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ABSTRACT

In the last few decades a number of phenomenological models have been developed for
describing elastoplastic materials undergoing finite deformations. They are different in structure,
e.g., their formulation is related to the reference or to the actual configuration , i.e., it is a Lagrangean
or Eulerian formulation or it may contain elastic and/or plastic deformations. This study has
shown that the most simple and straightforward obtained constitutive relation is free from any
notion of elastic or plastic deformation. Moreover, it is related to the actual configuration, and
thus omits to the greatest possible extent, quantities containing unwanted geometric deformation
informations.
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NOMENCLATURE

B Left Cauchy-Green tensor

B
i

ith Eigenprojection of B

b
i

ith Eigenvalue of  B

C Right Cauchy-Green tensor

D Deformation rate tensor

De Part of D related to recoverable work rate

Dp Part of D related to dissipated work rate

F Deformation gradient

f Yield function

G Evolution tensor of DP

H Fourth evolution tensor for DP

h Plastic modulus

J Operator of objective time rate

I Identity tensor

K Second-order evolution tensor for k

k Isotropic hardening variable

L Velocity gradient tensor

p Plastic potential

R Rotation tensor

U Right stretch tensor

V Left stretch tensor

W Vorticity tensor

w Specific work

we Specific elastic work

wp Specific plastic work

w Complementary potential

X Position of material point in reference
configuration

x Position of material point in actual configuration
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a Back stress; kinematic hardening tensor

f Fourth evolution tensor for DP

L Arbitrary Eulerian second-rank tensor

µ Lamé constant

v Poisson ratio

Y Fourth evolution tensor for a

s Cauchy or true stress tensor

t Kirchhoff stress tensor (t = del Fs )

x Plastic multiplier (1 on loading, 0 else)

(.)°, (.)@ Objective time rates

(.)° (log) Logarithmic time rate

1 . INTRODUCTION

Three-dimensional finite elastoplasticity for the
description of isotropic materials has been primarily
developed along the first-half of the last century;
it gained a high level of maturity at the middle of
that century1-4. Some of the major points seem to
be essential are:

� Constitutive law is phenomenological, i.e., it is
related to the macro-behaviour of the material.

� It is based on measurable physical quantities
like deformation and forces and well established
physical principles.

� It is observer-indifferent, i.e., objective.

A major challenge is to combine the elasticity,
which is mostly relating strains and stresses, with
the flow behaviour of plasticity. Initial attempts have
been made by Hill5 and Lehmann6; they based their
theory on the additive decomposition of the deformation
rate and used the hypoelastic law of grade zero.
The stress rate was the Jaumann rate. The observation
of simple shear stress oscillations7-9 initiated a number
of revised accesses to the domain of elastoplasticity,
e.g., the use of other objective stress rates; the
introduction of internal parameters like plastic strain
or elastic and plastic deformation gradients.

Indeed, the number of objective stress rates is
infinite. It may be noted that some of these eliminate
the oscillation behaviour. However, the questions

remain, which one of them is most appropriate and
if unwanted behaviour is excluded for other typical
computations?

This study shows, that there is an efficient and
straightforward way to an Eulerian elastoplasticity
that is simple in structure and free of any notion
of elastic or plastic deformation.

2 . KINEMATICS OF LARGE DEFORMATIONS

The X describes the position of a material point
in the reference (Lagrange) configuration and x is
the position in the actual (Euler) configuration. During
a deformation of a continuum, neighbour points remain
neighbour points. Hence, line element deformation
and rotation are suitable quantities for identifying the
body deformation. One has the following relations:

dx = FdX (1)
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1
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 (L+LT)=DT,

W=
1

2
(L�LT)=�WT (4)

For the material behaviour description Eulerian
quantities are most suitable, since they are related
to the deformed body. It may be shown that from
the Eulerian quantities in Eqns (1)�(4), the stretch
tensor V, the left Cauchy-Green tensor B, and the
deformation rate D are objective.

While material time derivatives of scalars are
objective, the objectivity of Eulerian tensor time
derivatives is not as trivial. Known objective time
rates of a second-order Eulerian tensor L can be
represented in the form

L° = L + LJ + JT  L      where J(F,L)       (5)

One may distinguish between corotational rates
(JT= � J), e.g.,
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J = W Zaremba/Jaumann rate10,11

/ TJ R R= &  Green/Naghdi rate12 (6)

and non-corotational rates (JT ¹ �J), e.g.,

J = ± L Oldroyd rates13

J = � L + 
1

2
tr LI  Truesdell rate14 (7)

The corotational logarithmic rate15,16 will be of
special relevance. For this rate, J  may be written
as function of the m distinct left Cauchy-Green
tensor eigenvalues b

i
 and eigenprojections B

i
 as17
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3 . STRAINLESS ELASTOPLASTICITY

3.1 Recoverable and Dissipated Energies

Let the specific work rate w&  be decomposed into

a recoverable part w& e and a dissipated part w& p, i.e.,

w& = t:D = w& e= w& p (9)

A possible access to Eqn (9) is the decomposition
of the deformation rate D into the parts De and Dp

e pD D D= + (10)

3.2 Elastic and Plastic Behaviour

Since De describes the recoverable work rate
part, it may be represented by an elastic rate form
material law like Truesdell�s hypoelastic relation18

:eD H °= t (11)

where H(t) is a fourth-order tensor and det Ft = s
is the Kirchhoff stress and the superscript circle
stands for any objective rate. It will be seen that
only a very restricted subset of  Eqn (11) can
serve the purposes here.

DP is to be expressed by a flow-type law, e.g.,

DP = xF:t°, a@ = y:DP, k&  = K:DP (12)

Here, F(t,a,k) is a fourth-order tensor and
x is the plastic multiplier taking the values 1 for
loading and 0 for unloading.Y(t,a,k) and K(t,a,k)
are fourth- and second-order tensors describing
the evolution of the hardening parameters in function
of the Kirchhoff stress t, the kinematic hardening
parameter a, and the isotropic hardening parameter
k. a@ is an objective time rate of a.

It is assumed that there exists a yield function
f(t,a,k) that limits the elastic or elastik-like range.
Von Mises19 proposed to introduce a plastic functional
p(t,a,k) and to describe Dp by

1
( : )p f p

D
h

¶ ¶
= x t°

¶t ¶t
(13)

Here, h is the plastic modulus. For p = f relation
Eqn (13) represents the associated flow rule.

3.3 Prager�s Yielding Stationarity Criterion20

The simultaneous vanishing of t°, a@ and k&
should render the yield surface f(t, a,  k) stationary.
From this criterion one may derive21 that

� The stress rate t° and the back stress rate
a@ must be corotational, i.e., JT = �J must
hold in Eqn (5).

� The stress and the back stress rates must be
of the same corotational type.

3.4 Exact Integrability Condition

Elastic or elastic-like material behaviour occurs
during the first loading in elastic range or during
unloading. Then, DP = 0 and the rate type elastic
Eqn (11) remains. It was shown, however22, that
already for a very simple form of such relation,
i.e., the hypoelastic relation of grade zero

2 (tr )
1

e v
D I

v
m = t° - t°

+
                  (14)
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A number of known objective stress could not
make the relation exactly integrable, i.e., make
them fulfill Bernstein�s integrability conditions23,24.
Since the logarithmic rate was not yet disclosed,
there study didn�t include this rate.

In 1999 it was shown25 that the rate equation

2

2
:e W

D
¶

= t°
¶t

(15)

is exactly integrable to deliver a dissipationless
elastic relation, if and only if

(log)t° = t° (16)

i.e., the objective stress rate in use is the logarithmic
rate. By this the hypoelastic and hyperlastic formulations
of elasticity have been brought together. It should
be noted that Eqn (15) limits the available set of
hypoelastic formulations Eqn (11).

3.5 Ilyushin�s Postulate26

Let

2
(log)

2
:e W

D
¶

= t°
¶t

(17)

and

(log)( , , , )pD G k= x t° t a (18)

By a weakened formulation of Ilyushin�s postulate,
it has been shown27 that

� the normality rule should hold, i.e.,

(log)1
( : )p f f

D
h

¶ ¶
= x t°

¶t ¶t
(19)

and

� that the yield surface should be convex, i.e.,

( ) : 0
f

°

¶
t - t >

¶t
(20)

4 . STRAINLESS EULERIAN
ELASTOPLASTICITY MODEL

In the previous sections it has been seen, that
the stress and back stress rates should be of same
corotational type (Prager�s criterion), that the corotational
rate should be logarithmic (exact integrability) and
that the associated flow rule should hold (Ilyushin�s
postulate). This results in the following Eulerian
model:

2
(log) (log)

2

1
: ( : )e p W f f

D D D
h

¶ ¶ ¶
= + = t° + x t°

¶t ¶t ¶t
(21)

The evolution laws of the kinematic and isotropic
hardening parameters are

(log) : , :p pD k K Da° = y =& (22)

From the plastic consistency condition ( f& = 0),
one finds

: : :
f f f f

h H K
k

-¶ ¶ ¶ ¶
= -

¶t ¶t ¶ ¶t
(23)

Unified loading criteria for hardening and softening
elastoplasticity may be written as

12

2
1 if 0 and : : 0,

f W
f D

-
æ ö¶ ¶

x = = >ç ÷¶t ¶tè ø

12

2
1 if 0 and : : 0,

0 if 0

f W
f D

f

-
æ ö¶ ¶

x = = £ç ÷¶t ¶tè ø

x = <
        (24)

The set of Eqns (21)�(24) represents a rate
form elastoplasticity model. It is free from the
notion of strain. Since no deformation decomposition
in elastic and/or plastic parts has been performed,
no evolution laws have to be formulated for the
new quantities emerging from such a decomposition.
It may be seen that theories with deformation
decompositions, e.g., plastic strain or multiplicative
deformation gradient decomposition, are restricted
subsets of the present theory.
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5 . CONCLUSIONS

A simple and efficient Eulerian elastoplasticity
model for isotropic materials is presented in a
straightforward procedure. It is based on the
decomposition of the work rate into recoverable
and dissipated parts and is free from notions of
elastic or plastic deformations. Only well established
physical principles and strong mathematics lead to
the final formulation. Hence, it is expected that it
may be numerically most efficient and free of
unwanted results.
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