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Design and Simulation of Blending Function for Landing Phase of a UAV

K. Senthil Kumar,  C. Sudhir Reddy, and J. Shanmugam
Madras Institute of Technology (MIT), Anna University, Chennai-600 044

ABSTRACT

This paper aims to achieve the autonomous landing of unmanned air vehicle (UAV).  It
mainly deals with glide path design, flare path design, design of blending function, and
interfacing the glide and flare paths with the blending function. During transition from glide
slope to flare path, a UAV will tend to the unstable region. In a manned aircraft, the pilot
controls the unstability that occurs during the change of phase from glide slope to flare, but
which is impossible in UAV till now. A blending function has been formulated for use in a UAV
to overcome this unstability during transition. This simulation is done with the Matlab Simulink
and the results are reported.

 Keywords: UAV, landing phase, glide slope, flare path, blending function, simulation, unmanned air
vehicle

1 . INTRODUCTION

Over the past few decades, a keen interest is
growing for the development of flying objects of
small size for a variety of civilian and military
applications. An unmanned autonomous aerial vehicle
can perform tasks which would be exceedingly
difficult or hazardous for a manned vehicle. Possible
applications of this technology include search, rescue,
surveillance, aerial mapping, inspection of structures
like bridges and power lines, particularly in environmental
conditions where human guided flights are not possible.
The strategic importance of their use as reconnaissance
aircraft is easily understood. Various attempts have
been made to automate the control of an aerial
flying vehicle. An unmanned air vehicle (UAV) is
expected to complete the mission and return to the
base in an autonomous manner. The recovery of
a UAV is the most challenging and hazardous part
of a UAV's flight.

2 . PROBLEM STATEMENT

In this paper, an attempt has been made to design
and simulate the blending function for landing phase
of a UAV. The landing phase is divided into two
parts, viz; glide path and flare path. The problem
faced during the transition from glide path to flare
is clearly addressed in this paper. A new concept
termed as blending function during the transition region
is discussed and a possible solution is suggested.
Flying aircraft are subject to wind disturbances1,2

that can be fatal when these occur close to the
ground while landing. However, this problem is not
addressed in this paper due to autoland systems that
are routinely employed are not designed to handle
large wind gusts that occasionally occur.

3. DESIGN OF BLENDING FUNCTION

The blending function is mixing of signals during
the transition from glide path3-8 to  flare path 3-7,9.



316

DEF SCI J, VOL. 58, NO. 3, MAY 2008

This function is conceived to solve the problem of
extreme oscillations and instability during the transition
period. The proposed geometry of blending function
is shown in Fig.1. In the blending function, the gain
of glide and flare paths is varied according to
variation in range. It is observed that the glide path
gain is decreasing and the flare path gain is increasing.
By using a limiter, the upper limit of the gain is set
to 1 and the lower limit is set to 0. At any point
the sum of the glide and the flare path gain is 1.
From range R

1
 to R

3,
 the glide path alone will be

present, the gain of the glide path is 1 and the flare
path gain is 0. From R

2
 to 0 only the flare path will

be present, the glide path gain is 0 and the flare
path gain is 1. In between R

3
 and  R

2
 the blending

function will occur and the gain will vary with glide
path gain decreasing from  1 to 0 and flare path
gain increasing from 0 to 1. The conditon of the
range is ( R

1
> R

3
> R

2
> 0). Here, R

1 
is the point

from which glide path starts; G
g1 

is the gain at
which glide path starts; R

2  
is the range at which

glide path gain becomes zero;  R
3
 is the range at

which flare path gain becomes zero; and G
f1  

is the
flare path gain at R

1
.

The equation of straight line with coordinates
(x

1
, y

1
) and (x

2
, y

2
) is given by
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where G
g 
is the Glide path gain at every instant of

range R, and the flare path gain equation with the
coordinates (R

1
, �G

f1
) and (R

3
, 0) as
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where G
f
 is the flare path gain at every instant of

range R.

In the region between range R
3
 and R

2
 the

blending phenomenon will occur.

4.  MATLAB IMPLEMENTATION OF
BLENDING FUNCTION

Here R
2
=3000; R

3
=5000; G =

3 2

1

R R-

The geometrical implementation of the blending
equations using Matlab Simulink11-13 is shown in
Fig. 2 and the interfacing of blending function with
the glide and flare paths is shown in Fig. 3.

 

Figure 1. Geometry of blending function.
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5 . RANGE AND HEIGHT CALCULATION

Figure 4 illustrates the geometry to find out
the instantaneous range of UAV which mainly depends
upon the latitude, longitude and altitude (LLA) of
the UAV and the destination runway.

The latitude conversion to feet is relatively
constant from the equator to the poles and is
approximated at all points as 6076 ft/min. The
longitude conversion to feet varies from the equator
to the poles. This is because the lines of longitude
become closer towards the poles. The circle
created by intersecting a plane with the earth at
some line of latitude will have a radius equal to
the radius of the earth times the cosine of the
latitude angle. The radius of this circle is used
to calculate the circumference of the earth at
that particular latitude. Regardless of the
circumference of the circle, it still contains 3600,
thus a conversion factor can be calculated. The
website www.earth.google.com 14 provides
commonly used constants, conversion factors and
measurements. Google earth provides the average

radius of the earth as 36,522 ft. This then yields
the conversion factor for longitude as
36,522*cos(latitudeo) ft/min.

The steps involved for LLA calculation are:

(i) known parameteres are airport latitude, airport
longitude, base elevation of the runway and
initial ground distance from which glide path
starts,

(ii) based on range, height of aircraft above base
elevation are calculated, and

(iii) the aircraft LLA is calculated as:

ini head initial Threshold
1

Gd cos( T ) Lat = lat
180 6076 60

p
´ ´ ´ +

´
  (9)

ina head

initial Threshold

Initial

1
Gd  sin( T )

180 6076 60 Lon  =  lon  
cos(  lat )

180

p
´ ´ ´

´ +
p

´
     (10)

ThresholdBase elevation = alt                 (11)

 Figure 2. Blending function.

 Figure 3. Interfacing of blending function with glide and flare paths.
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Initial Initialalt = h +Base ele  vation         (12)

(iv) the runway end LLA is calculated as

ina

head Initial

Runwayend

[{Gd  +Runway length}

ð 1
×cos( ×T )× ]+lat

180 6076×60
= lat

é ù
ê ú
ê ú
ê úë û         (13)

ina head

Initial

Initial

Runwayend

ð 1
[Gd +Runway length}×sin( ×T )× ]

180 6076×60 lon
ð

cos( × lat )
180
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é ù
ê ú

+ê ú
ê ú
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RunwayendBase elevation= alt                    (15)

(v) instantaneous range and height is calculated
as:
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Initial Delta Ins range   range = range  -            (18)

Ins Ins alt   Base elevation = h-                  (19)

The symbol and description of the various
parameters used in the equations are given below:

 Figure  4. Latitute, longitude, and altitude calculations.

 

Symbol Description Symbol Description 

Gdini 
Initial ground 
distance 

Thead True heading 

Latinitial 
Initial 
latitude 

loninitial 
Initial 
longitude 

altinitial 
Initial 
altitude 

latThreshhold 
Threshold 
latitude 

lonthreshhold 
Threshold 
longitude 

altThreshhold 
Threshold 
altitude 

latrunwayend 
Runwayend 
latitude 

lonRunwayend 
Runwayend 
longitude 

altrunwayend 
Runwayend 
altitude 

rangeinitial Initial Range 

RangeDelta 
Change in 
range 

rangeins 
Instantaneous 
height 

hinitial Initial height hins 
Instantaneous 
height 
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5.1 Sample Calculation

In this paper, the Dallas Fort Worth International
Airport has been considered for the landing phase
of UAV with the following known parameters:
True heading of 180.3 deg, base elevation of
607 ft, latitude of 2.93483568652165 deg, longitude
of � 97.0268825156042 deg and Initial ground distance
of 24300 ft. These values are used to calculate
initial range, instantaneous range, initial height and
instantaneous height. Using steps (iii) to (v), the
calculated values are:

Initial height = 1060.960 ft

Initial altitude = 1667.96 ft

Initial latitude = 33.00149046735776°

Initial longitude = � 97.0272315271941°

Runway-end altitude = base elevation = 607 ft

Runway length = 6076 ft

Runway-end latitude = 32.91816924831753°

Runway-end longitude = � 97.0267952483441°

Initial range = 24323.1502096 ft

Delta range = 6361 ft

Instantaneous range = 24323.1502096�6361=17962 ft

With simulation run in Matlab Simulink environment
for about 20 s, it is observed that  the simulated
instantaneous range is equal to the calculated
instantaneous range. Hence, it has been proved
that the algorithm is more efficient and this has
been verified with  many more airports around the
world.

6. SIMULATION RESULTS

6.1 Gain Variation with Range

The simulation input namely latitude, longitude
and altitude are given from the airport selector
function and these values are used to calculate the
range. The simulation results are shown in Figs 5�8.
In Fig. 5, the range, glide multiplier gain and flare
multiplier gain variation with time is shown. At the
glide starting point, the range is around 23,000 ft

and by the time it reaches 86 s, the range is 0 ft.
This implies that landing has been accomplished.
Table 1 describes the gain variation with range
starting from glide slope to touch down point.

Figure 6 shows the variation of the glide multiplier
gain with range and it is observed that from glide
slope starting point, i.e., 23,000 ft to 5000 ft, the
gain remains as 1 between 5000 ft and 3000 ft, the
gain gradually decreases from 1 to 0 and from
3000 ft to touch-down point, the gain decreases to 0.
Figure 7 shows that the flare multiplier gain varies
from 0 to 1. The flare starting point is 5000 ft and
up to that point, the gain is 0, and from 3000 ft
to touch-down point the gain remains as 1. It means
that in the flare path between 5000 ft and 3000 ft,
the gain is increasing from 0 to 1. It is observed
from Figs 6 and 7 that between 5000 ft and 3000 ft,
the glide path gain is decreasing, the flare path
gain is increasing, and the blending phenomenon
is said to occur. From  Fig. 8, it is inferred that
the summation of the glide and flare path gain
always remains as 1.

Range (ft) Glide path gain Flare path gain 

23000-5000 1 0 

5000-3000 1à 0 0 à 1 

3000-0 0 1 

Table 1. Gain variation with range

Figure 5. Response of range, glide multiplier gain, and
flare multiplier gain.
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6.2 Response of the Parameters Variation
without Blending Function

The responses of the various parameters without
using blending function are shown in Figs 9-15.The
flare path starts at 3000 ft, above 3000 ft glide path
alone will be present. In terms of time, upto 65 s
only glide path will be present and after 65 s the
flare path alone will be present.

From Fig.15 it can be observed that during
transition from glide slope to flare path, the UAV
will experience large variation warranting more
deflection in the elevator command which is not
recommended during this transition.

6.3. Responses of the Parameters Variation
 with Blending Function

The responses of the various parameters with
the blending function are shown from  Figs 16�22.
The blending phenomenon occurs from 5000 ft
to 3000 ft, which means that between 5000 ft
and 3000 ft the UAV will be in both glide path
and flare path. Above the altitude of 5000 ft
(i.e., from 23000 ft to 5000 ft) the UAV will be
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Figure 6. Glide multiplier gain versus range.
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in the glide path and below the altitude of 3000 ft
(i.e., from 3000 ft to touch-down point), it will
be in the flare path only. In terms of time, the
blending phenomenon will occur between 59 s
and 65 s. During 0�59 s, only the glide path will
be present and after 65 s, only the flare path will
be present.

7 . COMPARISON OF PERFORMANCE
WITH AND WITHOUT BLENDING
FUNCTION

The Figs 23�30 show the comparison of angle
of attack, sideslip, height, pitch rate, roll rate, and
yaw rate with and without blending function. The
dotted lines indicate the parameter variation with
blending function and thick lines indicate the parameter
variation without blending function. The parameters
are compared with range variation.

From 5000 ft to 3000 ft with time variation
from 59 s to 65 s, the angle of attack variation with
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Figure 13. Responses of aircraft velocity in x, y, and
z directions.
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Figure 16. Responses of angle of attack and side slip.
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and without blending function is as shown in
Fig. 23. On comparison, it is observed that when
the blending function is not included, the variation
is large, i.e., around 15 per cent, but when the
blending function is included, the variation is
reduced to about 3 per cent.

The decent rate shown in Fig. 24 is smoother
with the blending function than  when compared
to without the blending function. The smooth variation
of decent rate means that when the oscillations get
reduced, the steepness will also get reduced.

The comparison of heights shown in Fig. 25
proves that the steepness of the aircraft  is reduced.

The exponential decay is found to be good when
including blending function. If the steepness increases,
i.e., without blending function, the force on the
landing gear will also be increased. This may cause
the landing gear failure and wear of tires, which
makes the landing of the aircraft difficult.

On comparing the pitch rate as shown in Fig. 26,
it is observed that the variation and the oscillations
are considerably more when the blending function
is not included. The variations are reduced when
the blending function is included.

The comparison of pitch is shown in Fig. 27.
It is observed that the instant pitch is available by
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Figure 26. Response of pitch rate.
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Figure 27. Response of pitch.

Figure 28. Response of velocity in x-direction.
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Figure 30. Response of elevator command.

summing the pitch at the previous instant and
the pitch rate at that instant. Hence, when the
pitch rate varies, the pitch will  also vary
automatically.

The variation of velocities wrt x- and z-directions
are shown in Fig. 28 and Fig. 29  respectively with
and without the blending function. The blending
function ensures reduced velocity in z -direction
which will cause smooth contact of the wheels
with surface on touch down.

The elevator command, which is given to the
elevator, is shown in Fig. 30, with and without
blending function. The elevator deflection seems
to be more when the blending function is not used,
requiring more control power which might cause
damage to control surface, resulting in fatal accidents
during landing. Using the blending function, the
control power required to move the elevator is
substantially reduced.

Thus, using blending function, the oscillations
are reduced and the control power is also considerably
reduced as evident from the graph and ensures
safe landing.

Parameter Without blending function With blending function 

Angle of attack Variation is high Variation is low 

Decent rate Sudden  change Smooth change 

Height Steepness is high Steepness is low 

Pitch rate Variation is high Variation is low 

Pitch Variation is high Variation is low 

Forward velocity in x-direction Variation is not smooth Variation is smooth 

Forward velocity in z-direction Variation is high Variation is low 

Elevator command High deflection Small deflection  

Table 2. Performance measures

 

Parameters At the glide  
slope begin  

(0 s) 

At the start of 
blending function 

 (59 s) 

At the end of 
blending function  

(65 s) 

At touch-down 
point   
(86 s) 

Angle of attack (deg) 2 6 5.6 - 0.3 

Sinkrate (ft/s) 20.8 14.71 - 18.6 - 0.001 

Altitude (ft) 1074 221 123 7.5 

Pitch rate (deg/s) 3.7 - 0.014  - 0.5 0 

Pitch angle (deg) 0.5 3.5 2.5 - 0.3 

Incremental forward velocity (ft/s) 325 330 332 184 

Incremental vertical  velocity (ft/s) 12 35 32.6 - 1 

Throttle 0.045 - 0.06 0.2466 0.1 

Elevator command (deg) 0.18 0.2696 - 0.06 0 

Range (ft) 24330 5000 3000 0 

Table 3. Typical values of performance measures
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8 . COMPARISON OF PERFORMANCE
MEASURES

Measures of performance6 are required to specify
the desired landing conditions of aircraft. Basically,
they require that the aircraft must land within the
desired envelope of dispersions. Table 2 summarises
the blending performance measures.

9 . CONCLUSIONS

In the present study, a blending function has
been formulated for use in an UAV using simulation
with Matlab Simulink. From the simulation results,
it is inferred that the blending of signals during
transition from glide slope to flare solves the problem
of unstability and extreme oscillations. The property
of the blending function has proved that the summation
of the gains is always equal to 1. It is evident that
the landing of the UAV using blending function
gives good performance measures.
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