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AbSTrAcT

In this paper effect of self-heating has been studied of AlGaN/GaN high electron mobility transistor (HEMT) for 
different passivation layers which is promising device for high power at high frequencies. The different passivation 
layers used are aluminium oxide (Al2O3), silicon nitride (SiN) and silicon dioxide (SiO2). The device GaN HEMT  
has been simulated and characterised for its thermal behaviour by the distribution of lattice temperature inside the 
device using device simulation tool ATLAS from SILVACO. The transfer and output characteristics with and without 
self-heating has been studied for electrical characterisation. The channel temperature for different passivation observed 
is 448 K, 456 K and 471 K forAl2O3, SiN and SiO2 respectively. The observed different temperatures are due to 
difference in their thermal conductivity. This channel temperature information is critical to study the reliability of 
the device at high power levels.
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1. INTroDucTIoN
Silicon technology has dominated the semiconductor 

device industry with its established CMOS process since 1960s1. 
But there are some applications like light emitting diodes 
(LEDs), radio frequency (RF) devices, high temperature and 
high power electronic devices where III-V nitride compound 
semiconductor have attracted intense interest2-4. These 
compound semiconductors have excellent performance at high 
temperature and at high power operations in the microwave 
frequency range. The AlGaN/GaN HEMT’s having wide 
energy band-gap are emerging as new promising candidates and 
attracting lot of attention in last decade for next generation RF/
microwave sub systems. The AlGaN/GaN HEMT’s have much 
better performances than that of conventional AlGaAs/GaAs 
HEMT’s as these have demonstrated ten times greater output 
power density5-8. Table 1 shows the comparison of some of the 
important material properties for GaN and other conventional 
semiconductors materials. Higher current densities which are 
responsible for higher frequencies and high power performance 
shift the operating quiescent point of a transistor, results in self 
heating effects9-10. As the current densities increases the channel 
temperature also rises several hundred degrees above ambient 
temperature which reduces the reliability and lifetime of the 
device. Due to self-heating effect thermal resistance increases 
(Rth) which in turn raises the channel temperature. Self-heating 
is one of the critical factor that reduces device lifetime and 
reliability as channel temperature can reach much above the 
ambient base temperature. This effect can burn metal wires 

connecting the chip to the package, and hence result in device 
failures and reliability issues. 

There are different experimental methods for analysing 
the device channel temperature such as IR thermal imaging, 
Raman spectroscopy, thermo-reflectance, infrared microscopy 
and  thermography. The experimental methods are very costly 
and time consuming, to reduce the cost and time numerical 
simulation methods are preferred. These are more useful and 
can be calibrated with any experimental method. The numerical 
simulation methods are more efficient and alternate approach 
to study the thermal analysis of high power devices11-12. 

The finite element method (FEM) is used for simultaneously 
electrical and thermal simulations though it is time consuming 
and complex.

In the present work ATLAS from SILVACO has been used 
for simulation of the devices for thermal analysis and electrical 
behaviour of the GaN based HEMT’s using passivation layers 
of different material.

Table 1. Semiconductor material properties at 300K

Property/units GaN GaAs Si
Band Gap, Eg(eV) 3.4 1.4 1.1
Electron Mobility (cm2/Vs) 800 8500 1500
Saturation velocity 107 cm/s 2.7 2 1
Breakdown Field (MV/cm) 3.3 0.4 0.3
Thermal conductivity (W/cm-K) 1.3 0.5 1.5
Melting point (ºC) 2773 1510 1690
Dielectric constant 9.0 12.8 11.8
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2. DEvIcE STrucTurE AND PHySIcAl 
MoDElS
The device structure used for simulation ofAlGaN/GaN 

HEMT’s schematic is shown in Fig. 113. It consists of field 
plate, passivation layer, GaN cap layer, barrier layer and buffer 
layer grown on silicon carbide substrate. The mole fraction 
of aluminium in AlGaN barrier layer is 0.2. The gate-drain 
spacing, gate length and gate-source spacing are 2.7 µm, 0.25 
µm and 0.8 µm, respectively. The doping concentration in GaN 
and AlGaN channels is 1e15 cm-3 and 1e16 cm-3 respectively. 
GaN HEMT is grown on silicon carbide substrate because of 
its higher thermal conductivity. Self-heating effect depends on 
the thermal resistance and thermal conductivity of material. In 
this work we considered Al2O3, SiN and SiO2 as passivation 
materials and there corresponding thermal conductivities 
are 0.29 W/cmK, 0.185 W/cmK and 0.014 W/cmK,  
respectively14-15.

3.  rESulT AND DIScuSSIoN
In this section both transfer, output characteristics and 

channel temperature are analysed for different passivation 
material. The transfer characteristic are between output drain 
current and gate voltage of AlGaN/GaN HEMT as shown in 
Fig. 2 for VDS=6 V. The gate voltage sweeps from -4.0 V to 1.0 
V with different passivation material layers. The application 
of a gate bias greater than the threshold voltage induces a 
2DEG concentration in the channel of HEMT. As shown in 
figure, there is minor effect on drain current of transfer I-V 
characteristic of different passivation materials i.e. Al2O3, SiN 
and SiO2.

The output I-V characteristics have been shown in Fig. 3 
for different gate bias voltages Vgs=0.0 V, -1.0 V and -2.0 V, for 
drain voltage VDS is ramped from 0.0 V to 20.0 V. The device 
is biased at a gate voltage greater than the threshold voltage to 

Figure 1.  Schematic of AlGaN/GaN HEMT using Sio2 passivation 
material.

Figure 2. IDS-vGS(transfer characteristics) of AlGaN/GaN HEMT 
at vDS=20v with and without self-heating.

Figure 3. comparison output I-v curve for AlGaN/HEMT with 
self-heating and without self-heating.

Various passivation material are studied to improve the 
performance of HEMT16-17. Different models are used in device 
simulator for simulation of devices and these models consists 
of many equations such as Maxwell’s equations, continuity 
equation, Poisson’s equation and drift-diffusion transport 
equations18. These equations solve the intricacies of the device 
operation. Different numerical methods are also used to solve 
these equations for the device structure of different shape and 
size. The model used in this paper is field dependent mobility 
model and lattice heating model through GIGATM. High field 
mobility models are used to examine the alloy scattering 
effects on electron transport physics. Lattice heat model is used 
to include the lattice heat flow equation in ATLAS simulation.

( )TLC k TL H
t

∂
= ∇ ∇ +

∂

where
C=  heat capacitance per unit volume
ĸ =  the thermal conductivity
H = the heat  generation
TL= the lattice temperature
The above heat equation is solved by Block algorithm 

which solves this as Newton solution which further solves a 
decoupled solution of this heat equation. The four equations are 
solved in a coupled manner by Newton algorithm. Block and 
Newton are used for low and high temperature respectively. 
However the combination of both BLOCK and NEWTON 
methods are used for better efficiency.
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induce a channel at a constant drain bias. In Fig. 
3 SiN material is used for passivation for non-
isothermal simulation of output I-V characteristic 
of device structure. The decrease in drain current 
at Vds = 20 V with self heating is 28 percent for Vgs 
= 0.0 V. The drain current decreases less for lower 
gate voltages and 16 percent for Vgs = -2.0 V.

Figure 4 show the lattice temperature for gate 
bias Vgs = 0 V and the drain bias Vds = 20 V for 
AlGaN/GaN HEMT for SiN passivation material 
layer. The lattice temperature profile shows that 
the hotspot occurs at gate edge towards drain.  
Another observation is that these hotspots are 
closer to the AlGaN/GaN interface which means 
that most of the hot electrons are restricted to the  
AlGaN/GaN interface. The mobility degrades 
rapidly due to high electric fields. The drain current 
is reduced due to degradation in mobility as shown 
in Fig. 4. The maximum temperature around the 
hot spot observed is 456 K at drain voltage Vds = 
20 V with SiN passivation material.

The simulations have been carried out for 
aluminium oxide and silicon dioxide as passivation 
material, the channel temperature observed is 
448K and 471 K for Al2O3, and SiO2 respectively. 
Figure 5 shows the channel temperature of AlGaN/
GaN HEMT by using different passivation material layers with 
isothermal simulation.

temperature is for aluminium oxide. This study will be useful 
to evaluate the device reliability and its performance.
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