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AbstrACt

For an integer 1,m ≥  we study cyclic codes of length   over a commutative non-chain ring 
2 2

,m mu+  where 
2u u= . With a new Gray map and Euclidean dual-containing cyclic codes, we provide many new and superior codes 

to the best-known quantum error-correcting codes. Also, we characterise LCD codes of length   with respect to 
their generator polynomials and prove that 

2m − _image of an LCD code of length   is an LCD code of length 2 . 
Finally, we provide several optimal LCD codes from the Gray images of LCD codes over 2 2

.m mu+ 
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1. INtroDuCtIoN
Quantum error-correcting codes have used to minimise 

the errors that occurred during the transmission of quantum 
information through a quantum channel. It has been playing an 
important role in quantum computing to solve a severe problem 
faster than a classical computer. For instance, the running time 
of the Shor’s Algorithm (1994, Peter Shor), which aims to find 
prime factors of a reasonably large integer ,N  is polynomial 
for the case of quantum computing and sub-exponential for the 
case of classical computing. Quantum information is different 
from classical information in many winsome and unfamiliar 
ways. For example, the fundamental unit of classical 
information is bit (discrete-valued) which can take binary digit 
0  or 1  while the basic unit of quantum information is qubit 
(continuous-valued) which can take both 0 , 1  and a unit circle 
by the principle of superposition. Moreover, a qubit cannot be 
converted into a classical bit (No-Teleportation Theorem), 
cannot be copied (No-Cloning Theorem), cannot be deleted 
(No-Deleting Theorem) and cannot be transported from 
one to multiple places (No-Broadcast Theorem). Therefore, 
the storing of quantum information is more difficult than 
classical information. Recently, quantum computing has been 
received remarkable attention in research due to its possible 
application in the description of modern computation and 
cryptography. Shor36 constructed the first binary quantum 
code9,1,13. Later, Calderbank5, et al. proposed a systematic 
method for constructing quantum codes from classical codes. 
Since then, many significant quantum codes were determined 
from linear codes over finite fields and rings12,16,28. In this 
context, the most used linear codes are cyclic codes which 
efficiently help to pursue. Kai & Zhu21 obtained quantum 

codes over 4  by using cyclic codes over 2
4 4 , 0.u u+ =   To 

obtain quantum codes over fields of odd characteristic, several 
papers on cyclic (constacyclic) codes over non-chain rings are  
available1,2,10,15,17,18,19,24,25 while for even characteristic, 
papers7,13,29,32,33,34 contributed some elegant quantum codes by 
using algebraic properties of cyclic codes over finite rings. 
Despite these works, a lot of quantum codes remain to determine 
over fields of even characteristic. To confront the possibilities, 
here we study cyclic codes of length   over 2

2 2
,m mu u u+ =   

(a family of non-chain rings) and obtain many new and better 
quantum codes than existing codes. Interestingly29, for 2,m =
constructed many quantum codes over 4  but with the help of 
a new Gray map here, we obtained many better quantum codes 
than the codes appeared in29. Interested readers can find more 
works on cyclic codes in4,20,26,30,31. 

A linear code that meets trivially with its dual is known 
as a linear complementary dual code (abbreviated as LCD). 
Some specific benefits of LCD codes over linear codes are 
( )i  nearest-codeword decoding problem for an LCD code is 
simpler than linear code, and ( )ii  an LCD code with possibly 
large minimum distance simultaneously prevents two popular 
attacks, namely, SCA (side-channel attack) and FIA (fault-
injection attack) in a cryptosystem6. Note that LCD codes 
were introduced by Massey27. Later, Yang and Massey38 
provided LCD codes as cyclic codes under some restrictions 
on their generator polynomials. In order to extend these codes 
over finite rings, recently many authors8,22,23 studied LCD 
codes over finite chain rings. Another side, it is still open to 
determine these codes over finite non-chain rings. Towards 
this, recently Yadav37, et al. studied LCD circulant codes over 
a non-chain ring .q q qu v+ + � � However, here we consider a 
family of non-chain rings 

2 2
,m mu+   where 2 , 1u u m= ≥  is 

an integer and study LCD codes of length  . There are other 
non-chain rings still left to study but our paper has a novelty of 
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producing many optimal LCD codes. Two major contributions 
of the article are ( )i  it provides many new and superior to the 
best-known quantum codes over 

2m , and ( )ii  it determines 
the structure of LCD codes over 

2 2m mu+  which are capable 
to produce good and optimal LCD codes over 

2m  under the 
Gray images.   

2. PrELImINAry
Let 

2m  be a Galois field of order 2m  with characteristic 2.  
Throughout, we use the notation 

2 2
.m mu= +    where 2 .u u=  

Thus   is a commutative ring with unity and of characteristic 
2. Also,   is a Frobenius, non-chain, semi-local ring with two 
maximal ideals 1 u〈 − 〉  and .u〈 〉  Recall that for any positive 
integer  , = × × ×



     forms an − module and any 

− submodule of   is called a linear code over   of length  . 
Further, each vector of a linear code ℑ  is known as a codeword. 
The dual of ℑ  is defined as { : 0, },⊥ = α∈ α ⋅β = ∀βℑ ∈ℑ  
where the Euclidean inner product of any two vectors 

0 1 1 0 1 1( , , , ), ( , , , )− −α = α α α β = β β β    is defined by 
1

0
.i i

i

−

=

α ⋅β = α β∑


 Clearly, ⊥ℑ  is itself a linear code. Now, 

ℑ  is called self-dual if ,⊥ℑ = ℑ  and self-orthogonal if 
.⊥ℑ ⊆ ℑ  From the elementary concept of ring theory, we have 

2 2
1 1 m mu u u u≅ 〈 − 〉 ⊕ 〈 〉 ≅ 〈 − 〉 ⊕ 〈 〉      (see14). Therefore, 

every element ϑ∈  can be expressed as (1 ) ' '',u uϑ = − ϑ + ϑ  
where 

2
', '' .mϑ ϑ ∈  In14,29, they defined the Gray map from 

2
2m→   as ( ', ''),ϑ ϑ ϑ  where (1 ) ' ''.u uϑ = − ϑ + ϑ  But, here 

we define the Gray map 2
2

: mϕ →   by ( ) ( ', '') ,M Mϕ ϑ = ϑ ϑ = ϑ  

where 2
2 22 2

( ', '') , ( ),m m
TM GL MM Iϑ = ϑ ϑ ∈ ∈ = ρ   with 

*
2mρ∈  and 2 2

( )mGL   is the set of all 2 2×  invertible matrices 

over 
2

.m  Similar maps were found in18,19,24,25, but the advantage 
of ϕ  is that the 

2m − images of codes have better parameters, for 
instance, in Example 5.1 (also in Table 2), our obtained quantum 
codes have larger distance than the code appeared in29 with the 
same length and dimension. Clearly, the map ϕ  is bijective 
and can be extended over  component-wise. Now, as in14, we 
review few basic facts for a linear code ℑ  of length   over .  Let 

1 2{ ' : (1 ) ' '' }, { '' : (1 ) ' '' }.u u u uℑ ℑ ℑ= ϑ ∈ − ϑ + ϑ ∈ = ϑ ∈ − ϑ ϑ ∈ℑ+    
Then 1 2&ℑ ℑ  both are linear codes over 

2m  of length  . 
Further, ℑ  has a unique representation 1 2(1 )u uℑ ℑ− ⊕ ℑ=  
and its dual is 1 2(1 ) .u u⊥ ⊥ ⊥ℑ ℑ ℑ= − ⊕  The generator matrix 

of ℑ  is given by 1

2

(1 )u G
G

uG
− 

=  
 

 where 1 2,G G  are generator 

matrices of 1 2, ,ℑ ℑ  respectively and 1 2 .ℑ = ℑ ⋅ ℑ  It is well-
known that the Hamming weight of χ∈ℑ , denoted by ( )Hw χ , 
is the number of non-zero components in χ  and the distance of 
ℑ  is given by ( ) min{ ( ) : 0 }.H Hd w= χ ≠ χ ℑ∈ℑ  We define the 
Gray weight for χ∈  by ( ) ( ( )),G Hw wχ = ϕ χ  and for a vector 

0 1 1( , , , )−χ = χ χ χ ∈ℑ  by 
1

0
( ) ( ).G G i

i
w w

−

=

χ = χ∑


 Again, the Gray 

distance Gd  between ', ''χ χ ∈ℑ  is ( ', '') ( ' ''),G Gd wχ χ = χ −χ  
and Gd  of ℑ  is ( ) min{ ( ) : 0 }.G Gd w= χ ≠ χ ℑ∈ℑ  By the above 
discussion, it is clear that ϕ  is a linear and isometric map from 
( , Gd ) to ( 2

2
,m

  Hd ). Consequently, for an [ , , ]Gk d  linear 
code ℑ  over  , its Gray image ( )ϕ ℑ  is a [2 , , ]Gk d  linear 
code over 

2m  with .G Hd d=  Now, the next theorem is useful 
to obtain self-orthogonal codes over 

2
.m

theorem 2.1 Consider a linear code ℑ  of length   over 
  such that ⊥ℑ ⊆ ℑ (i.e., self-orthogonal). Then ( )ϕ ℑ  satisfies 

( ) ( )⊥ϕ ⊆ ϕℑ ℑ  (i.e., self-orthogonal). 
Proof: Let  a linear code ℑ  satisfies ⊥ℑ ⊆ ℑ  

and , ( ).α β∈ϕ ℑ  Then there exist ,χ µ∈ℑ  and 

2 2
( )mM GL∈   with 2

TMM I= ρ  such that 

0 1 1 0 1 1( ) ( , , , ) & ( ) ( , , , ).M M M M M M− −α = ϕ χ = χ χ χ β = ϕ µ = µ µ µ    

In order to prove ( )ϕ ℑ  is self-orthogonal, we show 0.α ⋅β =  

Since ℑ  is self-orthogonal, 
1

0
0.i i

i

−

=

χ ⋅µ = χ µ =∑


 Therefore, 

1 1

0 0
0.T T T T

i i i i
i i

MM
− −

= =

α ⋅β = αβ = χ µ = ρ χ µ =∑ ∑
 

 Also, ,α β∈ℑ  

were arbitrary, ( ) ( ) .⊥ϕ ⊆ ϕℑ ℑ  Thus, ( )ϕ ℑ  is a self-orthogonal 

linear code of length 2  over 
2

.m

3. QuANtum CoDEs
Definition 3.1 A linear code ℑ  of length   over   is said 

to be a cyclic code if for each codeword 0 1 1( , , , ) ,−χ ℑχ χ ∈  
its circular shift 1 0 2( , , , ) .− −χ χ χ ℑ∈   

Recall that a cyclic code ℑ  of length   over a finite 

commutative ring   is equivalent to an ideal of [ ] .
1

x
x〈 − 〉

  This 

section aims to obtain quantum codes (Theorem 3.5) under 
the CSS (Calderbank-Shor-Steane) construction (Lemma 
3.1), where dual-containing cyclic codes are instrumental. 
Toward this, we first determine a condition for cyclic codes to 
contain their dual codes (Theorem 3.4). Before that, we review 
some important results (Theorem 3.1 to Theorem 3.4) which 
characterise cyclic codes and their duals, see29,35 for proofs of 
similar results.

theorem 3.135 A linear code 1 2(1 )u uℑ ℑ− ⊕ ℑ=  of 

length   over    is cyclic if and only if 1 2,ℑ ℑ  are cyclic 
codes over 

2
.m

theorem 3.235 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic 
code of length   over .  Then ( )xℑ = 〈ξ 〉  where 

1 2( ) (1 ) ( ) ( )x u x u xξ = − ξ + ξ  and 1 ( ) ( )i ix x x− = ξ η  in 
2

[ ]m x  
for 1, 2.i =

theorem 3.335 Consider a cyclic code 1 2(1 )u uℑ ℑ− ⊕ ℑ=  

of length   over � such that 1 2(1 ) ( ) ( ) ,u x u x= 〈 −ℑ ξ + ξ 〉  
where 1 ( ) ( ),i ix x x− = ξ η  for 1, 2.i =  Then
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1. 1 2(1 )u u⊥ ⊥ ⊥ℑ ℑ ⊕ ℑ= −  is a cyclic code of length   over 
.

2. * *
1 2(1 ) ( ) ( ) ,u x u x⊥ = 〈 + ηℑ − η 〉  where * ( )i xη  is reciprocal 

of the polynomial ( ),i xη  for 1, 2.i =
3. 1 2{deg( ( )) deg( ( ))}2 .m x xξ + ξ⊥ =ℑ

theorem 3.429 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic code 

of length   over   and 1 2(1 ) ( ) ( ) .u x u x= 〈 −ℑ ξ + ξ 〉  Then 
⊥ℑ ⊆ ℑ  if and only if *1 0(mod ( ) ( )),i ix x x− ≡ ξ ξ  where 

* ( )i xξ  is reciprocal of ( )i xξ  for 1, 2.i =

Definition 3.2 Let p  be a prime and ,mq p=  for a positive 

integer .m  Let ℂq�  be a q − dimensional Hilbert space over 
the complex field ℂ Then the set of − folded tensor product  
(ℂ( )q q q q⊗ = ⊗ ⊗ ⊗



� � �  �ℂ ℂ ℂ is also a q − dimensional 
Hilbert space. Moreover, a quantum code represented by 

[[ , , ]]qk d  is defined as a subspace of (ℂ( )q ⊗�  with dimension 
kq  and minimum distance d . Again, we call [[ , , ]]qk d  is 

superior to [[ ', ', ']]qk d  if any one or both of the following 
holds:
1. 'd d>  whenever the code rate '

'
k k
=

 
 (Larger 

distance).

2. '
'

k k
>

 
 whenever the distance 'd d=  (Larger code rate).

Lemma 3.1 (CSS construction)12 If ℑ  is an [ , , ]qk d  
linear code with ⊥ℑ ⊆ ℑ  over ,q then a q − ary quantum code 
with parameters [[ , 2 , ]]qk d−   exists.

Now, by using Lemma 3.1 we construct quantum codes 
as below.

theorem 3.5 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic code 
over   of length   and ( )ϕ ℑ  has the parameters [2 , , ].Hk d  
If ,⊥ℑ ⊆ ℑ  then a 2m − ary quantum code with parameters 

2
[[2 , 2 2 , ]] mHk d−   exists.

Proof: We have ⊥ℑ ⊆ ℑ , which implies that 
( ) ( ).⊥ϕ ⊆ ℑϕℑ  Again we have ( ) ( ) .⊥ ⊥ϕ = ϕℑ ℑ  Hence, ( )ϕ ℑ  

is a 2m − ary [2 , , ]Hk d  linear code containing its dual code. 
Finally, by using Lemma 3.1, we construct a 2m − ary quantum 
code 

2
[[2 , 2 2 , ]] .mHk d− 

4. LCD CoDEs
Definition 4.127 A linear code ℑ  of length   over 

  is called a linear complementary dual (LCD) code if 
{0}.⊥∩ =ℑ ℑ

The goal of this section is to characterise LCD cyclic 
code of even length (Theorem 4.2) and odd length (Theorem 
4.4) with respect to their generator polynomials, respectively. 
In this regard, first we recall the structure of LCD codes over 
finite fields q  given by Lemma 4.1 and Lemma 4.2.

Lemma 4.138 Let ( )xℑ = 〈ξ 〉  be a cyclic code of length   

over ,mp
  where stp= pts and gcd( , ) 1.p s =  Then ℑ  is LCD if 

and only if ( ) ( )x x∗ξ = ξ  and each monic irreducible factor of 
( )xξ  has the same multiplicity in 1x − and in ( ).xξ

Lemma 4.238 Consider a cyclic code ℑ  of length   over 
mp

  where gcd( , ) 1.p =  Then ℑ  is LCD if and only if ℑ  is 
a reversible cyclic code.

theorem 4.1 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic code of 
length   over .  Then ℑ  is an LCD code if and only if 1 2,ℑ ℑ  
are LCD codes over 

2
.m

Proof: The result follows from the fact that 
{0} {0},i i

⊥ ⊥∩ = ⇔ ∩ =ℑ ℑ ℑ ℑ  for 1, 2.i = .
theorem 4.2 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic code 

of even length   over   such that ( ) ,i i xℑ = 〈ξ 〉  for 1, 2.i =  
Then ℑ  is LCD if and only if ( ) ( )i ix x∗ξ = ξ  and each monic 
irreducible factor of ( )i xξ  has the same multiplicity in 1x −  
and in ( )i xξ  for 1, 2.i =

Proof:  Follows from Lemma 4.1 and Theorem 4.1.
theorem 4.3 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic code of 

odd length   over .  Then ℑ  is LCD if and only if 1 2,ℑ ℑ  are 
reversible cyclic codes.

Proof: Let ℑ  be an LCD cyclic code of odd length   over 
.  Then by Theorem 4.1, 1 2,ℑ ℑ  are LCD codes of length   

over 
2

.m  Hence, by Lemma 4.2, 1ℑ  and 2ℑ  are reversible 
cyclic codes.

Conversely, let 1 2,ℑ ℑ  be reversible cyclic codes of odd 
length   over 

2
.m  Then by Lemma 4.2, we have 1 2,ℑ ℑ  are 

LCD cyclic codes, and hence by Theorem 4.1, ℑ  is LCD over 
.

theorem 4.4 Let 1 2(1 )u uℑ ℑ− ⊕ ℑ=  be a cyclic code of 
odd length   over ,  where ( ) ,i i xℑ = 〈ξ 〉  for 1, 2.i =  Then 
ℑ  is LCD if and only if ( ) ( )i ix x∗ξ = ξ  (i.e., ( )i xξ  is self-
reciprocal) for 1, 2.i =

Proof: Note that a cyclic code ( )xℑ = 〈ξ 〉  of length   
over 

2m  is reversible if and only if ( ) ( )x x∗ξ = ξ  (i.e., ( )xξ is 
self-reciprocal). The rest part of the proof is easily verified by 
using Theorem 4.3.

Lemma 4.3 For a linear code ℑ  of length   over  , 
( ) ( ) ( ).⊥ ⊥ϕ ∩ℑ ∩ϕℑ ℑ= ϕℑ

Proof: Let ( ).⊥α∈ϕ ∩ℑ ℑ  Then there exists 
⊥β∈ℑ∩ℑ  such that ( ) .ϕ β = α  Also, ⊥β∈ℑ∩ℑ  

implies that ( ) ( ) ( ).⊥ℑα = ϕ β ∈ ℑϕ ∩ϕ  Therefore, 
( ) ( ) ( )⊥ ⊥ℑ ℑ ℑϕ ∩ ∩ϕ ℑ⊆ ϕ . On the other hand, let 

( ) ( )⊥α∈ϕ ∩ ℑϕℑ . Then there exist , ⊥β∈ℑ γ∈ℑ  such 
that ( ) , ( ) .ϕ β = α ϕ γ = α  Since ϕ  is injective, .β = γ  

Therefore, ,⊥β∈ℑ∩ℑ  and ( ) ( ).⊥α = ϕ β ∈ϕ ℑ∩ℑ  Hence, 

( ) ( ) ( ).⊥ ⊥ϕ ∩ϕ ⊆ ϕ ∩ℑ ℑ ℑ ℑ  Thus, ( ) ( ) ( ).⊥ ⊥ϕ ∩ℑ ∩ϕℑ ℑ= ϕℑ  
Again, we know that ( ) ( ) .⊥ ⊥ϕ = ϕℑ ℑ  Hence, the desired 
result.

theorem 4.5 A linear code ℑ  of length   over   is LCD 
if and only if ( )ϕ ℑ  is an LCD code of length 2  over 

2
.m
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Proof: Let ℑ  be an LCD code of length   over .  Then 
{0},⊥∩ =ℑ ℑ  i.e., ( ) {0}.⊥ϕ ∩ =ℑ ℑ  Now, by Lemma 4.3, 

( ) ( ) ( ) {0}.⊥ ⊥ϕ ∩ = ϕ ∩ϕ =ℑ ℑ ℑ ℑ  Hence, ( )ϕ ℑ  is an LCD 
code of length 2  over 

2
.m

Conversely, let ( )ϕ ℑ  be an LCD code of length 2  
over 

2
.m  Then ( ) ( ) {0}.⊥ℑ ℑϕ ∩ϕ =  By Lemma 4.3, we 

have ( ) ( ) ( ) {0}.⊥ ⊥ϕ ∩ = ϕ ∩ϕ =ℑ ℑ ℑ ℑ  Since, the map ϕ  is 
injective, {0}.⊥∩ =ℑ ℑ  Hence, ℑ  is an LCD code of length 
  over .

5. ExAmPLEs
There are a few online databases9,11 for quantum codes over 

fields of size upto 9. even these have been updated regularly, 
still a lot of gaps are there to fill. Therefore, to compare our 
obtained quantum codes, we use these databases as well as few 
published papers13,29,34 (for small and larger fields). here, we 
obtain many optimal as per11, and superior to the best-known 
quantum codes. On the other side, as the Gray images of LCD 
codes over ,  we also find many optimal and near-optimal 
(good) LCD codes according to the database11. We used the 
Magma computation system3 to find out these examples.

Example 5.1 Let 2
4 4 ,u u u= + =    and 11.=  Then 

11 5 4 3 2 2 5 2 4 3 2
41 ( 1)( 1)( 1) [ ],x x x wx x x w x x w x x x wx x− = + + + + + + + + + + + ∈  

where 2 1 0.w w+ + =  Let 
5 4 3 2 2 5 2 4 3 2

1 2( ) 1, ( ) 1x x wx x x w x x x w x x x wxξ = + + + + + ξ = + + + + +  

and 2
2 4 2

1
( ),  .

1
Tw

M GL satisfying MM w I
w

 
= ∈ = 
 

  Hence, 

1 2(1 ) ( ) ( )u x u xℑ = 〈 − ξ + ξ 〉  is a cyclic code of length 11  
over   and ( )ϕ ℑ  has the parameters [ ]22,12,6 .  Since 

11 *1 0 (mod ( ) ( )),i ix x x− ≡ ξ ξ  for 1, 2,i =  we have ⊥ℑ ⊆ ℑ (by 
Theorem 3.4). Finally, by Theorem 3.5, we have the associated 
quantum code 4[[22,2,6]] , which has the same code rate but 
larger minimum distance than the existing code 4[[22,2,5]]  
given by29.

In Table 2, we provide cyclic code  

1 2(1 ) ( ) ( )u x u xℑ = 〈 − ξ + ξ 〉  of length ,  where 1 2( ), ( )x xξ ξ  are 
factors of 1x −  in 

2
[ ]m x  such that *1 0 (mod ( ) ( )),i ix x x− ≡ ξ ξ  

for 1, 2.i =  Also, we compute their Gray images ( )ϕ ℑ  

by using the matrix 2 2

1
( ) 

1 m

w
M GL

w
 

= ∈ 
 

  satisfying 

2 ( 1) .TMM w I= +    By comparing them, we conclude that our 
obtained quantum codes 

2
[[ , , ]] mk d  (in 6th column) are better 

than the existing quantum codes 
2

[[ ', , ]] mk d′ ′  (in 7th column) 
in respect of larger code rates or larger minimum distances.

Following Theorem 4.4, we present LCD code ℑ  of 
length  , whose generator polynomials 1 2( ), ( )x xξ ξ  are 
enlisted in Table 1.  The Gray images ( )ϕ ℑ  are given in 5th 
column, which presents several optimal and near-optimal 
linear codes as per the database11. Note that we call a linear 
code 

2
[ , , ] mk d  is near-optimal (or, near to optimal) 

2
[ , , ] mk d ′  

(given by11) if 2.d d′ − ≤  The codes in 5th column of Table 1 

table 1. optimal LCD codes as Gray images of LCD codes

m  1( )xξ 2 ( )xξ ( )ϕ ℑ d  in11

2 3 111 11 #
4[6,3,3] 4d =

2 5 11 1 1w *
4[10,7,3] 3d =

2 5 11 2 21 1w w *
4[10,6,4] 4d =

2 7 11 1111111 #
4[14,7,4] 6d =

2 13 11 21 0 0 1w w w #
4[26,19,4] 6d =

2 17 11 11w 2 21 11 11 1w w w #
4[34,22,7] 9d =

2 17 11 11 11w *
4[34,29,4] 4d =

3 5 11 11111 #
8[10,5,4] 5d =

3 7 11 51 1w *
8[14,11,3] 3d =

3 7 2 21 1w w 11 *
8[14,10,4] 4d =

3 9 11 41 1w *
8[18,15,3] 3d =

3 9 5 51 1w w 11 *
8[18,14,4] 4d =

3 13 11 3 5 31 1w w w #
8[26,21,4] 5d =

3 19 3 6 6 6 31 1w w w w w 5 3 3 3 51 1w w w w w #
8[38,28,7] 8d =

marked by symbol ∗  are optimal and marked by symbol #  are 
near-optimal.

In order to concise Tables 1 and 2, we represent the 
polynomial ( )i xξ  by a string consisting of their coefficients 
in decreasing order of the degree of x. For instance, we use 

21 0w w w  to represents the polynomial 4 3 2 .x wx w x w+ + +

6. CoNCLusIoN
We obtained 7  optimal as well as 7  near-optimal (good) 

LCD codes in Table 1 as per the database11 while in Table 
2, we obtained many non-binary quantum codes better than 
the existing (in references9,13,29,34) non-binary quantum codes. 
Therefore, our presented non-binary quantum codes have 
outperforming parameters than the available parameters of the 
best-known non-binary quantum codes. Further, to obtain codes 
over finite fields of odd characteristic, in the future this work 
can be extended over the ring ,q qu+   where 2 , mu u q p= =  
and p  is a prime.
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