Manuel, Barrio.;

Cuesta, Carlos, E & Fuente, Pablo, de, la. UML Automatic
Verification Tool with Formal Methods. Electronic Notes
Theoretical Comput. Sci., 2005, 127, 3–16.

23.		 Knapp, A & Merz, S. Model checking and code
generation for UML state machines and collaborations. In
Proceedings of 5th Workshop on Tools for System Design
and Verification, Technical Report. 2002.

24.		H ooman, Jozef.; Kugler, Hillel.; Ober, Iulian & Votintseva,
Anjelika., Yushtein, Yuri. Supporting UML-based
development of embedded systems by formal techniques.
Softw. Syst. Model., 2008.

	 doi: 10.1007/s10270-006-043-7
25.		 Lucas, Francisco J.; Molina, Fernando & Toval, Ambrosio.

A systematic review of UML model consistency
management. Info. Software Technol., 2009.

	 doi: 10.1016/j.infsof.2009.04.009
26.		 Edmund, M. Clarke.; Allen, E. Emerson & Joseph,

Sifakis. Model Checking: Algorithmic Verification and
Debugging. Communications of ACM., 2009.

	 doi: 10.1145/1592761.1592781
27.		 Lima, V.; Talhi, C.; Mouheb, D.; Debbabi, M & Wang, L.

Formal Verification and Validation of UML 2.0 Sequence
Diagrams using Source and Destination of Messages.
Electronic Notes in Theoretical Comput. Sci., 2009.
doi: 10.1016/j.entcs.2009.09.064

Def. SCI. J., Vol. 72, No. 1, January 2022

48

28.		 Luay, Alawneh.; Mourad, Debbabi.; Fawzi, Hassaıne.;
Yosr, Jarraya & Andrei Soeanu. A Unified Approach for
Verification and Validation of Systems and Software
Engineering Models. Proceedings of the 13th Annual
IEEE International Symposium and Workshop on
Engineering of Computer Based Systems, ECBS’06. 2006.
doi: 10.1109/ECBS.2006.17

29.		 Nawal, Addouche.; Christian, Antoine & Jacky,
Montmain. Methodology for UML Modeling and
Formal Verification of Real-Time Systems, International
Conference on Computational Intelligence for
Modelling Control and Automation and International
Conference on Intelligent Agents,Web Technologies
and Internet Commerce (CIMCA-IAWTIC’06). 2006.
doi: 10.1109/CIMCA.2006.144

30.		 Gnesi, S.; Latella, D & Massink, M. Model checking
UML statechart diagrams using JACK. In Proceeding of
4th IEEE International Symposium on High-Assurance
Systems Engineering, (HASE’99). 1999.

		 doi: 10.1109/HASE.1999.809474.
31.		 Gabor, Madl, Sherif, Abdelwahed & Douglas, C.

Schmidt. Verifying Distributed Real-time Properties of
Embedded Systems via Graph Transformations and Model
Checking. Institute for Software Integrated Systems,
Vanderbilt University, Nashville/ Center for Embedded
Computer Systems, University of California, CA. 2006
doi: 10.1007/s11241-006-6883-y

32.		 Doron, Drusinsky. Modeling and Verification Using
UML Statecharts: A Working Guide to Reactive System
Design, Runtime Monitoring and Execution-based Model
Checking. 2006. ISBN: 0750679492

33.		 Beato, M. E.; Barrio-Solórzano, M.; Cuesta, C.E & Fuente,
de, la, P. UML automatic verification tool with formal
methods. Electronic Notes in Theoretical Comput. Sci., 2005.

doi: 10.1016/j.entcs.2004.10.024
34.		 Mohammed, Misbhauddin & Mohammed, Alshayeb.

UML model refactoring: a systematic literature
review. Empirical Software Engineering, 2015
doi: 10.1007/s10664-013-9283-7

35.		 Alexander, Knapp & Till, Mossakowski. Multi-view
Consistency in UML: A Survey. Lecture Notes in
Computer Science book series (LNCS). 10800, 2018
doi: 10.1007/978-3-319-75396-6_3

CONTRIBUTORS

Ms K.H. Kochaleema received her MTech in Software Engineering
from Cochin University of Science and Technology, Kochi,
Kerala. Currently working as Scientist G in Naval Physical and
Oceanographic Laboratory, Defence Research and Development
Organisation, Kochi. She is heading Quality and Reliability
group of NPOL. She has thirty years of experience in the
field of design, development, verification and validation of
embedded systems for sonar systems for various platforms
like, ship, submarine and naval helicopters.
In the present work, she is responsible for the methodology
proposal, identification of a suitable application for case study
and validation of the proposed methodology using the same.

Prof. G. Santhoh Kumar received his MTech in Computer
and Information Science and PhD in Wireless Sensor Networks
from Cochin University of Science and Technology (CUSAT),
Kochi, Kerala. Currently, working as Professor and Head of the
Department of Computer Science in the Faculty of Technology
of CUSAT. He has seventeen years of teaching and research
experience. His areas of interest include, formal modelling and
verification, computer vision and artificial intelligence.
In the current work, he has provided suitable guidance in
problem formulation and offered necessary direction and overall
support to carry out this study successfully.

