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ABSTRACT

Body armour technologists over the years are seeking to develop protective systems which
are both effective and lightweight. However these hard armour materials are very expensive and
have certain weight constraints. From this point of view, natural fibres and fillers have attracted
the attention of researchers due to their low density with high specific strengths, abundance,
availability, renewability and being environmental-friendly. This paper reports the potential use
of coconut shell powder-epoxy composite (COEX) panel bonded with Twaron CT716 fabric as
a hard armour material and the characteristics of its fracture imprints from a specific threat level
when subjected to ballistic tests' (N1J Standard 0108.01). It was observed that the imprint patterns
on the particulate composite (COEX) could be identified according to effectiveness in impact
energy dissipation. COEX/Twaron test panel was found to withstand impact equivalent to N1J
Level IIIA using 9 mm FMJ ammunition but perforated at NIJ Level III of 7.62 mm FMJ bullet
impacts. Test results showed that COEX panel do possess shock absorbance characteristics and
can be utilised as an armour component in the hard-body armour system. Dependency on
Twaron fabric layers as ballistic reinforcements has been reduced up to 3-time with 170 per cent
improvement on energy-absorption capabilities when using COEX composite as the frontal
component of the armour.

Keywords: Coconut shell powder, ballistic impact, armour panel, natural composite material, composite
armour, twaron fabric

Design of ballistic armour systems must take
into account several factors such as the type of
ballistic threat, the ability to manufacture the armour
system and the properties of the armour components.
These factors can also be further supplemented
with multi-hits performance, environmental conditions,
space limitations, manufacturing challenges, cost
and weight limitations, physical properties of facing
and backing material, and overall ballistic performance

of the system.Oxide ceramics, in particular alumina
ceramics, have a high level of physical properties
that are suitable for hard armour application. Ceramics
can be manufactured using a variety of methods
for instance, slip casting, pressing and injection
molding, without the expensive equipment. Despite
elevated density (up to 3.95 g/cm?), ceramics is
known to be used for ballistic protection. Evaluation
of ballistic performance of ceramics has been a
difficult task due to the number of reasons such
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as the type of threat, projectile velocity, projectile
geometry, nature of ceramics, target configuration
in terms of front and backing material and their
thicknesses, angle of impact and support conditions
can have a profound influence on the ballistic results.

However, in recent years, researchers have
started to venture the possibility of integrating natural-
based product into the ballistic related studies.
Wambua', et al., have evaluated flax, hemp and
jute-reinforced polypropylene composites, with or
without mild steel backing or facing, under ballistic
impact test conditions. They concluded that the
ballistic limit or V of the natural fibre composites
was found to be increasing non-linearly while increasing
areal density and composite thickness. Jute composites
demonstrated the least V, and kinetic energy absorption
of the plain composites probably due to the low
strength and brittleness of the fibers. In terms of
energy absorption, hybrid structures have a clear
advantage over mild steel and the plain natural?
based composites. Rozi?, et al. have reported to
investigate the ballistic impact performance of high-
strength, high-modulus fabrics coated with natural
rubber (NR). The effect of different coating techniques
and NR modulus were studied. In general, it was
found that all coated specimens increased in weight
and thickness regardless of the type of NR used.
In the 2-layer fabric system, the highest ballistic
impact resistance was obtained from fabrics coated
using the single-dip coating technique. The combination
of two neat and two NR-coated Twaron fabrics
in the 4-layer fabric systems absorbed more ballistic
impact energy than all-neat fabric systems. It is
believed that the enhancement to ballistic impact
was related to higher frictional effects among the
yarns.

Most of the research on green composites to
date has used plant-based fibres because of their
ready availability. However, opportunities exist for
using high-strength protein fibers, such as dragline
silk obtained from the golden orb spider as reported
by Netravali and Chabba®. On a per weight basis,
these fibres are five-ten-time stronger than steel
and could form the basis of advanced green composites.
Unfortunately, silking the golden orb spider is a
difficult and time-consuming process. These small

creatures are only capable of producing about 1
mg of dragline silk per day. As a result, many
research groups were studying the structure and
the chemistry of spider silk in an effort to synthesize
polypeptide molecules with similar chemistry and
produce artificial fibres in the lab (Gould*, Grubb
and Jelinski®). Several researchers have introduced
spider genes into various bacteria and other animals
to produce similar proteins. The most notable efforts
have been those of Nexia Biotechnologies, Inc. as
reported by Gould* which has successfully developed
high-strength BioSteel® fibres based on spider silk
protein by transferring spider silk genes into goats.
The technique allows spider silk proteins to be
expressed in the goat's milk. The goats are milked
by conventional means, the proteins extracted from
the milk, and spun into filaments. Since continuous
filaments are produced, there is the possibility of
using these fibres for many applications, such as
body armour application and aerospace materials.

This study aims to initially investigate the ballistic
impact performance of in-house formulated natural-
based composite tiles, which are made from coconut
shell powder at different shape configurations. Although
termed as a particulate composite material due to
its constituents consisting of a reinforcement material
(coconut shell) and matrix (epoxy), the COEX
composite exhibits brittle like characteristic and
comparable to a ceramic material. A series of
ballistic tests, according to NI1J Standard 0108.01°¢
(Ballistic Resistant Protective Materials) at threat
levels 11, IIIA, and III were respectively carried
out. Impact damage characterisations and the fracture
behaviour of the present composite armour panel
was observed for this work.

2. MANUFACTURING PROCEDURE

Tile shape configuration is one of the common
attributes of ceramics-based armour that is used
to improve the multi-hit capability of the armour.
This multi-hit capability can be defined as the
ability of the armour to withstand more than one
projectile impact at a specific area on the armour.
For this purpose, COEX armour panel is made of
separate small tiles that are connected together by
bonding each tile onto a backing element and also
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between the tile edges. A projectile hitting the
armour may destroy one or more tiles at a time,
and the remaining tiles serve to prevent penetration
over the remaining surface of the armor. The curvature
shape configuration is also another typical shape
used in modern body armour design. This design
trend is becoming more ergonomic in extent that
the relative rigidity of an armour plate must be
contoured to the curvature of the wearer body to
impart good ballistic protection and comfort to the
wearer.

Therefore to evaluate the ballistic potential of
COEX composite material, these shape configurations
were considered for the COEX composite ballistic
performance evaluation process. To produce the
COEX tile configuration panel, 12 pieces of the
60 x 60 mm COEX tiles were produced using a
square shape compression mold and were bonded
together between the edges using epoxy to form
flat armour panel. For the curvature configuration,
a larger compression mold was used to fabricate
a 300 x 240 cm monolithic and curvature shape
COEX armour panel. The curvature dimension was
based on an actual ceramic armour panel contributed
by Teijin Twaron, Australia.

The COEX fabrication process is based on
the adaptation of powder metallurgy concept. The
COEX composite were fabricated by pressing coconut
shell powder of selected size distribution using a
compression mold and pressed using a LHDC-50
press machine. The composites were then cured
at 100 °C for one hour. The density of coconut
shell is 1.60 g/cm® whereas the resin used was
epoxy resin Mirapox 240A with the density of 1.15
g/cm®. The mixing ratio of the resin and hardener
was 100:50.

Typical ceramic armour design also incorporated
the use of spall liner or backing material, whose
primary function was to capture exiting debris or
projectile during the impact event, controls the spall
generated by the penetration of projectile by dissipating
the projectile's force, deforming the projectile, and
trapping the fragments in the spall liner's interior’.
For this study, Twaron CT716 fabrics with specific
density of 1.44 g/cm? and modulus elasticity of 90
GPa was used. The fabrics were slightly glued
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between each ply and then bonded to COEX backface
panel using epoxy. All test specimens were conditioned
at 20 °C to 28 °C (68 °F to 82 °F) for at least 24
h prior to ballistic test.

2.1 Experimental Testing Procedure

The experimental setup was according to guidelines
given in the NIJ Standard® 0108.01, shown in Fig. 1.
The test weapon used was a SMG-sub sterling gun
shown in Fig. 2(a) and using 9 mm full metal-
jacketed round nose (FMJ) ammunition shown in
Fig. 2(b) for NIJ threat levels II and IITA. A further
testing with M-16 type of ammunition, which is the
7.62 mm (FMJ) bullet, was to evaluate the COEX/
Twaron panel at NI1J threat level III. The projectile
velocity measurement system used in this operation
was a Type 858 Optical detector from MS Instruments,
UK, which can perform a system scan within an
accuracy of 0.1 per cent, record velocities from as
low as 10 m/s to in excess of 5000 m/s.

Following are the two test configurations
arranged and described:

(a) NIJ Standard ballistic test for Twaron panel
comprised of 5 and 15 ply of fabrics.

The purpose of this test was to estimate the
spall liner impact energy absorption value and to
evaluate the performance of Twaron fabric as a
ballistic-resistance material, in the absence of COEX
composite material. This was also to re-evaluate
the Twaron fabric ballistic resistance level with
reference to the Twaron Manual. In the COEX/
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Figure 1. Schematic of ballistic test setup following the NIJ
Standard (NI1J-0108.01,1985).



RISBY, et al.: BALLISTIC PERFORMANCE OF COCONUT SHELL POWDER

(@

(b)

Figure 2. (a) SMG-Sub Sterling Gun (b) 9mm full metal jacketed round nose bullet.

Twaron armour energy-absorption estimation, the
Twaron fabric was termed as the control specimen
and was used as the baseline indicator for the
COEX material performance at selected N1J Standard
threat levels. Each fabric ply was slightly bonded
with epoxy adhesive and no stitching was applied
to the panels. For spall liner testing procedure, the
test specimens were rigidly clamped between rectangular
steel frames. The test panel was perpendicular to
the line of flight of the bullet at the point of impact.
A thin white paper about 150 mm from the test
specimen was used as witness screen to record
any bullet perforation, if occurred, during the ballistic
testing.

(b) NIJ Standard ballistic test for COEX/Twaron
CT716 panels of which comprises the following
two design format:

*  COEX panel of tile configuration comprised of
5 and 15 ply of Twaron spall liner.

*  COEX monolithic panel of curvature configuration
comprised of 15 ply of Twaron spall liner

Justification for these approaches is as mentioned
in Section 2. For COEX/Twaron panel provisioning,
a different target holder was used where the armour
panel is placed in front of a flat contoured plasticine
block. The plasticine block as described in NIJ
Standard® 0101.04 is used to evaluate the bluntt
trauma signature induced from the impacted COEX/
Twaron panel. The panel is strapped with tapes so
that it will not be rigidly fixed to the plasticine
block as to simulate an actual impact on body
armour material.

Further details of all test specimens configuration
for this study are presented in Table 1. It is expected
from the limited test specimens that the COEX/
Twaron panel can exhibit a significant evidence of
a potential lightweight ballistic-resistance materials.

The damage zone of the COEX composite
tiles, including composite fragmentation, and the
bullets were observed. Generally, the type and
amount of layers of the backing material, including
the type of adhesive as well as the bonding techniques
used, strongly affected the ballistic performance.

Table 1. Test specimen classification for NIJ Standard testing

Specimen Type Specimen Weight  Mean thickness Length (mm) x Areal density
P yp code (kg) (mm) Width (mm) (kg/m?)
Twaron panel (5 ply) TWS5 0.19 32 300 x 300 2.1
Twaron panel (15 ply) TW15 0.51 6.1 300 x 300 5.6
COEX tile format /5ply Twaron CTWS5 1.12 23.76 240 x 180 26
COEX tile format/15ply Twaron CTW15 1.33 24.99 240 x 180 30.7
COEX tile format/15ply Twaron CTWI15A 1.28 26.34 240 x 180 31.2
COEX curvature format/15ply Twaron CVW15 1.34 16.65 300 x 240* 18.6
COEX curvature format/15ply Twaron CVWI5A 1.40 17.30 300 x 240* 19.4
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Therefore, constant bonding process for normal
production was applied for all the test specimens.

2.1.1 Determination of Ballistic Limit

The definition of ballistic limit or V, according
to US MIL-STD-662F° is the velocity at which
there is a 50 per cent probability of specimen
penetration. This represents the velocity at which
the projectile barely penetrates the specimen. It is
determined by taking the average of an equal number
of highest partial penetration velocities and lowest
complete penetration velocities which occur within
a specific velocity range for a particular specimen
configuration. The velocity range requirement is
necessary since an unusually high or low data
point could offset the average, causing a
misrepresentation of the V_ ballistic limit..

Because of the expense of firing tests and the
impossibility of controlling striking velocity precisely,
plus the existence of a zone of mixed results (in
which a projectile may completely penetrate or
only partially penetrate under apparently identical
conditions), statistical approaches are often necessary,
based upon limited firings. This standard is also
used to determine blunt face signature (BFS) which
predicts the effects of blunt trauma, a terminology
of injuries suffered from forces created by the
bullet impacting the armour. This type of non-
penetrating injury can cause severe contusions (bruises)
or internal damage and can even result in fatality.
NIJ Standard® 0108.01 dictates that all armour
material BFS, acquire by measuring the depth of
the plasticine backing material after an impact
event, such not be more than 44 mm of depth.

However due to bullet constraint that occurred
during the test operation, only maximum 4 shots
per panel were allowed during the ballistic testing.
Also it was predicted that the test specimen may
exhibit nonperforation result at certain projectile
type and impacting velocity. For example, the 9 mm
ammunition has a limitation of an average impacting
velocity of 426 m/s and may not be able to penetrate
through the test specimen at its maximum speed.
The results may not give an accurate ¥V, but an
estimation of ballistic limit (BL) from the projectile's
highest partial penetration velocity.

252

2.1.2 Calculation of Energy Absorption

It is an established fact that energy absorbed
by a specimen in ballistic test is a means to quantify
impact-penetration resistance. Therefore the absorbed
kinetic energy by armor-projectile interaction can
be linked by Eqn (1) where £ ,, £, and E__,
are defined as the total kinetic energy absorbed by
the armour, the kinetic energy of the projectile
prior to impact, and the residual kinetic energy
after penetrating through the armour, respectively.

Eabx = Einitial B Erexidual (1)

From this point, Eqn (1) can be further derived
into Eqn (2) using the classical physics relationship
that describes the kinetic energy of a moving object
whereas m  is the mass of the projectile, v, .. and

initial
V. 4T€ the projectile initial and residual velocities:
| 15
Eabs = E M pVinitial — E M p Vyesidual (2)

This can also be further derived with relation
to the ballistic test results [Eqn (3)] where the
initial velocity can be related as the partial penetration
velocity and residual velocity as the complete residual
velocity:

1
Eabs = Empvpartial penetration
1, (3)

5 mP vcomplete penetration

Wambua', et al. have conducted similar ballistic

tests and used the V, ballistic limit as the impacting
velocity differences to estimate the energy absorption
of the armour material as shown in Eqn (4).

1 2
Eabs :Emp (VSO) (4)

For each of the test configurations, the energy
absorbed by the composite was taken as the metric
for impact-penetration resistance. Therefore, to
determine the effectiveness of the COEX composite
in improving the impact penetration resistance of
the whole armour system (COEX/Twaron panel),
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the variations in energy absorbed wrt the plain Twaron
fabric panel will be used. Perc ent changes in energy
absorption (% AE) were then calculated as

E-E.,
100 (5)

%AE =

c

where E_ is the energy absorbed by the control
specimen (Twaron).

3. RESULTS AND DISCUSSION

Plain TWS5 and TW15 panels were first tested
to set the baseline for comparison when testing subsequent
COEX/TWARON armour panel configurations. The
objective of the plain Twaron fabric panel or spall
liner testing was to determine the ballistic limit and
impact damage characteristics of a typical (non stitched)
ballistic resistance fabrics at different ply configurations.
It was also to determine the maximum amount of
projectile kinetic energy that can be absorbed by the
TWS5 and TW15 in the absence of COEX composite
when subjected to ballistic impacts.

3.1 Twaron Spall Liner

The estimated V ballistic limit for plain TWS5
and TW15 panels were determined using the method
described in Section 2.1. For TWS panel, the four
complete penetrations and one partial penetration
were used to determine the V., ballistic limit of
226 m/s. For TW15 panel, two partial penetrations
and one complete penetration were used to determine

the military V, ballistic limit of 374 m/s. The data
points for TW5 and TW15 can be summarised in
Fig. 3.

The front and back face layout view of the
Twaron spall liners is shown in Figs 4(a) and 4(b).
The observed mechanisms for absorbing ballistic
impact in the TW5 and TWI15 panels which as
shown in Figs 4 and 5, where fibre shearing, fibre
pullout, and delamination type of damage were
found between the bonded fabric plies. For the
projectile impacted area which caused partial penetration,
it was found that the diameter of the shearing
damage was similar to the diameter of the projectile
on front face (first ply). The damage area increased
slightly with depth until to the intermediate plies
which exhibit more delamination effect occured
between the plies bonded area (Fig. 5). It can be
reported that the projectile penetration depth for
TWS5 and TW15 panels appeared to be dependent
on the velocity of the projectile. On the TWS5 panel
back face, the diameter of shearing damage was
found similar to the diameter of the projectile on
the back face (Figs 6(a) & 6(b)) and can be suggested
that TWS5 have little ballistic resistance capability
at NIJ Level II threat level.

The damage characteristic results are consistent
with observations made by Cantwell and Morton
(1990 a) which can be graphically shown in Fig. 7. The
localised deformation is observed at the damaged
area of TW15 panel due to its high velocity impact
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> 2001 o]
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Figure 3. Graphical representation of data points used to determine the ballistic limits for TWS5 and TW1S5 using

9 mm FMJ ammunition.
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Figure 4. (a) Front face and (b) backface of the TWS subjected to 9 mm FMJ bullet impact at various speeds.
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Figure 5. (a) Front face and (b) back face of the TW15 subjected to 9 mm FMJ bullet impact at various speeds.

where the front and back faces have similar penetration
diameter due to shearing effect induced by the
ammunition penetrative force as seen in Fig. 5. For
TWS panel, a globalised deformation is observed
at the damaged area panel where a large damage
initiation occurred (circled) to dissipate the projectile
kinetic energy at low velocity, as shown in Fig. 4.
The Twaron panels ballistic limit results can be
compared with the recommendation by Twaron
CT716 fabric's manufacturer Teijin Twaron for body
armour fabrication, which is as shown in Table 2.

3.2 COEX/Twaron Panel

A summary of all the V, and ballistic limit test
results are shown in Figs 8-11. The ballistic limit
of the COEX/Twaron panels from this testing may
not give an accurate V, ballistic limit due to the
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constraints mentioned in Section 2. However the
ballistic limit for this work is estimated based on

Figure 6 (a). Fibre shearing and delamination within the
Twaron fabric ply TWS5 upon bullet impact.
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Figure 6(b). Damage area similar to projectile diameter due
to shearing effect during penetration process.

Figure 7. Representation of global deformation in low velocity
impact and local deformation in ballistic velocity
impact high velocity impact. (Cantwell and
Morton, 1995)

the highest partial penetration velocity where this
can give an indication that the actual ballistic limit
is higher than the estimated velocity.

Table 2. Comparison of tested Twaron panel and
manufacturer's specification

NIJ Teijin Twaron Tested/lowest complete
level recommendation for penetration velocity of
Twaron CT716 Twaron CT716
for body armour using 9 mm FMJ bullets
fabrication
I 7 layers (322 m/s) 5 layers (279 m/s)
A 14 layers (341 m/s) 15 layers (360 m/s)
I 20 layers (367 m/s) 15 layers (360 m/s)

A 23 layers (420m/s) -

From these results, it can be observed that
CTW 5 panel have a significant ballistic resistance
to 9 mm FMJ ammunition impact which is equivalent
to protection level of NIJ Level III A. Figure 8§
shows the CTWS5 panel ballistic limit is estimated
using the highest partial penetration velocity, which
is at 420 m/s as the indicator (as discussed in
Section 2.1.1). The maximum CTWS5 panel BFS
value was measured at 30.8 mm and was lower
than the 44 mm BFS limit set by the NIJ Standard.

For the tested CTWI15 panel (Fig. 12), with
reference from CTWS5 panel results, confirmed
that the COEX composite used as the frontal protective
component of the armour possessed a significant
ballistic resistance capability at NIJ threat level
III A. From Fig. 9, the CTW15 ballistic limit is
estimated at 416 m/s (the highest partial penetration
velocity value) with a 13.4 per cent depth reduction
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Figure 8. Graphical representation of data points used to determine the ballistic limit for TWS and TW15 panels using 9mm

ammunition.
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Figure 9. Graphical representation of data points used to determine the ballistic limit for CTW 15 panel using 9 mm ammunition

(no perforation occurred).

in the average BFS value when compared to CTW5
panel. The maximum BFS depth for CTW 15 measured
at 23.12 mm is lower than the 44 mm BFS limit
set by the NIJ Standard. The Twaron spall liner
bonded on the back face of the COEX composite
does provide extra means to absorb ballistic impact
energy or with the additional of Twaron 10 ply.
This further enhances the ability of the armour
panel to absorb shock induced by the project
impact, thus reducing the trauma force exerted
to the plasticine block.

It is also a known fact that the protective level
of typical ceramic armour progressively degrades
as impact points approach the edges, corners, and
abutting joints between individual tiles. However
as shown in Fig. 13(b), CTW15 panel has shown
a significant ballistic-resistance capability when
subject to projectile impact the tile edges intersection.
Also for multi-hits capability where two 9 mm
FMJ ammunition were impacted, within one tile
cell area and survived with partial penetration, is
clearly shown in Fig. 13(c).
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Figure 10. Graphical representation of data points used to determine the

7.62 mm and 9 mm ammunitions.
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Figure 11. Graphical representation of data points used to determine the ballistic (partial penetration) limit for

COEX panel B (15 ply) 9 mm ammunition.

From Fig. 10 test data, CTWI15A panel was
tested at NIJ threat level III using a 7.62 mm
ammunition and the result have shown that the
panel exhibit, no ballistic resistance (perforation
occured) at impacting velocity of 800 m/s. This
is because at higher impacting energy, neither the
COEX composite nor 15 ply of Twaron fabrics
are not able to fully absorb and dissipate the
impact energy as efficiently as typical ceramic
armour. Another probability is the inferior mechanical
characteristic of COEX composite in terms of
hardness and compressive strength when compared

to ceramic armour. However as shown by the
CTWI15 panel, at lower threat level (NIJ Level
IIT A) using 9 mm ammunition, the CTW15A panel
survived at impacting velocity of 422 m/s (estimated
as CTWI15A's ballistic limit). From this deduction,
the overall ballistic resistance capability of CTW5
and CTW15 panels conforms to NIJ Level 111 A
at 9 mm FMJ ammunition impacting velocity of
427 m/s.

For CVWI15 panel tested at NIJ threat level
IITA, it shows no ballistic resistance at impacting

@

(b)

Figure 12. (a) CTWI1S panel front face (b) CTW15 panel backface after 9mm FMJ bullet impact at various speeds.
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Figure 13. Damage observation of CTW15: (a) front face (b) close-up view of section impacted at the tile edges, and (c) close-
up view of section impacted with two projectile within one tile cell.

velocity > 400 m/s(as indicated in Fig. 11). This
may be due to the CVW 15 monolith COEX composite
thickness level < 78 per cent from the nominal flat
COEX tile panel (CTW15) and shape curvature
configuration was unable to distribute efficiently
the projectile kinetic energy evenly throughout the
composite surface area as compared to plain flat
tile configuration (CTW15 panel). However for
CVWI5A panel, as indicated in Fig. 11, shows a
ballistic limit of 377 m/s (estimated from the highest
tested partial penetration velocity) with the maximum
BFS depth was measured at 17.78 mm. From physical
observation shown in Figs 14(a) and 14(b) and
15(a), 15(b), and 15(c), it can be noted that COEX
monolithic panel exhibits a greater degree of crack
propagation, particularly after multiple hits, rather
than smaller COEX tiles which are separated within
the seams of the abutting joints by epoxy. As a
result of this increased crack propagation, a greater
percentage of the overall CVWI15 and CVWI15A
panels is prone to intense damage than would be
the case with smaller tiles.
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The mechanisms of ballistic protection for a
composite armour and metal armour are significantly
different. Metals typically absorb the projectile
kinetic energy through plastic deformations. As
for composite materials, in this case particulate
composite (coconut powder/epoxy composite), which
is typically brittle and behaves similar to ceramic
material, absorbs the projectile kinetic energy by
fracture and cracking mechanisms. For all ballistic
impacts on typical ceramic tiles, a locus of conoid
coaxial cracks starts at the impact point®. However,
various types of cracks are formed during the
ballistic impact (Fig. 16). This damage characterisation,
which shows a typical bullet imprints observed in
ceramic armour under high energy dissipation, is
also found on all impacted COEX/Twaron panels.
Generally, the imprints may be classified into four
patterns.

Clean penetration occurred in COEX composite
against high-velocity impact where it was observed
that radial tensile cracks were initiated at the back
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Figure 14. (a) CYWI15A panel frontface (b) CVW15A panel after to 9 mm FMJ bullet impact at various speeds.

surface close to the axis of impact [Fig. 13(a)].
Impact load generated local bending deformation,
causing the large reflected tensile stresses at the
bottom of the COEX tile. These stresses produced
the radial cracks propagating towards the upper
surface of the COEX composite. A network of
radial cracks lying from conoid to free boundary
of the COEX can also be observed in Figs 13(a)
and 15(a).

Star shaped cracks were formed on the side
of conoids, as shown in COEX tile penetrated by
9 mm ammunition. In this case, tangential spall
cracks occured due to shear stress waves reflected
from the edges of the tile and formation of cone
cracks. Lateral spall cracks may also be formed
because of longitudinal stress waves reflected from
the backing support. Cone formation is also predicted
by shear dominating mechanism caused by high
compressive stresses and the cone propagated as
plug through the direction of the projectile. The
cone was crushed and fragmented into small pieces
and even pulverised along with propagation of the
projectile. The projectile pushed the conoid composite
away from its path for deeper penetration.

As for typical ceramic tiles that effectively
absorb the ballistic energy, fragments of damaged
COEX specimen were observed to have various
sizes, ranging from big chunks to a fine powder, are
after fracturing due to projectile impact. The chunks
with bigger sizes were formed for explosive shattering
at impact, as shown in Figs 13(b) and 15(c).

Finally, the overall COEX panel may fail if
impact occurs on (or near) an interface between
COEX tile cell, as shown Fig. 13(a). Hence, part
of armour design strategy is to make the tile size
large enough to withstand the target threat level,
but small enough so that in normal service, no cell
is it more than once. The smaller COEX tiles
allows the preservation of adjacent areas of an
armour panel to support multiple direct-fire impacts.
For example, if one tile is impacted, the damage
should be contained to that tile only, leaving the
surrounding tiles intact to defeat additional shots
in neighbouring areas.

3.3 Energy Absoprtion

The energy-absorption efficiency is estimated
on the ballistic limit velocity acquired from ballistic
testing results whereas Eqn. (3) was applied for
test specimen without the V,  values and Eqn. (4)
was applied for test specimen with V_ values. It
is acknowledged that these values may not represent
the actual condition, which is predicted to be
higher due to various discrepancies in the ballsitic
test results but this estimated value can at least
provide basic indication that the COEX/Twaron
armour panel energy-absorption capabilities in
ballistic application.

The increase in energy absorption calculation
of the various COEX/Twaron panel configurations
wrt the plain Twaron fabric panel was based on
the ballistic limit values. The energy absorption

259



DEF SCI J, VOL. 58, NO. 2, MARCH 2008

Figure 15. Damage observation of CYW15A (a) front face (b) close-up view of deformed projectile in multi-hits event, (c) close-

up spall liner with fibre tearing damage.

variation for CTWS5 panel configuration displayed
more than an additional 170 per cent increase than
using stand-alone TWS5 panel.

SURFACE
CRATER PLUG

RADIAL \ /

CRACKS

FRACTURE
CONOID

BACK PLATE

Figure 16. Typical ballistic impact damage imprints on
ceramic armour?’.
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For the CTW15 displayed an additional 24 per
cent increase than using a stand-alone TW15 panel.
For CVW15 and CVWI15A panels, the energy absorption
variation displayed an additional 10 per cent increase
than using a stand-alone TW15 panel. However
this is due to the reduction of 78 per cent in thickness
when compared with COEX tile and curvature
configurations.

As the projectile hits the armour, COEX composite
deforms in tensile and flexural behaviour and erodes
the projectile, thus reducing the kinetic energy of
the projectile. The rest of the kinetic energy in the
system is then consumed in the deformation of the
backing spall liner. During the entire process, COEX
composite fails and breaks; but it was commonly
assumed that fracture of ceramic does not consume
much of the energy.

The ability of a material to provide a useful
contribution to an impact event depends on the
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hardness of the material, which is critical for
blunting a projectile, and the strain to failure, which
determines the ability of that material to absorb
energy via a global deformation process involving
brittle cracking in the case of COEX composite,
or plastic deformation in the spall liner.

4. CONCLUSIONS

It can be concluded that by adding COEX
composite material at 5 ply of Twaron fabric, it
is able to withstand 9 mm ammunition ballistic
impact up to threat level IITA, and conforms to the
NIJ Standard blunt trauma depth requirements.
During ballistic impact, various types of cracks
are formed on the COEX composite panel. Three
patterns of ballistic imprints on COEX armour panels
subjected to high velocity impacts were identified,
namely clean penetration, star crack, and big chunks,
which are prominent imprints for ceramic armour
when subjected to ballistic impacts.

The nature and thickness of backing materials
have a significant influence on crack propagation
depending on their ability to dissipate the impact
stress. The ballistic test results also show that
COEX panels using curvature shape configuration
also have significant ballistic resistance, up to threat
level II at a reduced thickness.

The study also shows that by the addition of
COEX composite tile configuration to the armour
panel, the energy-absorption efficiecy of COEX/
Twaron armour panel (5 ply) increased 175 per
cent compared to Twaron armour panel (15 ply).
For COEX composite curvature configuration, the
energy absorption efficiency was found to be lower
than its corresponding tile configuration due to its
monolithic shape that contributed most of the failure
damage.

The study shows that COEX composite has a
significant ballistic resistance potential as a hard
armour component which is light weight and has
lower cost than the existing materials, such as
ceramic, can offer. However, further evaluation
can be carried out to enhance the ballistic resistance
capabilities at higher threat levels.
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