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ABSTRACT

This paper proposes the framework of TRL (Technology Readiness Level) transition predictions for early 
technology development in defense. Though predicting future TRLs is an important planning tool, it has been 
studied less actively than the other critical issues on TRL, and previous studies mostly have resorted to domain 
experts. The proposed framework is data-driven and utilises both explanatory and predictive modelling techniques. 
As a case study, the proposed framework is applied to real technology development data from DTiMS (Defense 
Technology InforMation Service) which is identified as a key resource. The result of explanatory modelling shows 
that the two predictor variables, TRL before R&D and project cost, are statistically significant for future TRLs. 
Also, popular predictive models are fitted and compared with various performance indices using 10-fold cross 
validation. The two selected predictive models are linear regression and support vector machine models with the 
lowest prediction errors.
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1.  INTRODUCTION
Assessing the maturity of technologies is a critical 

procedure in order to mitigate the negative consequences 
in decision-making on the acquisition of complex systems. 
Without having a clear understanding of the technological 
maturity, it is impossible to properly manage cost, schedule 
and risk factors. An incorrect maturity assessment can lead to 
cost overruns, time delays, and poor quality, which can stop the 
whole project or program1. One of the most widely used metric 
for the technology maturity assessment is the technology 
readiness level (TRL) scale.

TRL was introduced by National Aeronautics and Space 
Administration (NASA) in the 1970s to enable the maturity 
of technologies to be assessed more systematically and 
consistently. TRL is being used in many different industries 
and organisations including the U.S. Congress General 
Accountability Office (GAO) and the U.S. Department of 
Defense (DOD)2.

The TRL scale consists of 9 levels as shown in Fig. 1. TRL 
“essentially describes the state of a technology and provides 
a baseline from which maturity is gauged and advancement 
defined.”3. Based on the definitions and conditions of the TRL 
scale, TRLs of a system, subsystem, and component can be 
determined by an assessment team or an independent review 
team, which is called Technology Readiness Assessment 
(TRA). The assessment team is a group of experts who have 
knowledge and experience for the related technologies. 

The U.S. DOD formulates the TRA process in the 
acquisition of defence systems and maps TRLs to the acquisition 
system. For example, technologies should be at least TRL 4 by 
Milestone A, TRL 6 by Milestone B, and TRL 7 by Milestone 
C1. The Republic of Korea (ROK) Ministry of Defense (MOD) 
adopted the TRA process of the U.S. DOD in 2012 and has 
been using the process for defence programs. However, there 
are some challenges for TRL implementations.

The two main challenges are the subjective nature of the 
TRL assessment and the lack of models for TRL transitions or 
progression. The literature review shows that the subjectivity 
challenge has been studied actively and some solutions have 
been suggested theoretically and practically for assessing the 
current TRL level. On the other hand, there has been almost 
no progress on the TRL transitions. The TRL transition model 
can not only explain the factors to achieve future TRLs but 
also predict TRL transitions. In the early planning stages of 
defence acquisition programs, there is only a limited amount 
of information but it is essential to predict the possibility of 
new or immature technology developments4. If the future TRL 
can be predicted only utilising the information in the early 
planning stages, decision makers and program managers can 
reduce schedule and cost risks. 

Under the challenge, this paper aims at TRL transition 
predictions for early technology development in defence. Also, 
in order to minimise the bias of domain experts, a data-driven 
approach is proposed for finding the patterns of TRL transitions. 
To the best of the author’s knowledge, this is the first study to 
build a model of TRL transitions as a planning tool by utilising 
real technology development data in defence.
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2.  LITERATURE REVIEW
Mankins5 introduced the history and definitions of TRLs 

with the insights of the person who was responsible for the first 
comprehensive set of definitions of TRLs. The set of definitions 
became the basis for the adoption of the TRL scale by the U.S. 
DOD in 2000. In the Mankins retrospective, three categories 
of challenges were shortly suggested for using the TRL scale. 
Later, Olechowski1, et al. provided 15 challenges using semi-
structured interviews from several different organisations, 
and they concluded that the identified 15 challenges could 
be classified as the three categories of the Mankins paper. In 
this section, the three categories with the 15 challenges for 
enhancing the TRL application are reviewed with new studies.

The first category is the assessment validity. The 
related challenges are the subjectivity of the assessment and 
imprecision of the TRL scale. Since the TRA process resorts to 
a human assessment team, there can be issues such as personal 
biases and peer pressure. Everyone has their own experience 
and knowledge so that it can be difficult to agree on the level of 
technologies, especially for complex technologies.

In order to overcome the first category challenges, two 
approaches were suggested. The first approach is to standardise 
the assessment procedure and develop a customised TRL scale. 
Systems engineering can provide tools such as the technology 
assessment process and the TRL assessment matrix for more 
concrete and systematic assessment3. Similarly, Nolte6, et al. 
suggested the use of a TRL calculator, which is a Microsoft 
Excel spreadsheet in order to select TRLs with a guidance.

The second approach is to automate the TRL assessment. 
Cunningham7 suggested that Big Data could be used to assess 
technology readiness as a short opinion piece. Researchers 
utilised patent documents, scientific publications, and news 
records for assessing TRLs. Altuntas & Gök 8, and Altuntas 
& Gök 9 used patent data to find the associations among wind 
energy technologies using data mining techniques, utility 
mining and social network analysis.  Lezama-Nicolas10, et al. 
suggested the bibliometric analysis of the technology records 
(scientific papers, patents, and news databases) to approximate 
the technology life cycle. They assumed that maturity levels and 
the characteristics of a technology life cycle could be matched 
using the volume of the technology records11,12. However, Faidi 
& Olechowski13 criticised the match of technology records to 

the maturity of technologies and reported some unexpected 
cases.

This automation approach is data-driven so that it 
does not heavily rely on domain experts and can provide 
important information on technologies objectively. 
However, Lezama-Nicolas10, et al. clearly mentioned that 
the bibliometric analysis method is semi-automatic which 
requires domain knowledge. Another issue is that the 
technology records are only available for some popular 
technologies. Defence technologies usually require 
protection for national security and technology records can 
be limited.

The second category is the system complexity. The 
core challenge is technologies are combined and connected 
as a system of technologies so that the system architecture 
should be reflected when a system level assessment is 

required. Mankins14 proposed Integrated Technology Index 
(ITI) which can be calculated using delta-TRL, R&D Degree 
of Difficulty (R&D3), and Technology Need Value (TNV) for a 
system-level technology assessment. Delta-TRL, R&D3, TNV 
represent the difference in actual and desired TRL, expected 
difficulty in R&D activities, and importance of technologies.  
Sauser15,  et al. proposed Integration Readiness Level (IRL) 
which uses a 9-point scale similar to the TRL format for a 
systematic measurement. 

The third category is the planning and review. The related 
challenges are the prediction of TRL transitions and the 
system development decision support based on the predicted 
progression. Olechowski1, et al. emphasised that the predictive 
model was required to understand effort and likelihood 
for progressing to a target TRL. TRL can only provide the 
current state of technology maturity. Olechowski1, et al. also 
concluded that the Advancement Degree of Difficulty (AD2)16 
and R&D3 were introduced as possible solutions but they were 
not commonly practiced. AD2 predicts what is required to 
progress from one TRL to another based on required activities 
and their time, cost, and likelihood that are derived from a set 
of questions. R&D3 is a 5-level scale to classify the degree 
of difficulty to move from the current TRL to the future TRL. 
Both indices require experts’ assessments.

This paper focuses on the third category, especially the 
prediction of TRL transitions in defence. Rather than resorting 
to domain experts, a data-driven approach will be proposed 
only utilising the information in the early planning stages. The 
purpose is different but the work by Alexander4 is noteworthy 
to be reviewed since it used a data-driven approach with real 
NASA technology project data in the early planning stages. 
The study aimed at identifying causal variables to estimate a 
project’s cost and schedule using the NASA Technology Cost 
and Schedule Estimating (TCASE) tool which contained more 
than 2,900 project records. The author initially considered 
eight different predictor variables: system hierarchy level 
(SHL), TRL at the project’s start and completion, R&D3, 
technology area, key performance parameters, total full-time 
equivalents of project labor, capability demonstrations, and 
system characteristics. Among them, only SHLs and TRLs 
were selected due to the sparsity and lack of data. Also, TRLs 
were transformed to TRL improvement level (TIL) or delta-

Figure 1. TRL scale (revised from3).
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TRL to ensure more data. However, the aggregated level can 
be biased and lead to the loss of information17. For example, 
TIL 1 can be either TRL 1-2 or TRL 6-7 (TRL start-end) but 
the TRL transitions are apparently different. Then, finally 
regression models were built using SHLs and TILs with 221 
data points but there was no test for predictive power.

3.  FRAMEWORK OF TRL TRANSITION 
PREDICTIONS
While currently available approaches (e.g., AD2 and 

R&D3) for TRL transition predictions resort to domain experts, 
this paper proposes the data-driven TRL transition predictions 
to support decision makers along with the available approaches. 
Fig. 2 shows the proposed framework.

The first stage is the data collection of technology 
development projects in defence. In the case study, the 
example of technology development projects will be provided.  
This is the most challenging stage and this study can show the 
necessity of building and managing extensive database for 
TRL transition predictions.

The second stage is the preprocessing and correlation 
analysis. The modelling process in this paper is supervised 
learning, which requires pairs of predictor variables and 
responses. The response or dependent variable is the future 
TRLs. Possible predictor variables at the early technology 
development need to be paired with the future TRLs. If the 
data pairs have missing values, the pairs will be deleted. 
Before moving to the modelling process, correlation analysis 
is conducted to quantify the relationship between the predictor 
variables and responses.

The third stage is explanatory and predictive modelling. 
Explanatory modelling can be defined as “the use statistical 
models for testing causal explanations” and predictive 
modelling as “the process of applying a statistical model or 
data mining algorithm to data for the purpose of predicting 
new or future observations.”18 The proposed TRL transition 
prediction model should not only explain the predictor variables 
for the future TRLs but also predict the future TRLs using the 
information available at the early technology development. 
Accordingly, both explanatory and prediction models will be 
explored. Practically, following points can be considered for 
explanatory and predictive modelling18. In-sample R2 values 
or overall F-type statistics can assess explanatory power. 
In contrast, predictive power refers to the performance on 

unseen or new data. Multicollinearity is a problematic issue 
in explanatory modelling by inflating standard errors while it 
is not a big problem for predictive modelling unless a separate 
regression coefficient is of interest.

The final stage is the planning with TRL transition 
predictions. When there is a new technology, the TRL transition 
prediction model can be used. The current readiness level of the 
new technology can be assessed using either TRA in Section 1 
or automatic methods in Section 2. By plugging in the current 
TRL and required information for predictor variables, the 
future TRL can be predicted. The predicted future TRL can 
support the system development decision.

4. CASE STUDY
In this section, the proposed framework is applied with 

real technology development data in defence. Section 4.1 
covers the first and second stages and Section 4.2 addresses the 
rest stages of the proposed framework in Fig. 2.

4.1 Data Preparation
This investigation identified DTiMS (Defense Technology 

InforMation Service) as a key resource, which was the hub for 
the defence science and technology information provided by 
Defense Agency for Technology and Quality (DTaQ) in ROK. 
DTaQ built the system in 2008 and DTiMS could be accessed 
from both a local area network (LAN) and the Internet (https://
dtims/re.kr). Though DTaQ keeps expanding the amount of 
data in the Internet, the Internet version DTiMS contains less 
data in comparison to the LAN version. For this reason, this 
study accessed the LAN version DTiMS. 

The data collection conducted manually and took about 
more than three months due to the slow response of DTiMS. 
It was found that the current data structure was for providing 
the information of an individual project rather than analysing 
collected data. Table 1 summarises the data source. The 
collected project type is the critical defence technology R&D 
and the period of the R&D projects is from 2005 to 2018. 
The response is TRL after R&D and Fig. 3 shows the TRL 
improvement levels. The zero value indicates that there is no 
improvement of TRL.

Table 1. Data source

Source DTiMS (LAN version)
Data collection 2020.6.1 ~ 2020.9.10
Project type Critical defence technology R&D
Period of R&D projects 2005 ~ 2018
Response or dependent variables 
(TRLa)

TRL after R&D. It ranges from 1 
to 9. (TRL at the project’s end)

Data points after preprocessing 172

As candidates of predictor variables, DTiMS provided a 
wide range of data fields, e.g., title, classification, description 
of the technology, possible application areas, users, investors, 
project management team, etc. After preprocessing for missing 
values and inconsistent values from the collected project 
records, 172 records were remained. For example, the project 
labor data was only available for some projects so that it could Figure 2. Framework of TRL transition predictions.
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not be utilised. The data loss has already been reported by 
Alexander4. Since this study focused on the early technology 
development, outcomes of projects were excluded, e.g., 
patents, reports, and academic papers. Furthermore, those 
outcomes did not show significant contribution to the 
variation of TRLs after R&D. Table 2 shows the remaining 
candidates of predictor variables.

Table 3 shows Pearson’s correlation coefficients with 
p-values. The response, TRLa, has positive correlations 
with the four predictor variables.

4.2 Results and Discussion
Before modelling, the logarithmic transformation was 

applied to both the predictor variables and the response. 
For explanatory modelling, regression analysis was 
conducted using a multiple linear regression model. Fig. 4 
shows the result of regression analysis with the significance 
level of 0.05. Note that the value of the intercept is hidden 
intentionally.

The result indicates that TRL before R&D and Cost 
are statistically significant. Based on the raw data, it was 
observed that the project duration was not purely based on the 
development of technologies and sometimes included all the 
administrative time. This might be the reason of insignificance. 
Similarly, R&D difficulty can be subjective and that can lead to 
insignificance. Then, the multiple linear regression model was 
built only using the two significant variables as follows:

log( ) 0.38log( ) 0.077 log( )a bTRL TRL Cost intercept= + +  
(1)

where TRLa is the TRL after R&D, TRLb is TRL before R&D, 
and Cost is the project cost. The result shows that about 60% 
of variability of TRL after R&D can be explained by the 
regression model. 

For predictive modelling, linear regression, support 
vector machine (SVM), random forest (RF), and multi-layer 
perceptron (MLP) were utilised. SVM constructs the maximum 
margin hyperplane with kernel functions for classification and 
regression. RF constructs a multitude of decision trees by 
bagging ensembles of decision trees. MLP is a neural network 
by determining appropriate weights for the connections in 
a network using backpropagation. These algorithms were 
implemented using WEKA19 which is one of the most popular 
frameworks for machine learning tools. Table 4 shows the 
environment for predictive modelling with WEKA.

The input data was grouped as the four predictor variables 
in Fig. 4 and the two predictor variables in Fig. 5. Furthermore, 
since the performance on unseen data is important in predictive 
modelling, 10-fold cross validation was used and the cross 
validation results were compared to the case with the full 
training data. 10-fold cross validation randomly divides the 

Table 2. Candidates of predictor variables

Candidates Description
Relative degree of difficulty (Difficulty) It indicates the R&D difficulty of technologies relative to the most advanced 

technology in that area. It ranges from 0 to 200. (The most advanced)

TRL before R&D (TRLb) TRL at the project’s start. It ranges from 1 to 9.

Project duration (Duration) The overall time in months to spend for the project.

Project cost (Cost) The total cost normalised to year 2019 U.S. dollars to spend for the project.

Table 3. Correlation matrix (p-values in parentheses)

Difficulty TRLb Duration Cost TRLa

Difficulty 1.00

TRLb 0.26
(0.00)*** 1.00

Duration -0.02
(0.75)

0.17
(0.03)** 1.00

Cost 0.09
(0.23)

0.27
(0.00)***

0.52
(0.00)*** 1.00

TRLa 0.25
(0.00)***

0.75
(0.00)***

0.23
(0.00)***

0.38
(0.00)*** 1.00

*p<0.1, **p<0.05, ***p<0.01Figure 3. TRL improvement levels.

Figure 4. Regression analysis with four predictor variables.
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data into 10 equal sized sub-datasets, and training (9 sub-
datasets) and testing (1 sub-dataset) processes are repeated 
10 times. Therefore, 10-fold cross validation estimates the 
out-of-the-sample accuracy while the in-sample accuracy can 

be estimated with the full training data. As performance 
indices, mean absolute error (MAE), root mean squared 
error (RMSE), relative absolute error (RAE), root relative 
squared error (RRSE) were utilised. Table 5 summarises 
the performance results. 

Overall, when 10-fold cross validation was used, the 
performance indices were worse than using the full training 
data since the cross validation tested the performance 
on unseen data. The RF model showed the biggest  
difference between the 10-fold cross validation and 
full training data, and this indicated the overfitting. 
Also, when the two predictor variables were used, the 
performance indices were similar or better than using the 
four predictor variables. Finally, in this experiment, linear  
regression and SVM models with the two predictor 
variables showed the best performance (underlined indices 

in Table 5). The fitted predictive models can be saved and 
loaded in WEKA for predicting the future TRLs with next  
unseen data.

Table 4. Environment for predictive modelling

Software Weka 3.8.4
Processor / RAM Intel® Core(TM) i5-8265U, CPU @ 1.60GHz, RAM 8.00GB

Algorithm

Linear 
regression

∙ Standard least-squares linear regression.
∙ An attribute selection method was not used.
(When it was used, the result was identical to Eqn. (1))

Support vector 
machine

∙ SVM for regression.
∙ The polynomial kernel was used after trials.

Random forest ∙ The number of trees in the random forest was set to 100.
∙ The maximum depth of the tree was unlimited.

Multi-layer 
perceptron

∙ For structures, two hidden layers were used after trials.
∙ Learning rate was set to 0.3 and the number of epoch was set to 500.

Table 5. Performance of predictive models

Linear regression SVM RF MLP
4 predictor 
variables

Full training 
data

MAE 0.143 0.138 0.056 0.157
RMSE 0.181 0.187 0.077 0.207
RAE 59.399% 57.513% 23.451% 65.385%

RRSE 61.889% 64.065% 26.333% 70.865%
10-fold cross 
validation

MAE 0.147 0.143 0.153 0.199
RMSE 0.186 0.189 0.203 0.241
RAE 60.828% 59.102% 63.512% 82.349%

RRSE 63.310 % 64.431% 69.274% 82.173%
2 predictor 
variables

Full training 
data

MAE 0.143 0.138 0.065 0.155
RMSE 0.181 0.186 0.087 0.208
RAE 59.509% 57.520% 26.915% 64.437%

RRSE 61.893% 63.888% 29.810% 71.332%
10-fold cross 
validation

MAE 0.145 0.139 0.172 0.186
RMSE 0.183 0.188 0.229 0.227
RAE 60.063% 57.842% 71.366% 77.017%

RRSE 62.485% 63.927% 77.969% 77.276%

SVM: support vector machine, RF: random forest, MLP: multi-layer perceptron
MAE: mean absolute error, RMSE: root mean squared error,
RAE: relative absolute error, RRSE: root relative squared error
Underline: the lowest error or the best performance

Figure 5. Regression analysis with two significant predictor 
variables.
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5. CONCLUSIONS
This paper proposes the framework of TRL transition 

predictions for early technology development in defense. 
Though predicting future TRLs is an important planning tool, 
it has been studied less actively than the other critical issues on 
TRL. Previous studies mostly focused on the current TRL and 
resorted to domain experts. The proposed framework is data-
driven and utilises both explanatory and predictive modelling 
techniques.

As a case study, the proposed framework was applied 
to real technology development data from DTiMS (Defense 
Technology InforMation Service) which was identified as a 
key resource. The result of explanatory modelling showed that 
the two predictor variables, TRL before R&D and project cost, 
were statistically significant for future TRLs. Also, popular 
predictive models were fitted and compared with various 
performance indices using 10-fold cross validation. The two 
selected predictive models were linear regression and SVM 
models with the lowest prediction errors. The comparison 
between the full training data and 10-fold cross validation 
confirmed that predictive modelling should be differentiated 
from explanatory modelling.

The two TRL transition prediction models can support 
the decision making in the early planning stage by predicting 
future TRLs of new technology development. The required 
information is the TRL before R&D and project cost of the new 
technology. Decision makers and program managers can use 
both the currently available approaches (e.g., AD2 and R&D3) 
and the data-driven predictive models for reducing schedule 
and cost risks. This study also showed the importance of 
defence technology database and its management. The current 
version of DTiMS does not support the data retrieval functions 
so that it requires a manual data collection. Furthermore, many 
missing values were found and that led to the data loss for the 
analysis.

In the future, more predictor variables need to be studied 
to better capture the pattern of TRL after R&D. That might 
enhance the explanatory power of about 60% in this study. 
The limitations of the study are as follows. The result of the 
case study cannot be generalised due to the data loss. Under 
the improvement of the data management system, more data 
should be tested for better predictive models. Furthermore, the 
case study tests only four models. Other modelling techniques 
or the combination of them can be tested whether it can improve 
the predictive power. 
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