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1. INTRODUCTION
Graphitic nanotubules of carbon, better known as

carbon nanotubes (CNTs), after their discovery1 in 1991,
have become strong candidate for many future device
applications. Most promising among these is the tube
with single graphitic shell, which is called single-walled
carbon nanotube (SWNT)2. Tubes with multiple walls is
called multi-walled carbon nanotube (MWNT). Several
promising results on electrical, electronic, mechanical,
and thermal properties of SWNTs have been demonstrated3,
but there are many technical challenges still to be overcome
to enable commercialisation of CNT-based devices.
Commercialisation requires acceptable device repeatability,
within a batch and from batch-to-batch. Arc-discharge4,
laser ablation, and chemical vapour deposition (CVD)
including its several variants, are few techniques  employed
for growth of the CNTs.

Current growth processes produce CNTs mixed with
different amorphous and crystalline impurities such as
catalyst particles, graphitic nanoparticles, and amorphous
carbon. Nature and degree of impurities vary with growth
technique, arc-discharge having the highest amount of
catalyst particles, and CVD, the least. The presence of
impurities can lead from erroneous device behaviour to
total failure, depending upon nature and quantum of
impurities. Removal of such impurities from the as-grown
product is called purification5. Purification usually involves
chemical treatment6, i.e. dry oxidation7-9, and wet oxidation
followed by filtration and annealing. Several variants of
this process sequence have been demonstrated. As both
these processes are chemically aggressive and cause
damage to CNT structure, milder techniques such as

magnetic separation, etc., have been developed. Even
the CNTs that are produced vary in diameter and chirality
and these physical variations result in changes in their
electronic and optical behaviours. About one-third of
all possible SWNTs exhibit metallic properties and the
remaining two-third act as semiconductors.

Moreover, the bandgap of semiconducting SWNTs
scales inversely with tube diameter. Such inconsistencies
in nature of CNTs lead to unpredictable results and degradation
in device  performance thus preventing their widespread
applications as high-performance field-effect transistors,
optoelectronic near-infrared emitters/detectors, chemical
sensors, materials for interconnects in integrated circuits,
and conductive additives in composites10. So, the CNTs
need to be separated into different grades based on their
nature, length, diameter, and chirality. This process of separation
of CNT mixture into different grades is called sorting. This
is a  relatively  complex and a slow process. Yield is also
very low with current techniques such as chromatography11,
field flow fractionalisation12, electrophoresis13, polymer
wrapping14, etc.

Different applications require CNTs with different levels
of purity and sorting. Applications in which CNTs are
consumed in bulk can tolerate higher levels of impurities
and do not require sorting. In contrast, electronic applications
such as fabrication of CNT field-effect transistor (CNTFET)
are very sensitive to impurities and require efficient sorting
after purification. Several purification protocols15-20 have
been developed and a lot of success has been achieved
in separating CNTs from other impurities, but sorting of
CNTs based on their nature, length, and diameter is still
an unfinished task and needs to be completed for success
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of CNT-based electronics and its integration with  Si
technology. The ultimate aim in sorting is to develop the
ability to separate CNT-based on its chiral vector. Figure 1
illustrates the purification and sorting pyramid of CNTs.

2.  PURIFICATION OF CARBON NANOTUBE
The CNT purification necessitates removal of carbonaceous

(amorphous and graphitic) and catalyst particles. Purification
methods consist of one or more of the following steps:
Dispersion, dry oxidation (thermal/microwave), wet oxidation/
chemical treatment, filtration (including chromatographic
methods) and annealing. Most  researchers have proposed
a combination of these methods15-22, with slightly different
parameters, which might be due to variation in CNT sources.
The CNTs on their own are insoluble in most of the solvents,
and tend to agglomerate, disabling any further chemical
processing on these. Impurities are also trapped inside
these agglomerates, making these unavailable for acid digestion.
So separation and dissolution of impurities can be carried
out only after CNTs are dispersed in suitable media.

Technique such as ultrasonication is mainly used for
dispersion. Even after dispersion, direct acid treatment is
less effective for removal of catalyst particles due to
carbonaceous coating over them. Thus, wet oxidation is
coupled with dry oxidation to break carbon shell and expose
catalyst surface for acid attack. This step needs strict control
on oxidation temperature, as in presence of oxygen, the
metal particle catalyse indiscriminate oxidation of carbon
and ultimately destroy  the CNTs. To circumvent this
problem, Chiang8,9, et al. proposed a scheme that begins
with long, low-temperature oxidative cracking of the
carbonaceous shells encapsulating the metal particles.
This was done with wet oxygen by bubbling 20 per cent
O

2
 in argon through water. This process effectively removes

carbon coating over metal particles, which are then easily

dissolved by acid treatment. Microwave heating21,22 has
also been employed to break carbon coating over metal
particles enabling efficient removal of catalyst in acid
treatment step.

Acid treatment step poses two challenges: (a) to remove
reaction products coated on the CNT surface, and (b) to
restore CNT structure damaged by rigorous acid treatment.
For removal of reaction products, when starting material
is small (e.g., milligrams), the CNTs can be vacuum filtered,
followed by washing with a dilute base to remove the
nanoparticles (rendered soluble in the base by functionalisation
with carboxylic groups). For larger (gram) quantities, vacuum
filtration becomes untenable because of the complex filtration
path formed by the overlapping nanotubes, making the
permeate flow rate extremely slow. In this case, bulk of acid
is decanted, followed by repeated cycles of centrifugation,
decanting of the supernatant solution, and re-suspension
in deionised water to further neutralise the reaction products.
The buffer solution along with surfactant is added to keep
the naturally hydrophobic nanotubes from agglomerating.
The surfactants used are easy to remove by washing with
either water or methanol. Amorphous carbon impurities
and metal catalysts in the raw CNTs can then be removed
by centrifugation and filtration.

Recently, Shim23, et al. devised an integrated scheme
to purify MWNTs using electrophoresis induced by the
application of an AC electric field to a set of microelectrodes
in a microliquid channel. This purifying method is different
from conventional methods based on chemical processes
and has potential applicability in the development of microdevices
that can simultaneously perform the purification and fabrication
of MWNTs. For restoration of the CNT structure, annealing
of purified sample under vacuum or inert atmosphere is
carried out24,25.

In this study, an effective purification protocol combining
dry-oxidation and wet-oxidation techniques has been developed.
Parameters were optimised for simultaneous reduction of
non-CNT carbon and catalyst particles while inducing minimal
damage to SWNT structure. Effect of acid on SWNT structure
was studied by carrying out refluxing with 0.1 M HNO

3
 to

5 M HNO
3
. Defects increase with increasing acid concentration

as evident from growing strength of D-band (Fig. 2). By
0.1 M HNO

3
 refluxing, structure remains intact but majority

of metallic impurities were also not removed. On the other
hand, 5 M HNO

3
 refluxing reduces metal content from 32

per cent to 8 per cent but does severe damage to SWNT
structure and hence cannot be used. Thus a step of dry-
oxidation was introduced prior to wet-oxidation to remove
amorphous carbon coating over nanoparticles. Dry-oxidation
at 693 K very effectively reduces amorphous carbon without
introducing defects in SWNT structure, as evident from
negligible D-band. Oxidised sample was then refluxed with
an optimum acid concentration for removal of metallic impurities.
By optimising dry-oxidation temperature and duration  was
eliminated  The need of highly concentrated acids,long
refluxing was eliminated  enabling effective SWNT purification
with low defects.

 

CNT 

PURIFICATION 
(SEPARATION OF CNT AND 

IMPURITIES) 

SORTING 
(LENGTH BASED) 

SORTING 
(BAND GAP BASED) 

SORTING 
(DIA. BASED) 

AS PRODUCED CARBON NANOTUBES  
(WITH IMPURITES i.e. CATALYST, 

AMORPHOUS AND GRAPHITIC CARBON) 
PARTICLES

SORTING 
(N,M) 

Figure 1. Carbon nanotube purification and sorting pyramid.
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3. CARBON NANOTUBE SORTING
Resultant of purificaton process is mixture of CNTs

free of impurities such as amorphous carbon, catalyst, and
graphitic paricles. But this mixture contains CNTs of different
lengths, diameter, and bandgap. The next challenge is to
sort this mixture into different grades of CNTs with narrow
distribution of length, diameter and bandgap. The separation
of SWNTs into different grades is expected to simplify and
allow an array of applications such as nanoelectronic devices
(transistors and logic circuits)27, field emission displays28,
nanosensors29, actuators30, and composites31.

3.1 Separation of CNT from Bundles
The SWNT being highly polarizable, they readily

form parallel bundles or ropes. Girifalco32, et al. computed
potential energies of interaction, cohesive energy per
unit length, compressibility, and equilibrium separation
distance between two parallel and infinitely long CNTs
of same diameter. They calculated a van der waals binding
energy of ~500 eV per micrometer of tube to tube contact.
This bundling perturbs the electronic structure of the
tubes and confounds all attempts to separate the tubes by
size or type or to use them as individual macromolecular
species. Fei33, et al. used phosphotungstic acid (HPW)
for separation of CNT from bundles and further purification.
As the HPW can spontaneously attach to graphite walls
as polyanions and provide static repulsion, the CNT aggregates

were divided into individual and small bundles and turned
into a stable solution by sonication in the presence of
HPW. O'Connell34,35, et al. devised a scheme for separating
nanotubes from bundles by vigorous ultrasonic treatment
followed by centrifugation to obtain individual nanotubes
in aqueous micellar suspensions. Unbundling the SWNTs
into single nanotubes or very small bundles was an essential
step. The high surface area of individual or lightly bundled
nanotubes enables surface interaction of various reagents
and attachment of functional groups on surface of the
SWNT.

3.2 Sorting of CNTs based on Length
Sorting of SWNTs according to their length becomes

particularly important in light of their potential applications.
For example, nanotubes of shorter length (20–300 nm)
are ideal for nano- and microelectronics whereas nanotubes
whose length is in microns, are preferred for structural and
composite applications. Various techniques have been employed
for obtaining SWNTs sorted by length. This is typically
achieved by chromatographic techniques11,36-38, for SWNTs
with sizes of less than 300 nm while field-flow fractionation12

and capillary electrophoresis13 is more suited for longer
SWNTs. For chromatography, SWNTs need to be thoroughly
dissolved or dispersed in small bundles each containing
only a few nanotubes. This makes the choice of dispersion
media very critical and a variety of surfactants have been
used to obtain highly dispersed SWNT solutions.

 Initial experiments were carried out by size exclusion
chromatography of surfactant stabilised dispersions with
water as the mobile phase11,36. Later on several other
media and surfactant combinations have been used39-41.
Huang38,et al. carried out length separation by size-exclusion
chromatography (SEC) over DNA-wrapped CNTs. In elutant
of chromatography column, average length decreases
monotonically from > 500 nm in the early fractions to
<100 nm in the late fractions with length variation < 10
per cent in each of the measured fractions.

3.3 Sorting of CNTs based on Electronic Properties
The SWCNTs have unique distinction of existing in

different structures with different electronic properties.
The SWNT exhibits either semiconducting or metallic behaviour
depending upon its chiral vector3. The stochastic nature
of the SWNT growth, generates mixtures of metallic and
semiconducting SWNTs in a 1:2 ratio. For separation of
metallic and semiconducting nanotubes, several approaches
like interaction of CNTs with zwitterions42, surfactant amines43,
and diazonium salts44 have been utilised. Semiconducting
SWNTs have enhanced chemical affinity towards
octadecylamine (ODA). This reduces the tendency of
semiconducting SWNTs to aggregate as concentration is
increased by means of partial solvent evaporation. The
supernatant is primarily composed of semiconducting SWNTs
while precipitate is enriched with metallic SWNTs. Chen,
et al.45 utilised suspended SWNTs in Triton X-100 surfactant
and then exposed the suspension to bromine solution followed
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Figure 2. Raman characterisation of CNT purified by dry and
wet-oxidation. Raman spectra were taken on vacuum-
filtered samples over 0.2 mm PTFE membrane using
785 nm laser. Dry-oxidation step at 693 k effectively
removes amorphous carbon without introducing
defects in SWNT structure, as evident from absence
of D-band.
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by centrifugation. This led to enrichment of the supernatant
in semiconducting nanotubes and the sediment in metallic
nanotubes. In contrast, when diazonium salts are used in
aqueous solution, metallic SWNTs undergo preferential
electron transfer.

Other approaches, such as, AC dielectrophoretic
separation46-48, and DNA assisted separation49-50, have also
yielded fair results for separating metallic and semiconducting
nanotubes. The phosphate groups on a DNA-CNT hybrid
provide a negative charge density on the surface of the
CNT, the distribution of which is a function of the DNA
sequence and electronic property of the tube. Everything
else being equal, the DNA-metallic CNT has less surface
charge than DNA-semiconducting CNT due to the opposite
image charge created in the metallic tube. Zheng51, et al.
separated semiconducting and metallic nanotubes by ion-
exchange liquid chromatography using custom single-stranded
DNA (ssDNA). Metallic tubes eluted first from the ion
exchange column because of their reduced effective charges.
However, there are critical drawbacks in using DNA for
CNT functionalisation. First, DNA-wrapped SWNTs have
limited stability in aqueous density gradients and thus are
not amenable to repeated centrifugation. Furthermore complete
removal of the DNA wrapping after enrichment has not
been demonstrated. Finally, the availability and cost of
specific, custom oligomers of ssDNA are prohibitive.

Recently, Arnold52, et al. were successful in sorting
CNTs by diameter, bandgap, and electronic type using structure-
discriminating surfactants, eliminating the requirement of
DNA. These surfactants were used to engineer subtle
differences in buoyant densities of nanotubes. Using the
scalable technique of density-gradient ultracentrifugation,
employing competing mixtures of surfactants, SWNTs of
predominantly a single-electronic type were obtained.
Maeda53, et al. employed a separation method involving
a dispersion-centrifugation process in a tetrahydrofuran
solution of amine, which made metallic SWNTs highly
concentrated to 87 per cent in a simple way.

3.4 Sorting of CNTs based on Diameter and
Chirality
The CNT based electronic applications are most prone

to variations in diameter and chirality. A study involving
large number of carbon nanotube transistors confirmed
that the nanotube diameter and the metal contact material
play key roles in determining the on- and off-state currents
of these devices54. In the absence of diameter sorting techniques,
initially emphasis was given on controlling dia during
growth itself. Diameter selective growth has been reported
by all growth techniques, i.e, arc-discharge55-56,
laser ablation57-58, and CVD59-76.  The CVD relies on use
of templates created by anodic oxidation of aluminium or
zeolites. Anodised aluminium templates with custom pore
diameter can be easily obtained as the diameter of pore
is proportional to the applied voltage of electrochemical
cell. Catalyst particles are then seeded inside these templates.
Such templates can then be used to grow individual CNTs72.

These techniques have been used for diameter control of
SWNTs55-69, double-walled carbon nanotubes (DWNTs)70,
and MWNTs71-76. Tang59, et al. have grown 0.4 nm SWNTs,
within a single-crystal AlPO

4
-5 zeolite. These SWNTs

preferentially have zigzag (5,0) form as opposed to the
other two possible chiralities of similar diameter i.e. (3,3)
armchair and (4,2) chiral.

 Bachilo77, et al., carried out structure selective growth
of SWNTs using CVD over silica supported Co nanoclusters
formed by mixed salts of Co and Mo. Two structures (6,5)
and (7,5) together comprised more than half of population.
Techniques for post-growth dia modification by heat
treatment78, and boron doping79 have also been suggested,
but these have limited range, introduce defects and diameter
control is partial. Few techniques for diameter selective
sorting80-83 have been reported with partial success. But
still sorting CNT based on their chirality is a distant dream
and to develop the ability to selectively grow the CNT with
multiple chiralities on a single wafer for development of
large scale CNT- based electronics is the most challenging
task.

3.5 Purity Evaluation
Any purification methodology is meaningful only if

accurate methods for qualitative and quantitative estimation
of CNT purity are available. Initially, estimation of CNT
purity was carried out using only microscopy. The scanning
electron microscope (SEM), transmission electron microscope
(TEM) and scanning tunnelling microscope (STM) were
extensively used for purity evaluation. These tools were
very intuitive as they gave visual indication of sample
state. But these techniques give only qualitative estimates
about nature and structure of CNT and impurities. Obtaining
meaningful quantitative estimate is very cumbersome as
it involves measuring structural parameter of hundreds of
CNTs one by one. Even after this, the estimates that are
obtained are from a localised area and multiple images
needs to be taken for accurate estimates, making microscopy
techniques prohibitive for quantitative estimation.

Other techniques such as thermal gravimetric analysis
(TGA), near-infrared (NIR) spectroscopy84, Raman
spectroscopy85-90, were introduced for quantitative analysis.
The TGA of CNT sample is carried out in air/O

2
 to study

oxidative response. Carbonaceous content of sample is
converted to CO/CO

2
, which is evolved and final residue

contains only metal oxides. Thus an estimate of metal content
in sample can be easily computed by TGA. Estimating
composition of carbonaceous content is relatively difficult
by microscopy or thermal analysis. Spectroscopic techniques
such as Raman and NIR spectroscopy provide  rapid, convenient,
and unambiguous method to measure bulk purity and
composition of carbonaceous content of SWNT samples.

 Characteristic absorption spectra for bulk SWNT
samples show three interband transitions:
S

11
 (4,000–8,000 cm-1), S

22
 (7,750–11,750 cm-1) and M

11
 (12,500–

17,500 cm-1). The intensity of S
11

 is subject to doping-
induced modulation84. Because SWNTs are susceptible to
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doping by many species and doping affects both absorption
and Raman spectroscopy, the spectroscopic analysis should
be carried out only after de-doping of samples by heating
them to 600 oC in an inert atmosphere. Raman can be used
to obtain information about CNT structure, i.e. MWNT/
SWNT, degree of defects, estimation of SWNT diameter
etc. Diameter-selective Raman spectroscopy scattering at
about 180 cm-1, is associated with the radial breathing
mode (RBM) of CNT. The frequency of RBM is inversely
proportional to the tube dia and can be used for accurate
determination of SWNT diameter.

As a means of assay, absorption  spectroscopy has
the advantage of providing a global measurement of the
relative metallic/semiconducting SWNT content. The small
spot size of the excitation used in a Raman spectroscopic
assay requires statistical averaging over numerous
measurements in order to be considered accurate. However
in samples having wide distribution of nanotube dia, the
absorption bands S

22
 and M

11
 may overlap making the

Raman-based assay more useful. But one needs to be very
careful while taking spectra as both spectroscopic techniques
are dependent on environmental conditions. Anglaret 87,et al.,
observed monotonic Raman frequency upshift and intensity
reduction when a laser spot was moved along the same
SWNT. Thus instead of single characterisation technique
a combination of microscopic and spectroscopic techniques
are used to verify the results such as TEM-Raman90 or
TEM-NIR.91

Analysis of nanotube chirality was earlier done only
by STM, which was very cumbersome and expensive. Now
other techniques such as spectroflourimetry92,
photoluminescence mapping93, near-field Raman
spectroscopy94, etc. have also been developed for rapid
analysis of nanotube chirality.

4. CONCLUSIONS
Most of the research on purification has been carried

out with samples in small quantity and hence  scalability
of these methods needs to be tested. While substantial
progress has been made in purification and separation of
SWNTs, emphasis is required on quality control and quality
assurance across the laboratories. Much work remains before
pure SWNTs of specific lengths, diameter, and chirality
can be made available for applications. Apart from purification
and sorting of CNTs, adequate standards for purity evaluation
also need to be evolved. Spectroscopic results are highly
dependent on CNT doping and environmental conditions,
making comparison of results and their reproduction very
difficult. Recently, standard for measurement of electrical
properties of CNTs has been defined95. It provides methods
for the electrical characterisation of carbon nanotubes and
the means of reporting performance and other data. These
methods enable creation of a suggested reporting standard
that can be used by anyone as and when technologies
are being developed. Similar standards for purity evaluation
techniques such as microscopy and spectroscopy would
go a long way in establishing uniformity and would aid

meaningful comparison of yield and efficiency of different
purification techniques.
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