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1 . INTRODUCTION

With the availability of multi-sensor data in
many fields such as remote sensing, medical imaging,
machine vision and military applications, sensor
image fusion has emerged as a new and promising
field of research. The current definition of multi-
sensor image fusion is very broad and the fusion
can take place at signal, pixel, feature, and symbol-
levels. Image fusion provides the means to integrate
complementary and redundant information from
multiple images into a composite image more suitable
for human visual perception, and computer processing

such as segmentation, feature extraction, and target
recognition.  Integrating disparate information improves
interpretation capabilities. This leads to more accurate
analysis, increased utility, and more robust performance.
Besides, the redundant information from images
is encoded just once in the output. This results in
a more efficient storage and dimensionality reduction
in feature vectors.

The main issue in fusion of many types of
images for visual display is content preservation.
Important details from all the input images should
be preserved in the output image, while ensuring
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ABSTRACT

Interest in fusing multiple sensor data for both military and civil applications has been
growing. Some of the important applications integrate image information from multiple sensors
to aid in navigation guidance, object detection and recognition, medical diagnosis, data
compression, etc. While, human beings may visually inspect various images and integrate
information, it is of interest to develop algorithms that can fuse various input imagery to produce
a composite image. Fusion of images from various sensor modalities is expected to produce an
output that captures all the relevant information in the input. The standard multi-resolution-
based edge fusion scheme has been reviewed in this paper. A theoretical framework is given for
this edge fusion method by showing how edge fusion can be framed as information maximisation.
However, the presence of noise complicates the situation. The framework developed is used to
show that for noisy images, all edges no longer correspond to information. In this paper, various
techniques have been presented for fusion of noisy multi-sensor images.  These techniques are
developed for a single resolution as well as using multi-resolution decomposition. Some of the
techniques are based on modifying edge maps by filtering images, while others depend on
alternate definition of information maps. Both these approaches can also be combined.
Experiments show that the proposed algorithms work well for various kinds of noisy multi-
sensor images.
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that the merging technique should not introduce
any kind of artifacts, blur and spurious patterns.
The edges in images, which correspond to object
boundaries, are usually the key features in images.
There are various scenarios when constituent input
images can encode different edges for the same
physical scene. These are: (i) variable depth of
focus (each input image may have objects at different
depths in sharp focus), (ii) variable spectral response
(each image may be using a different part of the
spectrum, eg, optical and IR), and (iii) variable
time of capture (input images may constitute snapshots
taken at different times capturing different objects
in the same field of view). In each case, one can
create a single image having all the desirable
information.

Prior to fusion, all input images must be registered
to the same field of view. Image registration1,2 is
the process of geometrically-transforming images
of the same scene such that all common objects
have identical positions within each image. In simple
cases, translations alone may be sufficient. In other
cases, one may have to determine an affine transform
to take care of scale, rotation, and projection. For
the most general case, one would have to determine
the camera parameters, estimate the 3-D structure
of the scene and then render registered versions
of the images to the extent possible. Only the
multi-sensor images to be fused are assumed to
be registered.

The fusion of registered images for capturing
all the sharp edges has been discussed in the
literature3-5. These methods are based on decomposition
of images into wavelet representations. Wavelet
and pyramid6 subbands highlight the edges present
in an image at various scales. The Laplacian subbands
can also be combined using variants of the ‘choose
the highest value’ logic and the resultant subbands
can be reconstructed to create an output image7.
All the merging techniques efficiently fuse clean
and noise-free images. However, these techniques
cannot be directly applied to noisy images. A number
of sources of noise are available. IR images are
grainy due to thermal (shot) noise, and SAR images
are grainy due to specular noise. Dual field scanning
can cause motion-induced jitters at edges, and wireless

transmission can also add spot-and-line noise. If
the fusion process carefully preserves the edges
due to these noise artifacts, the composite image
will have very poor quality. The fusion of noisy
images requires a careful analysis of the theoretical
basis of conventional fusion algorithms. Based on
the understanding gained, one can try to improvise
methods for fusion of noisy images. This is the
focus of this paper.

This paper reports the traditional methods of
fusion. A connection is made between the edge-
based fusion and the information in images. Next,
one considers the possible modifications that can
be made for noisy images. The first solution method
uses conventional techniques to reduce the noisy
fusion problem to the noise-free fusion problem.
The second method uses a more unconventional
approach – it redefines the measure of information
for images and utilises this new measure for fusion.
Finally, the results are shown for registered noisy
input images and quantitative evaluation of perceptual
significance of various noise patterns. All the methods
assume registered images, exploit multi-resolution
representations and focus on edges. In practice,
specific applications may require representations
for texture, colour or selected target shapes.

2 . EDGE-BASED FUSION

2.1 Basic Edge Fusion Methods

The basic idea of multi-resolution-based edge-
based fusion methods can be summarised as follows:

Create a multi-resolution representation of each
input image (pyramid or wavelet using any
filter order or basis). This creates bipolar, bandpass
subband images at various resolutions. The
edges in the input images show up as large
non-zero values in these subbands.

The sharper edges typically have larger
non-zero values as the subbands encode
differences from the local means. Thus, the
more difficult problem of determining the edge
sharpness translates into the more tractable
problem of determining the pixel magnitudes.
This is strictly true only for edges of various
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sharpness between areas having the same intensity
difference. When images having very different
dynamic ranges need to be fused, different
representations are used.

The multi-resolution subbands of the output
image are created pixel-by-pixel. For each
pixel location, the corresponding pixels in the
subbands of the various input are analysed
and the maximum magnitude pixel is chosen
for the output. The reconstruction of these
new subbands gives an output image that combines
the sharpest edges from all-input images.

Fusion results have been reported for both
wavelets3-5 and pyramids. The choice of the Laplacian
pyramids6,7 is recommended for two reasons: (i)
the pyramid subbands are non-directional. The edges
(at a given scale) are not broken up into various
subbands and (ii) aliasing cancellation is not presumed
in pyramid reconstruction. Thus, arbitrarily constructed
pyramids can be reconstructed without the risk of
introducing artifacts in the final image. In addition
to the Laplacian pyramids, contrast decomposition-
based ratio of low-pass (ROLP) pyramids8-10 have
also been used for edge-based fusion. The difference
in dynamic ranges between the optical and the IR

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

imagery leads to optical images always dominating
the fused output for the Laplacian pyramids and
wavelets. An ROLP is shown to give better results
for optical and IR image fusion as perceptually
important details in IR images, with a relatively
high local luminance contrast, are preserved in
the composite image.

The results of edge-based fusion using max
rule with the Laplacian pyramids and ROLP pyramids
are shown in Fig.1. The top row shows results of
fusion for three optical images having different
depths of focus. The bottom row shows fusion of
optical and IR using both the Laplacian and the
ROLP representations.

2.2 Relation to Information Fusion

The edge-based fusion methods outlined above
are usually motivated from the functional point of
view: Their justification is that these work. However,
there are many cases where these do not work,
eg, for noisy images, texture-dominated images,
and for applications where user wants some specific
feature to be fused, etc. To set reasonable expectations
from fusion algorithms, as well as to devise extensions
for some of the above cases, it is necessary to

Figure 1. Three optical input images having different depths of focus are shown in figures (a), (b), and (c). The images are fused
using (d) the Laplacian  pyramids and (e) the ROLP pyramids. The bottom row shows the fusion of (f) IR image and
(g) optical image using (h) the Laplacian pyramids, and (i) the ROLP pyramids.



139

MISHRA & RAKSHIT: FUSION OF NOISY MULTI-SENSOR IMAGERY

relate the edge fusion methods to a theory of information
in images.

Firstly, Shannon's information theory is applied
to the images. If one computes the entropy of
pixel values in images, and thus estimates information
in images, the result is very unsatisfactory. White
noise emerges as the most informative image. A
pixel having a rare (in that image) intensity value
is not necessarily encode any rare artifact. No
universal intensity histogram exhibts for the images
(even natural images) that can be used to assign
information value to pixel values. However, the
histograms of subbands do exhibit such a universal
histogram. The histograms of subbands have a
peak around 0 (small magnitudes are the most
common) and sharp falloff on either side (large
magnitudes are rare). Information maps created
based on image pixel intensities and subband pixel
intensities are shown in Fig. 2 for a set of images.
As can be seen, the information map based on
subband pixel image intensities is a more appropriate
map as it highlights regions (edges) that are considered
perceptually significant. Thus for the case of good
quality natural images, at least, one can use Shannon’s
entropy of subband images as a measure of information
in images.

The multi-resolution-based edge fusion algorithm
can now be cast as an information maximisation
algorithm. For each image, subbands are being
computed. For each pixel location in the subband,
the input with the largest pixel value is the one
that encodes the maximum information at that spatial
location, at that frequency band. Selecting all the
maximum values from the input subbands for the
output subbands creates a maximally information
encoding representation that is consistent with the
input image set. The above analysis is based on
the crucial assumption that the subband pixels with
the larger values are encoding more information.
The fusion method will fail to give good results as
soon as that assumption is violated.

3 . FUSION OF NOISY IMAGES

In noisy images, the number of larger valued
pixels in the lower subbands increases to encode
the fluctuations due to noise. It is no longer true
that these large values are very rare, or that these
are always encoding intensity variations that describe
structurally significant features in the images. To
rectify the situation, one can proceed in three different
ways: (i) modify the maximum pixel rule, (ii) suppress
noise/preprocess images before fusion, and (iii)

(a) (b) (c) (d) (e) (f) (g) (h)

7.500386 7.074072 7.248747 0.427791 0.426292 7.997266 7.350359 5.620749

5.882845 5.824377 5.864429 2.995507 1.328142 5.913523 6.884959 7.293220

Figure 2. Top row represents a  set of eight images, including natural images, binary patterns and textures. Middle row shows
the information maps based on image pixel intensities and their frequencies of occurrence, and the bottom row shows
the information maps based on subband pixel intensities and works better, at least for natural images (a), (b), and
(c). A gross overestimation is for noise and texture images (f), (g), and (h).



140

DEF SCI J, VOL. 58, NO. 1, JANUARY 2008

explicitly use information measures for weighting
images.

3.1 Alternatives to Max Rule

The rule for selecting the pixel value based
on input subbands need not only be the maximum
rule. Many variations were tried, eg, mean, median,
RMS, geometric mean, harmonic mean and exponential
mean (log of the mean of exponentials). The rules
that are biased towards the larger values (like
RMS and exponential mean) give the best results.
The motivation for using the rules other than the
maximum rule is to have the output depending on
all-input to some extent. This can be important if
the objective is edge-evidence fusion rather than
just selection of the best edge. As noise is unlikely
to be coherent across the images, a noise-based
edge in one image will lack support from the other
images. In the presence of noise, edge-evidence
fusion from an image cannot be believed without
partial corroboration by other images. True edges,
while being present more sharply in some input
than others, will be present to some extent in all
the images. The slight attenuation of the sharpest
true edge is the price one pays for noise immunity.
Figures 3 and 4 show the result for fusion using
the RMS and exponential means. The input set is
the images with different depths of focus.

Following are the various other fusion selection
rules. If one denotes the input images by Ii

, where
i = 0..(N-1) and the fused image by F.
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0.329 0.195 0.176 0.297 0.077 0.038 0.064 0.091

Figure 3. Top row shows a set of eight images, including natural images, binary patterns and textures. Bottom row shows the
information maps based on MSOE (using inter-scale coherence model11).  The scores are indicative of the relative
information content of the various images. The coherence model used favours images with sparse but strong edges.

Figure 4. Top row shows the image affected by random noise.
Second row shows images after noise suppression
after filtering. Bottom row shows (left to right)
fusion of clean image, noisy images and filtered
noisy images. The RMS fusion rule was used
for all.
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These methods have various alternatives for
fusion rule apart from the max rule. For fusion of
noisy images, one has to deal with various combinations
of fusion and filtering.

3.2 Noise Suppression and Fusion

It is important to differentiate between the
image fusion by max rule and the simple averaging.
For the simple averaging process, explicit noise
removal would not be needed. The averaging would

itself attenuate noise, so long as noise was incoherent
across frames and the signal was coherent. This
is the logic underlying time averaging to improve
the SNR while designing sensor systems. For true
image fusion, one must be able to deal with situations
where even the signal is not the same (coherent)
among the input. This necessitates invocation of
nonlinear rules like the max rule for edge fusion.
However, when applied to noisy images, the max
rule tends to amplify noise. The assumption is that
large subband pixels are encoding relevant structures
is rendered false due to noise. Once noise has
been reduced, the assumption about large subband
pixels being informative will again hold good and
one can proceed with the edge-based fusion as
before. Thus, the  model of image fusion as information
maximisation shows that for noisy input, it is better
to do the noise removal first (for each input) prior
to fusion.  Noise removal methods can be employed
to each input image independently. To the extent
possible, noise may be removed or attenuated. This
process will vary depending on the nature of the
noise (Gaussian, salt, pepper, linear streaks, etc).
Noise removal after the fusion of noisy input will
not give good results. This is illustrated in Figs 4
and 5.

If the two images have very different contrasts,
their subband pixel value distributions will be different
as well and equally significant edges will not be

Figure 5. Top row shows the images affected by salt and pepper noise resulting in noisy-fused image. Bottom row shows the
noisy images after median filtering and their fused output. The exponential mean rule was used for fusion of edges
for all these images.
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encoded by equally large subband values. This
equality has to be artificially established before
the max pixel rule can be used for fusion. An
example of this is shown in Fig. 6. Preprocessing
the input clearly gives much better results. In this
case, the preprocessing was customised for the
two types of input to remove noise and equalise
the dynamic ranges as well. The equalisation is
needed to keep the assumption behind information
maximisation valid.

In general, one can use the alternatives to
the max rule. The choice of the fusion strategy,
multi-resolution (wavelet, Laplacian pyramid or contrast
pyramid) and noise removal method can all be
dependent on the nature of noise. Automating the
choice of the above is an open problem. For specific
situations, these options can be manually selected
and set.

3.3 Fusion based on Information Map

Suppose for each noisy image at each pixel
location one could have a measure of information
being encoded. Then, one could directly formulate
image fusion as a weighted average problem. This
would not serve to combine information in an additive
sense (three-blurred edges would not define a sharp
edge) but would at least enable one to pick the
best input for a location (like the max rule for
noise-free images). The main difficulty in implementing

this scheme is defining the right measure of local
information in the images.

Shannon’s information measure computes
information based on probability of occurrence. If
that measure is used to weigh the pixels, two
problems still exist. Firstly, the theory is more
suited to variables than signals, in as much as the
measure depends on overall probability of occurrence
rather than on specific patterns of occurrence.
For images, this means that interchanging pixels
within an image does not affect the measure –
though such interchanges could completely alter
the image itself. This drawback may be fixed by
applying the entropy measure to multi-resolution
representations of the image rather than the images
themselves. Even for reasons of achieving similar
distributions across (similar) the images, computing
information based on subband pixel values is anyway
preferred. Encoding spatial distribution now adds
a second justification. The second problem with
entropy is harder to circumvent. As entropy measures
uncertainty, the measure, when applied for images,
maximises for highly varying images that essentially
look like white-noise. Application of entropy to
subbands does not perceptibly alter this situation.
The key problem here is that the human visual
system (HVS) perceives variations as interesting
only up to a certain point and then ignores these
as noise. Information theory, having being developed
to estimate the cost of communicating values of

Figure 6. First row shows the optical image, unregistered IR image and registered IR image wrt optical image. Bottom-left image
shows fusion of IR and optical images without noise removal, bottom-middle shows fusion followed by noise removal
and bottom-right image shows fusion after noise removal and preprocessing.



143

MISHRA & RAKSHIT: FUSION OF NOISY MULTI-SENSOR IMAGERY

random variables, was never designed to mimic
this behaviour of the HVS. This problem requires
the  development of a different model of (perceived)
information in signals. One gives one such possible
model that one has improvised for creating the
information maps.

Shannon’s entropy measures have been extended
to second-order measures based on multi-resolution11

that can more effectively identify information in
images. The second-order entropy (SOE) of a variable,
H

2
(x), is computed by treating the (sampled) pdf

of x as a new random variable and computing the
entropy of this derived variable. H

2
(.) penalises

excessive variations and gives lower scores to noisy
(random) variables.

3.4 Algorithm for Defining Local Information
– the Multi-resolution Second-order Entropy

The composite method for computing image
information involving multi-resolution second-order
entropy (MSOE) for an image, I, as follows11:

(a) Given I, compute 1 multi-resolution subbands
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(b) For  each subband, compute the corresponding
second-order entropy – H
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(c) Compute MSOE as a function of  the subband
second-order entropy’s, one has:
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The functional form of  F() depends on the
choice of HVS model or judgment. F can be
a weighted sum (frequency-response model)
favouring some scales or a projection operator
(inter-scale coherence model) favouring strong
sharp edges.

(d) Optionally, normalise the measure using entropy
of L 0 

, one has:

(NMSOE) (I) = MSOE(I) / H(L0
)

where NMSOE is the normalised multi-resolution
second-order entropy. The normalised measure
is required for comparison between the images

with different pixel sizes or for discounting
low-amplitude high-frequency variations as noise.

(e) Consider the subband  entropy maps as a pyramid
and reconstruct it, consistent with F to generate
the information map of image, I.

The multi-resolution second-order entropy
(MSOE) can create information maps while
incorporating various HVS models11. Maps created
using these methods can be used to perform the
subband fusion. The subband pixels are weighted
by the information assigned to that location in
the image by MSOE. The fusion rule can again
be max rule or any of the other rules biased
towards the larger values. The information map-
based fusion makes explicit the assumptions being
made about what constitutes information in an
image. The information measures and information
maps computed for the image set used in Fig. 2
is shown below in Fig. 3.

The multi-resolution second-order entropy MSOE-
based information estimates can also be used to
evaluate the results of fusion by various techniques.
The numerical scores assigned to images can be
used to decide which noise suppression or image
fusion method is giving the better result. These
scores are useful as an alternate to the subjective
evaluation by human beings.

4 . RESULTS AND DISCUSSION

The methods for fusion described above have
been applied on various images, and the results
are presented. Perfect registration is a prerequisite
for image fusion. Here, it is assumed that input
images are registered perfectly.

Consider the three images in Fig. 4 (top row).
These are the noisy versions of images shown in
Fig. 1 (top left). The second row shows noise
suppressed versions. For suppressing bright noise
against dark background, a geometric mean-based
filter was used. The third row shows the results
of fusing the clean images, the noisy images and
the noise-suppressed images. The fusion of the
clean images is clearly the best. The fusion of the
noisy images ends up amplifying the noise, making
de-noising more difficult. The fusion of the noise-
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reduced images shows a marked improvement.
All these images were fused using the RMS fusion
rule.

In Fig. 5, one illustrates the fusion results for
a different types of noise (salt and pepper) and a
different fusion logic (exponential mean). Though
fusion of noisy images results in a focused image,
it shows noise enhancement as well. The fusion
result of median-filtered images is closer to the
fused result for noise-free images. The filtering
process degrades the sharpness of objects but the
overall improvement due to better noise rejection
makes this the better technique for fusion of noisy
images.

In Fig. 6, two input images are shown in the
top row, the leftmost being an optical image and
the next being an IR image. These images are
low in contrast, unregistered and corrupted by jitter
and line noise. The rightmost image in the top
row is the registered IR image. The bottom row
shows various fusion results. The left image shows
fusion without noise removal and preprocessing.
This fused image has low contrast and is corrupted
by noise. The middle image shows result of fusion
followed by the noise removal and contrast
enhancement. The noise removal process affects

the fused information, thus deteriorating the information
gathered in the resulting image. Since the original
images were already low in contrast, the enhancement
methods tend to emphasise the edges in the registered
image. The result of fusion applied after noise
removal and contrast equalisation is shown in the
last image. This fused image is better as compared
to previous two in terms of contrast, noise and
sharpness.

To show the use of information maps in fusion,
one takes two images as shown in the first row
of Fig. 7. One is an IR image and the other one
is an optical image. Infrared image shows three
bright spots and one human. As the information in
IR image is directly coded as intensity
(bright = hot), the pixel intensities rather than edge
magnitude can be considered as information. The
basic fusion is performed as an intensity addition
[Fig. 7 (e)]. The optical image contains scene
objects like trees, fence, roads, etc. The second
row shows information maps of these two images.
Brighter regions in the information map contribute
more towards image quality and hence are used
in the fusion selection criteria at various resolution
levels. The ability of proposed measure is tested
by ranking the images using the image quality measure11.

Figure 7. Information maps in fusion: (a) IR image, (b) optical image, (c) information map of IR image, (d) information map
of optical image, (e) intensity-based fusion, and (f) information map-based fusion.

(a) (b) (c)

(d) (e) (f)
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This measure assigns a numerical score to
the fused output. Table 1 shows qualitative measure
of input images in Fig. 7 and their fused results.
These measures quantitatively depict quality of
the images. It can be observed that fusion method
based on information map achieves higher score
than the others. The same can be verified subjectively.
This shows that fusion using information map works
better, both qualitatively and quantitatively.

Table 1. Ranking of fused images (Fig. 7)

Images MSOE weighted Normalised

measure MSOE measure

(e) 0.343 0.184

(f) 0.367 0.191

Combination of noise suppression and information
map-based fusion in case of noisy input images is
shown in Fig. 8, where an infrared image affected
by salt and pepper noise is shown. The optical
image is noise-free. Here, fusion results using evidence
edge-based fusion with median filtering is shown
for comparison with results using information map

of median filtered images. Table 2 shows qualitative
measure of these images. The score suggests better
quality of information map-based fused result, which
can be verified subjectively.

Table 2. Ranking of fused images (Fig. 8)

Images MSOE measure

(c) 0.339

(d) 0.350

5 . CONCLUSIONS

In this paper, one has addressed the problem
of fusion of noisy multi-sensor images. The standard
methods for image fusion were put in the context
of an information maximisation problem. Based on
this, the extensions needed for noisy image fusion
were developed. Three different approaches were
presented to address three different concerns. In
practice, any combination of the three may be used
for getting the best results. A key contribution is
the development of information maps for noisy images
that do not require noiseless reference images. Fusion
based on information map as decision map works
well for all noisy images.  This method preserves
contrast details as well as edge details of the input
images in the fused image.  The methods are general
and can be used on any kind of images, provided
the objective is fusion and preservation of edges.
Textures features cannot be handled at present.
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