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ABSTRACT

The processes of exploitation of military objects are usually characterised by the specificity of the operation 
and the complexity of both the process itself and the object. This specificity may relate both to the type of tasks 
that these objects carry out and to the environment in which these processes take place. Complexity is usually 
reflected in the very structure of an object (for example, a ship, an aircraft or a helicopter) and, consequently, in its 
operation/maintenance system. The above mentioned features, as well as the limited access to data, naturally limits 
the set of publications available on this subject. In this article, the authors have presented a method of assessing 
the readiness of military helicopters operated by the Armed Forces of the Republic of Poland. The readiness of 
technical objects used in military exploitation systems is a basic indicator of equipment preparation for executing 
tasks. In exploitation process research, the mathematical models are usually discrete in states and continuous in 
time stochastic processes, in the set of which Markov models are included. The paper presents an example of 
using Markov processes with discrete time and with continuous time to assess the readiness of a technical object 
performing tasks appearing in random moments of time. At the same time, the aim of the examined system to 
achieve a state of balance is presented. 
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1. INTRODUCTION
The original applications of Markov and semi-Markov 

processes originate from statistical and quantum physics, 
chemistry, spectroscopy and metrology1-4. In the 20th century, 
the scope of their application was systematically expanded 
in the fields of signal theory, telecommunications, computer 
science, operational research, reliability and readiness of 
technical facilities and mass service systems2,4,5. In the present 
period they are experiencing a renaissance of applications in 
the fields of speech and images, artificial intelligence, signal 
processing and filtering6,7 as so-called hidden Markov models 
(HMM)8-12 or fuzzy Markov models (FMM)13-17.

Both Hidden (HMM) and Fuzzy (FMM) Markov models 
relate to discrete-time processes with unobservable states. In 
the former case, HMM may be used to predict the protein 
binding sites using the sequential marking technique8 or as 
a method based on a unified algorithm structure designed to 
decode hidden Markov models, including the first order hidden 
Markov model in combination with any high-order hidden 
Markov model18, or be used in e-commerce to reflect changes 
(and preferences) in vendor behaviour19. When referring to 
FMM applications, it should be borne in mind that fuzzy set 
theory is useful for uncertainty management, mainly in image 
processing14 and enhancement applications15. A comprehensive 

review of the theoretical knowledge and possibilities of 
statistical application of HMM and FMM has been carried out 
in the study20.

A separate area of application of Markov processes is the 
modelling of technical objects exploitation processes21-25, as 
well as their implementation in the analysis and evaluation of 
both availability5,26-28 and readiness29-33.

In studies on modelling exploitation processes, the 
reliability of the vehicle fleet defined as a function of the damage 
stream21,29, assessment of the degree and level of usability30, 
readiness22,25,32 of an object or system of exploitation27,28, or 
population renewal including replacement according to age23,34 
often become the subject of tests.

From the point of analysis of applications of Markov 
models, neither hidden nor fuzzy states are assumed to exist 
when describing exploitation processes. An open Markov 
process with a given state space is assumed and the correctness 
of such assumption is verified according to the methodology 
presented in35. Moreover, HMMs are not useful in object 
readiness modelling as they concern multidimensional 
stochastic processes in discrete time20, while the technical object 
exploitation process is usually defined as a one-dimensional 
stochastic process23,24,35,36.

A slightly narrower set is made up of studies on military 
processes and technical systems1,37,38, usually with limited 
publication capacity. Only a few publications directly refer to Received : 06 November 2020, Revised : 21 April 2021 
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military helicopters. There are, for example, papers concerning 
the population exchange model34, increasing the utilisation of 
fleet availability39, optimisation of sea air transport costs40, 
improvement of utilisation efficiency41, as well as helicopter 
diagnostics based on flight data analysis42.

This article presents their application for the analysis 
and evaluation of military helicopters operated by the Armed 
Forces of the Republic of Poland. The scarcity of publications 
to date concerning the readiness of military technical facilities 
is mainly related to limited access to information on military 
technologies, which understandably is subjected to restrictions 
resulting both from the manufacturer’s trade secrets and 
from fixed grace periods generating profits in the armaments 
industry. As an example, the methodology of operational 
readiness assessment of USAF helicopters, published in 2014, 
which entered into mass exploitation more than half a century 
earlier, can be used3. Finding publications on Russian military 
helicopters in public literature is an even more difficult task, as 
knowledge in this area is still a guarded secret. 

Readiness indicators make economic sense on a national 
scale. The need for research is most visible in the case of 
modernisation of exploitation systems and objects’ replacement, 
when it is time to establish the reserves of new objects and 
requirements for their manufacturers in the scope of service 
deliveries and repairs. 

Proper assessment of reserves of objects and service 
and repair requirements for manufacturers are not feasible 
without reliable knowledge of the factors determining the 
readiness measures of operating systems and objects prior to 
the modernisation and replacement. Without such knowledge, 
these assessments would be unreliable, resulting in significant 
financial losses caused by unnecessary or insufficient reserves 
and long service and repair downtimes. The readiness of 
technical objects is one of the factors influencing the economic 
efficiency of countries and multinational corporations, since 
the size of the reserve is not completely linearly dependent on 
the operational readiness index. If the execution of tasks with 
a probability of 0.95 is ensured by 10 ready objects, then at 
an operational readiness index of 0.9 one reserve object will 
be sufficient (according to the binomial distribution of the 
number of ready objects), while at an index of 0.45 as many 
as 5 reserve objects would be needed and the cost of using the 
system will increase from 10% to 50% (without taking into 
account the safety factor). For this reason, the readiness of 
technical objects is carefully monitored, studied, analysed and 
optimised.

The essence of mathematical modelling is to describe the 
examined phenomenon (process, system) using mathematical 
language. The modelling uses variables representing certain 
(and at the same time significant) from the point of view of 
the purpose properties of the examined phenomenon22,24,38,43. 
Examination of the exploitation system requires the 
identification of all important factors that define it. Secondary 
factors that unnecessarily complicate the model without 
significant improvement in its quality should be ignored or 
omitted, and as a result similar ones should be grouped35. A 
thorough examination of the process enables the isolation of 
a set of mutually separable operating states. It also imposes 

requirements on the empirical data used to build the model44,45. 
For a general analysis of the exploitation system, the necessary 
number of its distinguishable states should be sufficient to allow 
for reproduction of the characteristics of the process being 
tested in terms of calculating basic readiness indicators46,47. 

Helicopters operated by the Armed Forces of the Republic 
of Poland are in most cases outdated both in terms of technical 
thought and manufacturing technology. In this article, a method 
for assessing the readiness of a technical object using Markov 
processes has been developed. 

The 9-state Markov model presented in the publication, 
which helps to determine the readiness of a helicopter, has not 
been so far the subject of any open publications in the field 
of aircraft exploitation. Only a few studies24,35 contain such 
problems. It would not be possible without reliable knowledge 
of the exploitative process under investigation and the authentic 
empirical data collected. The scientific achievement of the 
authors is the formulation of a complex 9-state model of the 
military helicopter’s process defining the value of the readiness 
index in the specific environment of its exploitation. 

2. MATERIAL AND METHODS 
According to the methodology of construction and 

analysis of exploitation process event models, the following 
assumptions have been formulated to develop a mathematical 
description of the exploitation process of the examined 
helicopters4,24,32,35:

Assumption 1. A technical object may at any time be in 
only one of the possible exploitation states, the set of which 
creates a countable and finite process phase space.

Assumption 2. Returns (   i iS S→  passages) are prohibited 
during the exploitation of objects.

Assumption 3. No transient states are assumed, but inter-
state transitions are time leaps.

Assumption 4. Deterministic, environmental and external 
factors influencing the exploitation  process are known.

Assumption 5. Times of changes of object states are 
recorded with any accuracy.

Assumption 6. The process described is a process without 
memory.

The first stage of developing the mathematical model 
was to collect data from the actual system of exploitation. 
The helicopter activity records in the Armed Forces of the 
Republic of Poland are recorded in two ways, i.e. through 
the SAMANTA IT system and in a traditional paper form 
in the form of Current Service Cards. Then, using the MS 
Excel spreadsheet, raw databases were developed, which, 
when supplemented with variables (random, grouping and 
mathematical), were processed into source databases. These 
variables facilitate database control and processing of phase 
trajectory into matrix elements. The hypothesis concerning 
the applicability of Markov processes to the description of the 
exploited process should be initially verified on the basis of 
phase trajectory analysis. 

Initial investigation of the exploitation process of complex 
technical objects such as helicopters resulted in the selection 
of 37 operating states, which were systematically aggregated 
functionally in terms of preparedness calculation. The 9-phase 
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space has met both the assumptions 1-5 and the conditions 
for using the analytical software. The following types of 
exploitation states have been adopted: 1S - diagnostics; 2S - 
test execution; 3S - supply; 4S - ready with pilot; 5S - ready 
without pilot; 6S - hangaring; 7S - work on the ground; 8S - 
task execution; 9S - unsuitability. 

In order to develop a proper mathematical model 
reflecting the examined process, it is necessary to determine 
the correct set of transitions allowed for the object from the 
previous to the next state. It has been identified on the basis 
of technical documentation, operational knowledge of the 
exploitation process under consideration and a number 
of factual consultations with experts from air bases. Its 
mathematical description is the matrix of transitions allowed 

  i jS S→  from the previous state iS  (rows) to the next state 
jS  (columns). The process under investigation has possible 

and prohibited transitions in accordance with a directed graph 
shown in Fig. 1. As it is known10,13,17 when considering the 
processes of exploitation of technical objects, returns to states 
( i iS S�→ ← i iS S� transitions) are not included. Due to the fact that the 
process under investigation has an established organisation 
(exploitation strategy), not all theoretically possible inter-
state transitions are allowed22,25. Test sample of helicopters 
has narrowed down the number of 72 theoretically possible 
passages to 30 allowed passages (Fig. 1). 

A directed graph (Fig. 1) depicting the exploitation of 
helicopters contains nine states, forming the process phase 
space. Exploitation is understood as the movement of an 
object through the individual states. The graph shows the most 

1 3 7, ,(  )S S S  and least 8( )S  communicated states.

where:
ijw - frequency of transitions from the state iS  to the state 

jS ,
ijn - number of transitions from the state iS  to the state 

jS ,
in - number of all transitions (exits) from the state iS .

For the analysed process of exploitation, a 9x9 matrix of 
inter-state transitions P is created:
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(2)
For Markov processes with discrete time, ergodic 

probabilities can be calculated from the transition matrix 
boundary P  in n steps by solving a system of linear equations 
or an equivalent matrix equation, i.e. by passing from the 
continuous time t  to the discrete time n , being the number of 
consecutive experiences of observing the vehicle at time t∆ , 
according to relation (3):

[ ] [ ]jj
T

jij
i

iijnjj
ppPpppnpp =⇔===∧ ∑∞→

)(lim , at ∑ =
j

jp 1                                                                    

(3)
where: TP - transposed transition matrix P  with 

[ ; , ]jP p i j S= ∈  - probability boundary vector and ijp - 
probability of transition from state i  to state j .

In order to determine the boundary probabilities ( )jp n , 
the systems of equations (4) must be resolved with the condition 
of standardisation (5):
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The condition (5) is an additional equation which 
guarantees the exclusion of null solutions  ( ) 0jp n = . The 
solutions of the equation systems presented in Fig. 2 were 
obtained using the Mathematica software, ver.11. The software 

Figure 1.  Graph of allowed transitions for a nine-state helicopter 
exploitation model.

3. THEORY OF PROCESS TESTING
The first stage in the construction of Markov process 

with discrete time is the estimation of the probabilities of 
transitions, as the ˆ ijp  estimator values of ijp  elements and the 
P  probabilities matrix. The values of these estimators from 
the test sample are the frequencies ijw  of transitions from the 
state iS  to the state jS , calculated according to Eqn (1):

ˆ ijp  
� ij

ijij
i

n
p w

n
= =                       (1) 
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presents them in the form of intricate functions in a set of 
composite numbers which, due to their complexity, are not 
presented in this publication. The probability boundaries (Fig. 
2) related to the discrete time do not exceed 0.23 for the process 
under investigation. On the one hand, this may be a sign of the 
imposed by instructions specific organisation of the exploitation 
process and the factors that stabilise is a desirable feature 
that indicates the existence of deterministic components that 
regulate such process. The highest probability of entry exists for 
the states of work on the ground 7 ( )p n  and diagnostics ( )1p n . 
Almost the same values (+/- 0.003) were observed for the 
states: hangaring , task execution ( )8 0.1146p n =  and ready 
with pilot ( )4 0.1133p n = . The lowest probability of entry 
was observed for the state of unsuitability ( )9 0.0282p n = .

Calculated for discrete time, the probability boundary 
( )jp n  should be treated only in terms of quantitative 

measurement of the process and cannot be used as a basis 
for evaluating the readiness of a technical object. The results 
of continuous process analysis are a qualitative measure. 
The transition from discrete to continuous time is done 
using the Λ  intensity matrix. The extra-diagonal intensities 
of transitions  0ijλ ≥  for i j≠  are defined as right-hand 
derivatives of the time transition probabilities according to 
the relation:

0 0 ( )  ( ) / |ij ijt d p dt t t +λ = =                                   (6)
The diagonal intensities 0iiλ ≤  for   i j=  are defined as 

the sum cofactor of the intensities of transitions from iS  for 
  i j≠  to 0:

  0ii ij
j

λ + λ =∑                       (7)

from here:

   ii ij
j

λ =− λ∑                       (8)

The | |  ii iiλ = −λ  modules are called the intensities of 
the iS  state exits. For homogeneous Markov processes, the 
transition intensity is a constant and equals the inverse of the 
average av ijt  time the object stays in the state iS  before the 
state jS :

 1
ij

av ijt
λ =                       (9)

while:

ij
j

av ij
i

t
t

n
=
∑

                                  (10)

where: 1 ij k kt t t+= −  only for l k jS S= - time spent by the object 

in the state iS  before the state jS , which is equal to the value 
of the step-by-step variable for the object with the number l  

of the observation number k  and ( )/av ij ij ij
t t n= ∑  means the 

average time spent in the state iS  before the state jS .
Matrix Λ  (11) shows the intensities of transitions for the 

nine-state helicopter exploitation process. The intensities listed 
are expressed in the number of transitions per hour for one 
object. The name transition intensity was unfortunately adopted 
by theorists for the parameter of the Chapman-kolmogorov 
equation system35, which is not the intensity (frequency, or 
power of the phenomenon) in the technical sense. As a derivative 
of probability with respect to time, the theoretical intensity of 
the transition has no technical interpretation and, because of 
the unit of measurement, is sometimes misinterpreted as the 
average frequency of transitions. The elements of the intensity 
matrix as in (11) have no direct exploitation interpretations. 
They only give the information that the transition intensities 
of the average object had a very high dynamics in the order 
of 1:1000 - from the minimum 0.000 /61  346 dayλ =  for the 
transition from the hangaring state 6S  to the diagnostics state 

1S  to the maximum 0. /34  66565 dayλ =  for the transition 
from the supply state 3S  to the ready with pilot state 4S . 
The physical interpretation has an inverse intensity of 2941.2 
minutes, meaning that the helicopter has, on average, spent so 
much time, i.e. slightly more than 2 days (2.04 days) in the 

6S  hangaring state prior to transitioning to the 1S  diagnostics 
state.
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Figure 2. Boundary probabilities pj(n) of the Markov chain for 
the helicopter.
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After substituting the matrix Λ  in the equation 
 [ ] 0T

jp ⋅Λ = , the following equation in the matrix form (12) 
was obtained for the exploitation process under investigation:
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(12)
It is a homogeneous system with an infinite number of 

solutions, among which there may be solutions that meet the 
condition of standardisation (13): 
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j

p
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=∑            (13)

The solution of the above system (12) with a restriction 
(13) was obtained using the Mathematica software, the results 
are shown in Fig. 3. It is shown that a helicopter spends most of 
its time on average in the states of hangaring ( )6 0.8854p t =  
and much less in the states of unsuitability ( )9 0.0602p t =  
and ready with pilot ( )4 0.00231p t = . In relation to the other 
distinct states of exploitation, the object stays on average very 
shortly, i.e. in the range of 0.0133 for the state of diagnostics 

1( )S  to slightly over 0.007 for the state of supply 3( )S . In both 
cases, these are small values that do not affect the assessment 
of helicopter readiness.

the disordered state to the equilibrium state (called stationary), 
for which probability values in abstract infinity asymptotically 
reach boundary values (ergodic). The process determination 
time is assumed to be approximately 2.5 times the duration of 
the longest state.

The systems of CH-k-S equations2,4 have the following 
matrix form:
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where: ( )P t  - a column vector of the probabilities 
of the process being in particular states; 
Λ  – transition intensity matrix for the 9-state model of the 
process; 1jj

p =∑  condition of normalisation of the system.
 
For the Markov process under study, in its developed 

form, they take the following matrix form:
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(16)

The correct analytical solution of the Ch-k-S equation 
system with restriction and normalisation condition was 
determined using the Mathematica Markov Continuous 
module. It is assumed that at initial 0t =  time the ( )X t  process 
is in the state 1S . The obtained probabilities of observing the 

Figure 3. Boundary probabilities pj(t) of the Markov process 
for the helicopter.

4. RESULTS OF THE EVOLUTION OF 
HELICOPTER EXPLOITATION PROCESS
The systems of Chapman - kolmogorov - Smoluchowski 

(CH-k-S) equations are examined and solved in order to 
determine the characteristic times of an object’s progress to 
a stationary state after a given set of initial states, e.g. times 
of determining ergodic probabilities with a specific error. In 
real time, after applying the initial vector, they present, in the 
form of graphs, the dynamics of changes in the process from 
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states 1 9S S−  are in practice complex functions (they are not 
solutions according to the classical method). When analysing 
the dynamics of the helicopter’s exploitation process, it is 
important to examine the characteristic times after which the 
object will reach the state of equilibrium. Such examination 
is possible with the Mathematica ver.11 software. For the 
analysed process of exploitation, the initial distribution vector 
in the following form [ ]1,0,0,0,0,0,0,0,0jp =  was assumed. 
The evolution of changes of process in the period of time 
[0,1440] minutes is presented in Fig. 4 - 12.

As shown by the graphs presented in Figs. 4 - 12, the 
process under investigation is characterised by a significant 
dynamic of changes in the initial phase for the distribution 
vector [1,0,0,0,0,0,0,0,0]jp = .

Figure 4. Evolution of changes in probability of helicopter being 
in state S1 in the time interval [0, 1440] minutes.

Figure 5. Evolution of changes in probability of helicopter being 
in state S2 in the time interval [0, 1440] minutes.

Figure 6. Evolution of changes in probability of helicopter being 
in state S3 in the time interval [0, 1440] minutes.

Figure 7. Evolution of changes in probability of helicopter being 
in state S4 in the time interval [0, 1440] minutes.

Figure 8. Evolution of changes in probability of helicopter being 
in state S5 in the time interval [0, 1440] minutes.

Figure 9. Evolution of changes in probability of helicopter being 
in state S6 in the time interval [0, 1440] minutes.

Figure 10. Evolution of changes in probability of helicopter being1 
in state S7 in the time interval [0, 1440] minutes.
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In Figures 4-12 two characteristic intervals can be 
observed:
(i) The interval (0,1000 minutes) for which the evolution of 

the probabilities for each operating state is visible after 
the application of any initial state vector. The common 
characteristic in this interval is a sharp decrease (or 
a sharp increase in the case of 6p ) of probabilities in 
the initial stage of the process applied by the extortion 
vector [1,0,0,0,0,0,0,0,0]jp = . The abrupt change of 
probability value is connected to the lack of influence of 
factors stabilising the process after applying any initial 
distribution vector. Such trend is characteristic for most 
exploitation processes started at random times from any 
exploitation state.

(ii) The interval (1000,1440 minutes) for which the rate 
of change of the values of individual probabilities 
systematically decreases (or increases as in relation to 6p ) 
compared to the interval (0,1000 minutes).
It can be concluded that the existence of such two 

characteristic intervals for the exploitation process without an 
absorbent (terminal, end) state reflects the common occurrence 
in a random process triggered by any initial distribution vector, 
for which the initial disruption stage (disturbance state), the 
relative stabilisation stage and the total stabilisation stage 
can be observed. In practice, the achievement of the state 
of equilibrium varies over time for each probability value. 
However, after 4320 minutes from the moment of extortion, 
all probabilities reach the boundary values (total stabilisation 
stage). Achieving the third stage proves the correctness 

and orderliness of the process designed in accordance with 
specified rules (regulations) and the existence of natural factors 
that stabilise such a process.

5. RESULTS AND DISCUSSION
The boundary probabilities of the 9-state helicopter 

model in the discrete time domain ( )jp n  and continuous time 
 ( )jp t  vary considerably (Fig. 2 and Fig.3). However, they 
cannot be compared because they have a different substantive 
interpretation. In regard to discrete time, it should be seen only 
in quantitative terms, i.e. as the limit in the infinite number 
of entries to the i-th operating state against the background of 
transitions to all possible states. The  ( )jp t  values allow for 
qualitative conclusions in relation to the readiness measures. 
The difference in the interpretation of the obtained research 
results is due to the fact that each process considered in 
discrete time has infinite number of realisations in continuous 
time. Summarising the results of the helicopter’s boundary 
probabilities related to the Markov process in a discrete time 

( )jp n , it should be concluded that the highest probabilities 
of entry were observed for the states respectively: work on 
the ground 7 0.2217p = , diagnostics 1 0.1553p = , hangaring 

6 0.1165,p = task execution 8 0.1146p =  and ready with 
pilot 4 0.1133p = , and the lowest for states: unsuitability 

9 0.0282p = , ready without pilot 5 0.0714p = , test execution 

2 0.0802p =  and supply 3 0.0989p = , respectively. For the 
continuous time period, the highest probability of staying 
was observed for two out of nine states, i.e. hangaring and 
unsuitability 6 0.8854p =  and 9 0.0602p = , respectively. 
Bearing the above in mind, it can be concluded that the 
tested helicopter was, on average, hangared for over 88% of 
its exploitation time during the two-year research period. In 
addition, it was ready with pilot more than 2.3% of the time 
and more than 1.3% of the time in diagnostics. This could be 
a manifestation of the general reduction of flight time caused 
by the budgetary restrictions of the Ministry of Defence, while 
maintaining a certain state of airworthiness and readiness of 
the military equipment.

The probabilities of being in the remaining states for the 
continuous time are relatively short-lived and constitute in total 
about 5% of the exploitation time during the two-year research 
period and therefore do not have a fundamental influence on 
the readiness of the examined object. The calculated functional 
readiness index of the helicopter at the air base, understood as: 

8

4
( )jj

p t
=∑ , is 0.9223. It is therefore high, which indicates a 

correctly planned and executed exploitation process from the 
point of view of technical availability of the equipment used at 
the air base.

The results of tests of the 9-state model of the exploitation 
process of helicopters equipped with the Armed Forces of the 
Republic of Poland discussed above cover the period of so-
called planned exploitation in which any malfunctions were 
reflected by the 9S unsuitability state, taking up to 960 minutes 
(two working shifts). In this case, any faults were rectified 
at the location of the helicopter’s permanent location, i.e. at 
the air base. However, detailed analysis of phase trajectories 

Figure 11. Evolution of changes in probability of helicopter being 
in state S8 in the time interval [0, 1440] minutes.

Figure 12. Evolution of changes in probability of helicopter being 
in state S9 in the time interval [0, 1440] minutes.
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revealed two other types of characteristic trajectory sections:
(i) Periods of exploitation breaks during which the object 

was not recorded in the exploitation records of the air base 
but was directed to repair facilities for scheduled repair,

(ii) Periods of random renewals extended in the base with a 
realisation time of over 960 minutes.
The subject of subsequent publications will be to take into 

account the above discussed preliminary conclusions from the 
analysis of phase trajectories and to develop a model covering 
these random-deterministic conditions of the complex process 
of helicopter exploitation.

6. CONCLUSIONS
To sum up, this publication proposes a method for 

calculating the readiness of helicopters used by the Armed 
Forces of the Republic of Poland. The author’s own 9-state 
descriptive model of exploitation process was developed for 
use with complex military objects using the Markov theory.

As already mentioned in the introduction, Markov 
processes are now widely used in literature in relation to 
physics, chemistry, telecommunications, operational research, 
spectroscopy, metrology, logistics, and many others. On the other 
hand, there is a much narrower collection of publications in the 
field of Markov theory applications relating to the construction 
and operation of technical facilities and even narrower in the 
field of military helicopters, which are the subject of this work. 
Among the advantages of the proposed method we can count 
the universality through the possibility of its application to the 
whole family of Russian and Polish-Russian-made helicopters. 
This method is dedicated to the majority of helicopter types 
manufactured by the USSR and now by Russia with an 
uniform operating strategy. It enables reliable analysis and 
evaluation of basic reliability and readiness indicators, such as: 
technical, functional, task-oriented, operational, potential or 
initial readiness. A characteristic feature of Markov processes 
which is the basis for their application is the fact that it forces 
designers, analysts or users to get to know the process in depth 
and to analyse it in detail. The authors contribution to this 
work is based on the reliability of the empirical tests carried 
out on military helicopters, the priority of its publication and 
its practical suitability for aviation. The practical suitability 
criterion is met because the proposed model reliably reflects 
the process under consideration, which is confirmed by the 
calculated value of the readiness index of 0.9223 for the 
planned exploitation process. The proposed 9-state model also 
has the following drawbacks:
• The impact of atmospheric conditions (weather conditions) 

on helicopter exploitations is not taken into account; the 
weather conditions are not subject to strict exploitation 
records despite the fact that helicopters are, after all, 
weather-sensitive objects;

• Planned repairs carried out in repair facilities, which 
temporarily exclude the given object from the exploitation 
records, are not taken into account (usually it is the fourth 
quarter of a given calendar year in a two-year cycle);

• Also excluded from the model are so-called extended 
renewals carried out at the air base with an operating time 
of over 24 hours.

The above mentioned limitations have influenced the high 
value of the calculated readiness rate, therefore the aim of the 
next publications will be to propose a complex macro-model 
for the description of exploitation consisting of three main sub 
processes, taking into account both the repairs carried out in the 
repair facilities as well as the mentioned extended renewal.
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