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ABSTRACT

A method of supervised characterisation of synthetic aperture radar (SAR) satellite images
has been discussed in which simple object shape features of satellite images have been used
to classify and describe the terrain types. This scheme is based on a multilevel approach in
which objects of interest are first segmented out from the image and subsequently characterised
based on their shape features. Once all objects have been characterised, the entire image can
be characterised. Emphasis has been laid on the hierarchical information extraction from the
image which enables greater flexibility in characterising the image and is not restricted to mere
classification. The paper also describes a method for giving relative importance among features,
i.e., to give more weights to those features that are better than others in distinguishing between
competing classes. A method of comparing two SAR sensor images based on terrain elements
present in the images has also been described here.

Keywords: Object segmentation, object characterisation, image characterisation, terrain-based
matching, SAR imagery

µ
p

Mean intensity of the image

σ
p

Standard deviation of pixel intensities

1 . INTRODUCTION

Classification of images is one of the most
extensively researched areas of image processing.
It is often required for both military and civil
applications. Classification systems working on satellite
imagery often use pixel-level properties to classify
pixels in an image. This, however, restricts the
applicability of such systems to answer queries
related to classification only. Since the decision is
made at pixel-level only, such an approach cannot
characterise the entire image. In the proposed
approach, multiple levels of information extraction

NOMENCLATURE

A Area of the object

P Perimeter of the object

D Diameter of the object, defined as the
maximum Euclidean distance between any
two peripheral points

R av g
Average distance of the peripheral points
from the centroid

Rmax
Radius of the object, defined as maximum
Euclidean distance of any peripheral point
from the centroid (C) of the object. Need
not to be half of D.

th bright
Threshold for bright objects
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has taken place, each one arising from the one
below it. User-level queries like classification are
answered at the final level. This permits enough
flexibility to answer the other queries like terrain-
based matching of images, detection of changes
in scene contents, and so on. The efficacy of this
approach has been demonstrated on synthetic aperture
radar (SAR) imagery.

Several attempts have been made to classify
terrain types present in the SAR images. Statistical
and neural network approaches have been used
to classify multi-temporal/multiband SAR sensor
images using spatial analaysis1. Another approach
uses an unsupervised scheme using self-organising
map (SOM) neural network to classify the SAR
images based on texture classification through gray-
level co-occurrence probabilities2. Many features,
that can be used for the SAR classification, have
been explored and compiled3. The authors have
examined the utility of nonstandard features, eg,
spatial variability between neighbouring pixels for
classification.

The methods cited above build a detector or
classifier for a specific task. The proposed scheme
is different in that as it retains enough information
at the image level to answer not only classification
or detection queries but also some other user queries
like textual image description, terrain-based image
matching, object extraction, and so on. The paper
describes the multilevel hierarchical characterisation
of images and further explains building up of scene-
level description from the objects.

2 . HIERARCHICAL IMAGE
CHARACTERISATION

As mentioned, a hierarchical approach is adopted
in which information extracted from pixels is used
to build object-level information, which, in turn, is
used to derive terrain-level information, subsequently
leading to information at the scene-level.

The purpose of this study is to demonstrate
the implementation of such a hierarchical scheme
for characterisation of satellite imagery. The information
extracted at the lowest-level is used not only to
classify objects into various terrain types but also

serves as input to higher-level information structures
which can then be used to answer the higher-
level queries. The implementation has been done
on the SAR images. Several simplifying assumptions
have been made in this regard. Only the magnitude
of SAR images has been used. Phase or polarisation
information has not been made use of. It has also
been assumed that lakes and rivers give dark signatures
in the magnitude image, whereas mountainous and
urban objects give bright reflection signatures.

The actual details of the lowest-level classification
depend on the nature of images and the entities of
interest for a given application. These would necessarily
have to be optimised by each user for each application.
The selection of entities and their expected signatures
given below are, therefore, only indicative. The
focus of this paper is the construction of a hierarchical
characterisation scheme that supports multiple user-
level queries.

2.1 Lowest (pixel)-level Description

Figure 1 shows a typical SAR image. It is
worth mentioning that pixel intensities can be grouped
into three categories: Dark, bright, and mean intensity
levels.

Figure 1. SAR image of an urban region.
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The bright spots in Figure 1 occur due to
strong reflection of light from right-angled corner
reflectors due to vertical structures. In other words,
man-made structures like buildings, give bright
signatures. Similarly, mountainous terrains give similar
bright reflections. On the other hand, rivers, lakes,
and other water bodies give darker signatures. A
congregation of such pixels forms an object of
interest.

Segmentation of these objects is done on the
basis of intensity. Thresholds for bright and dark
objects are determined separately as

thbright 
=µ

p 
+ λ

b
σ

p
(1)

th
dark 

=µ
p 

+ λ
d
σ

p
(2)

where th
bright 

is the threshold for bright objects,
th

dark 
is the threshold for dark objects, µ

p 
is the

mean intensity of the image, and σ
p 
is the standard

deviation of pixel intensities.

To describe an object, only those pixels
are considered that adjoin each other (in 8-
connected sense) to form objects of reasonable
size (in this case, 20 or more). To keep the
algorithm independent of the resolution of the
image, all thresholds based on sizes are multiplied
with a scaling factor (γ), which takes care of
resolution change. In this work,   γ is 1.0. λ

b

and λ
d 

usually lie between 0.5 and 1.5. These
are obtained iteratively till a minimum (pre-
decided to be 10) number of objects are segmented
out for analysis.

Figure 2 shows a SAR image out of which
bright and dark objects have been segmented out.

2.2 Object Enumeration and Description

Once these putative objects have been extracted
out, they are preprocessed before feature extraction.
Each of the objects is dilated so as to fill the
irregularities of its boundary. This is done because
such indentations unnecessarily increase the perimeter,
which is used as part of the features used to
characterise its shape.  Figure 3 shows objects
that have been dilated after extraction. It is further
mentioned that dilation reduces unwanted indentations
while retaining the overall shape of the objects.

In this study, focus has been put on distinguishing
between the following terrains:

Mountainous terrains

Urban terrains

Rivers

Lakes(includes dams).

As is evident from Figs 1 and 2, bright, long
objects characterise mountainous terrains, whereas
bright small-oval objects mark urban features. Similarly,
rivers and lakes occur as dark objects, which can
further be distinguished by their shape features.
Shape features have been used to characterise
objects. As SAR images do not give reliable edge
extracts, edge-based features have not been
considered. Features need not be limited to object
shapes only. Other features can also be used for
this purpose. The main purpose here is to demonstrate
buildup of hierarchical information structure from
pixel to scene-level. Objects of interest are either

Figure 3. Dilation of extracted objects.

(a) (b) (c)

Figure 2. Segmentation into bright and dark objects: (a)
original image, (b) bright objects, and (c) dark objects.
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long and eccentric or roughly oval. Hence, features
that can distinguish between the eccentric and oval
shapes have been used. Shape of each object has
been described using the following features:

(a) Roundness4: This is defined as the ratio between
the area of a circle whose circumference equals
P, to the area of the object, A.

Rnd = 
A

P

π4

2

(3)

(b) Ovalness: This is defined as the ratio between
the area of the circle whose diameter equals
D, to the area of the object, A.

Ovl = 
A

D

4

2π
(4)

(c) Ratio of Areas: It is the ratio between the
area of a circle whose radius is Rmax 

to the
area of the object, A.

ROA = 
A

R2
maxπ

(5)

(d) Elliptical Eccentricity: It is the eccentricity
of an ellipse with semi-major axis equal to
R max 

and semi-minor axis equal to R
avg

.

2
max

2

1
R

R
ee avg−= (6)

(e) Eccentricity 4: It is defined as the ratio of the
minimum moment of inertia (I

min
) of the shape,

to the maximum moment of inertia (I
max

).

max

min

I

I
ecc = (7)

These features are grouped to form a feature
vector, f.

To summarise, the following steps are performed:

Threshold image (twice) to obtain dark and
bright objects separately.

For each object, extract five features to form
a feature vector, f.

It is re-emphasised here that only intensity
and shape information have been used to obtain
the feature vector, f. Texture features have not
been made use of.

2.3 From Objects to Terrain Elements

Object with shape feature vector (f) is classified
into one of the terrain types based on its distance
from the cluster means of the different terrain
types. However, before the classifier for objects
is ready, it needs to be trained. This is done using
a training set through which cluster mean for each
terrain type is determined.

(a) Training Set: For each of the terrain types, a
large number (50 to 100) of objects belonging
to that type are extracted. Then,
Determine the features mentioned above for
each of these extracted objects.

Find the mean (µ
i,c

) and standard deviation
(σ

i,c
) for all features for all the objects belonging

to class (c) [terrain type]. Here, i represents
the ith feature. 

Table 1 shows the means of features for objects
pertaining to specific terrain types

Table 1. Means of features for each terrain type

Feature Mnt Urban River Lakes

Rnd 10.7290 2.913 16.7720 4.359

Ovl 10.5280 2.325 14.1230 2.763

ROA 11.8120 2.587 16.5290 3.356

ee 0.8728 0.801 0.8679 0.818

ecc 0.0378 0.426 0.0777 0.379

Table 2 shows the standard deviations of features
for objects pertaining to specific terrain types.
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Table 2. Standard deviations of features for each terrain type

Feature Mnt Urban River Lakes

Rnd 4.770 1.501 6.518 2.137

Ovl 4.065 0.773 5.082 1.046

ROA 4.649 0.978 6.352 1.416

ee 0.017 0.053 0.021 0.060

ecc 0.057 0.219 0.107 0.221

Standard deviation of the ith feature for all
objects together, irrespective of the class to which
they belong, is also determined. These are denoted
as  µ

i 
and σ

i
, respectively. Table 3 shows these

values.

Table 3. Standard deviations of features irrespective of terrain
types

Ftr. Rnd Ovl ROA ee ecc

5.621 5.284 6.075 0.054 0.245

(b) Classification of Objects: Feature means and
standard deviations for each class are represented
as vectors for that class by  µ

c 
and  σ

c
,

respectively. Also, σ
f 

represents the vector
formed by the standard deviations in Table 3
above. This vector represents the overall standard
deviation of features.

Any object vector (f) can be classified into
one of the classes by evaluating its distance from
each of the mean vectors of the class.

It is mentioned here that the classification of
objects should be done separately for objects extracted
by the two thresholding steps. In other words,
objects are either classified into mountain or urban,
or into rivers or lakes. Hence the task is reduced
to a 2-class classification problem.

(c) Distance: If f is the feature vector of the
object to be classified, then its Euclidean distance
(D Euclidean

) in feature space from the mean
vector  (µ

c
) of class (c) is defined as

( )∑
=

−=
F

i
c,iiEuclidean fD

1

2µ (8)

Here, F is the number of features.

However, the feature axes are usually not
isotropic, as is evident from Table 3. Some of the
features have higher dynamic ranges (and hence
higher standard deviations) than the others. The
axes are, therefore, made isotropic by dividing by
the Euclidean distance of that feature by the standard
deviation of the feature. This distance is known
as Mahalanobis distance and is determined as

∑
=
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=

F
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,
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µ
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It is found that some features give better
discrimination between competing classes than the
others and hence should be given more importance
or weight than other features. Therefore, the distance
equation is further modified to incorporate relative
weights between features as

2

,

1
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such that

∑
=
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F

i
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1

1 (11)

(d) Feature Weights: Weights should be chosen
on the basis of the ability of a feature to
discriminate between competing classes. Different
features give different separation for different
classes. Accordingly, the weights should not
only be feature-specific, but also class-specific.

Figure 4 shows how weights should be chosen.
If there are N competing classes with means and
standard deviations as ( µ

i,c
, σ

i,c
), for ith feature,

then for class (c), one has:

( )
( )nearestici

nearestici

ciw
,,

,,'
, ,max σσ

µµ −
= (12)
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As is evident from Fig. 4, even though δ
i
<δ

j
,

feature i should get more weight because the two
clusters are better separated (less or no overlap)
along feature i than feature j, as is evident from
the lower value of the standard deviation of i for
a class than for j.

Table 4 gives the feature weights-specific to
the classes (terrain types).

Table 4. Normalised feature weights for each terrain type

Feature Mnt Urban River Lakes

Rnd 0.1869 0.1869 0.2265 0.2265

Ovl 0.2301 0.2301 0.2658 0.2658

ROA 0.2263 0.2263 0.2466 0.2466

ee 0.1545 0.1545 0.0989 0.0989

ecc 0.2021 0.2021 0.1621 0.1621

Since it is a 2-class classification problem,
the weights of class mountain are equal to that of
class urban. Similarly, weights of class river are
the same as those of class lakes. In general, these
weights may not be the same because class i may
have class j as the nearest neighbour but class j
may not necessarily have class i as the nearest
neighbour.

3 . SCENE DESCRIPTION BASED ON
TERRAIN ELEMENTS

This work focuses on four terrain types. To
obtain a quantitative description of a terrain, a
terrain descriptor is determined. This demonstrates
how higher-level information structures can be built
using lower-level information. in this case, there
are four terrain descriptors for an image, one for
each terrain type.

3.1 Terrain Descriptors

A set S = {TD
i
} is computed for the entire

image, where TD
i 
is the terrain descriptor for class

i. Here, i = {1, 2, 3, 4} where 1 denotes class
mountain, 2 denotes class urban, 3 denotes class
river and 4 denotes lakes class.

To determine TDi 
for class i, all objects that

have been classified into class i are considered.
The following attributes are derived for TD

i
.

Number of objects classified into class i.

Area coverage of terrain is the sum of the
areas of the objects belonging to that terrain.

Number of Prominent Objects: Prominence is
defined on the basis of the distance of the object
from terrain's mean vector. A threshold is chosen
for prominence through supervised learning.

Terrain Vector: This is determined by weighing
the distance of each object, from terrain's mean
vector, by the area of the object and dividing
the sum of these area-weighted distances by
the total area coverage of the terrain (i). This
feature is used to determine whether the terrain
type is prominent in the image or not. As is
evident, this quantity is always positive.

S gives a quantitative description of the terrain
types present in the image. Comparing terrain vectors
can do terrain-type comparisons.

3.2 Image Analysis based on Terrain Descriptors

Image-level queries can be handled once the
set S has been computed. The following analysis
of the image can now be done:

(µ
NEAREST

, σ
NEAREST

)

C
NEAREST

GIVEN
DISTRIBUTION

Figure 4. Determination of feature weights.
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(a) Image Classification: Image gets classified
into one or more terrain types. Unlike an object,
an image can get classified into more than
one terrain types. This is valid because there
can be more than one terrain types present in
the image.

(b) Image Description: To describe the image,
describe each of the terrain types present in
the image. For each terrain type, describe its
area coverage, number of objects belonging
to it and the number of prominent objects.

(c) Terrain Extraction: To extract a terrain, all
the objects belonging to that terrain type are
extracted.

(d) Terrain Matching: It often happens that there
is a need to match two images and determine
how closely they relate to each other in terms
of their scene contents. Terrain descriptors
facilitate this task.

Let images I1 
and I

2 
have terrain descriptor

sets S
1 

and S
2
, where S

1 
= {TD1

i
} and S

2 
=

{TD2
i
} and i denotes the terrain type. Treating

TD as a vector, for each terrain type i, the cosine
of the angle between the TD1

i 
and TD2

i 
is found.

This gives a value between 0 and 1, which indicates
how closely the terrain type present in one image
matches with the corresponding terrain type present
in the other image. Thus, for the two images, 4
cosine terms are obtained, one each for each terrain
type. A weighted average of these cosines is then
taken. The weights to be used are the coverage
of each terrain in the two images, normalised by
the sum total of the weights.

The value obtained lies between 0 and 1. For
images depicting similar terrain types, this value
is close to 1 and for those images that depict
dissimilar terrain types, this value is closer to 0.
Hence, a measure of similarity between the two
images can be determined.

Advantages of using a hierarchical approach
for image analysis are as follows:

Flexibility: As shown here, separate high-level
functions like classification, description, extraction
and matching can be based upon a single
hierarchical framework. In future, if some other
kind of query comes, the only modification
needed is at the user query-level. The entire
code of pixel-level, object-level and scene-
level need not be modified.

Domain Knowledge: At the scene-level, domain
knowledge can be incorporated specifically.
For example, a terrain type can be defined as
prominent or not, depending upon its coverage
or its terrain vector, and so on. If prominence
is defined as terrain coverage, then urban terrain
may never appear as prominent as compared
to that of mountains because urban objects
are considerably smaller than mountainous objects.
Domain knowledge can be used here to give
weight to urban objects while comparing them
to mountainous ones.

4 . RESULTS

In this study, only the magnitude of the SAR
imagery has been used for characterisation of terrain.
Thus, this method can be used with sensors that
do not have phase information and is, therefore,
generic.

Results have been compiled under the following
headings:

Image Classification: The proposed
implementation gives a high accuracy of
classification. However, there are misclassification
errors in which an object of one-terrain type
is misclassified into some other-terrain type.
These errors are typically low, with the
highest being 10 per cent for objects of river
class.

Image Description: Figure 5 shows that a
textual description of image contents can be
generated. This is especially useful for military
applications where textual reports need to be
generated from surveillance images.
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Figure 6. Urban area image with river and lakes.

Urban: Total 46 object(s) found out of which 28
are prominent. Total coverage is 2.67 per cent. Average
object size is 38.07 pixels. Overall prominence of
the terrain is 0.46.

River: Total 1 object found out of which 1 is prominent.
Total coverage is 4.03 per cent. Average object size
is 2643.00 pixels. Overall prominence of the terrain
is 0.44.

Lakes: Total 2 object(s) found out of which 2 are
prominent. Total coverage is 2.92 per cent. Average
object size is 959.50 pixels. Overall prominence of
the terrain is 0.34.

Figure 5. Description of the SAR image of Fig. 6.

Terrain Extraction: Figure 7 shows river and
lakes extracted out of the image shown in
Fig. 6. Figures 8 and 9 show similar terrain,
extraction for mountainous and urban terrains
respectively.

Terrain Matching: To show the accuracy of
terrain matching, one of the images has been
kept common between two different figures.

(a) (b)

Figure 7. Terrain extraction from Fig. 6: (a) river extract
and (b) lakes' extracts.

(a) (b)

Figure 9. Terrain extraction: (a) original urban image and
(b) urban extracts.

(a) (b)

Figure 10. Terrain matching: (a) urban image with river and
(b) another urban image with river. Measure of
similarity = 0.99.

Figure 10 shows two very similar terrains and
their corresponding degree of closeness.
Figure 11 also has similar images but the image
on the right doesn't have a river. Hence, the two
of them aren't as similar as Fig. 10. A similar
situation with mountains is shown in Figs 12
and 13.

(a) (b)

Figure 8. Terrain extraction: (a) original mountainous image
and (b) mountain extracts.
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(a) (b)

Figure 13. Terrain matching: (a) mountainous terrain and
(b) another mountainous terrain. Measure of
similarity = 1.

Only simple shape-based features have been used
which are easy and computationally inexpensive
to extract. As results show, shape-based features
are sufficient to describe, classify, and match terrains
in images. Future work can comprise a similar
characterisation for higher resolution images. Texture
measures can also be used along with shape-based
features to obtain a better quantitative description
of objects, especially for higher-resolution imagery.
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(a) (b)

Figure 12. Terrain matching: (a) urban image with river
and (b) mountainous terrain. Measure of
similarity = 0.29.

(a) (b)

Figure 11. Terrain matching: (a) urban image with river and
(b) another urban image without river. Measure of
similarity = 0.69.

5 . CONCLUSION AND FUTURE WORK

Ability to characterise a SAR satellite image
using multilevel hierarchical characterisation has
been demonstrated in the proposed framework.




