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Fuzzy Logic Applications in Filtering and Fusion for Target Tracking
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ABSTRACT 

A fuzzy Kalman filter algorithm is developed for target tracking applications and its
performance evaluated using several numerical examples. The approach is relatively novel. A
comparison with Kalman filter and an adaptive tuning algorithm is carried out. The applicability
and usefulness of fuzzy logic in data fusion is also demonstrated. The performance of both the
extended Kalman filter and fuzzy extended Kalman filter is evaluated using real data of a
manoeuvering target and it is found that fuzzy extended Kalman filter shows better performance
as compared to extended Kalman filter.

 Keywords: Target tracking, extended Kalman filter, adaptive tuning algorithm, fuzzy logic, data fusion,
fuzzy Kalman filter, performance evaluation, state vector fusion

1 . INTRODUCTION

It is essential to get accurate information about
target states such as position, velocity, and acceleration
from the noisy measurements originating from single
source or multiple sources. Kalman filter (KF) is
a suitable algorithm for such applications. In case
of multiple sources, either single KF can be used
by fusing the measurements at data level or by
state vector fusion (SVF). In case of nonlinear
system and measurement models, extended KF
(EKF) is used wherein dynamics are linearised wrt
predicted/estimated system states. The accuracy of
estimated/fused states depends upon: (i) how accurate
the target and measurement models are, and (ii)
process noise covariance Q and measurement noise
covariance R that basically decide the bandwidth of
a filter. In many situations, mathematical models are
not known accurately or difficult to obtain. In practice,
modelling errors are compensated by tuning the filter,
for Q, using trial and error or some heuristic approach.

A proper combination of fuzzy logic (FL)
and KF and a fuzzy Kalman filter (FKF) is
investigated for target tracking applications. The
performances of KF and FKF are compared with
adaptive Kalman filter (AKF) in which process
noise covariance Q is computed online using
sliding window method. Also, the applicability
and usefulness of FL in data fusion is demonstrated
and its performance compared with conventional
method of fusion, i.e., SVF.

2 . FUZZY LOGIC-BASED KALMAN FILTER

The KF is suitable for real-time target tracking.
The filter has some inherent soft decision-making
ability that decides on how much emphasis should
be given to target models or the measurement
data. The decision-making is controlled through
the filter gain (Kalman gain) that depends upon the
ratio of the strength of Q and R. The KF algorithm
in discrete-time domain is as follows:
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(a) System models

X(k+1) = FX(k) + Gw(k)                        (1)

Zm
(k) = HX(k) + v(k)                      (2)

(b) State and covariance time propagation
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(c) State and covariance (measurement) update
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where X(k) is the n-dimensional state, F is the
state transition matrix, G is the process noise gain
matrix, w(k) is the process noise (white and Gaussian)
with zero mean with covariance matrix Q, and k
is the scan number. Z m

(k) is the m-dimensional
measurement vector, H is, m x n, observation matrix,
v(k) is the measurement noise with Gaussian distribution
and zero mean with a covariance matrix R. X%

 

is
predicted state vector, P%is predicted state covariance
matrix, K is Kalman gain, S is innovation covariance
matrix, e is innovation sequence vector, P% is estimated
state vector, and P̂

 

is estimated state covariance
matrix.

Fuzzy logic is a multi-value logic1-3 used to
model any event or condition that is not precisely
defined or known. In the FL-based system, one
uses: (i) membership function that converts the
input/output crisp values to corresponding membership
grades indicating its belongingness to respective
fuzzy set, (ii) rule base consisting of IF-THEN
rules, (iii) fuzzy implications maps the fuzzified
input to appropriate fuzzified outputs, (iv) aggregation

to combine the output fuzzy sets (single output
fuzzy set for every rule fired) to single fuzzy set,
and (v) defuzzification to convert aggregated output
fuzzy set from its fuzzified values to equivalent
crisp values. In a KF, since the innovation sequence
is the difference between the sensor measurement
and the predicted value based on filter's model, this
mismatch can be used to perform the required
adaptation using fuzzy logic rules4. The advantages
derived using the fuzzy technique are the simplicity
of the approach, the possibility of accommodating
the heuristic knowledge about the phenomenon,
and the relaxation of some of the a priori assumptions
of the process. This aspect is accommodated in
Eqn (6) as given by

ˆ ( 1/ 1) ( 1/ ) ( 1)X k k X k k KC k++=+++ %           (8)

where C(k+1) is the fuzzy correlation variable5

(FCV) and is a nonlinear function of the innovations.
To find C(k+1), the innovation vector e is first
separated into its x and y components, for 2-D
target tracking applications: ex 

and e
y
. It is assumed

that target motion in each axis is independent. The
FCV consists of two inputs (i.e., e

x 
and xe&) and

single output c
x
(k + 1), where xe& is computed by

xe&= 
( 1) ( )x xe k e k

T

+−

                              

(9)

where, T is the sampling time interval in seconds.
Interestingly, the FKF can be used to track a
manoeuvering or a non-manoeuvering target. In
any fuzzy inference system (FIS), (Fig. 1), fuzzy
implication provides mapping between input and
output fuzzy sets. Basically, a fuzzy IF-THEN rule 
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Figure 1. Schematic of a fuzzy inference system.
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is interpreted as a fuzzy implication. The antecedent
membership functions that define the fuzzy values
for input e

x 
and xe& , are shown in Figs 2 and 3,

respectively. Similarly membership functions for
output c

x 
are shown in Fig. 4. The labels used in

linguistic variables to define membership functions
are LN (large negative), MN (medium negative),
SN (small negative), ZE (zero error), SP (small
positive), MP (medium positive), and LP (large
positive).  The rules for the inference in FIS are
created based on the past experiences and intuitions.
For example, one such rule is:

IF (ex 
is LP) AND ( xe&is LP) THEN c

x 
is LP    (10)

This rule is created based on the fact that
having e x 

and xe&with large positive values indicates
an increase in innovation sequence at a faster
rate. The future value of e

x 
(and therefore xe&) can

be reduced by increasing the present value of c
x

(some function of Z HX≈− %) with a large magnitude.
Table 1 gives 49 rules5 needed to implement FCV.
Output c

x 
at any instant of time can be computed

using the input e
x
 and xe& , input membership functions,

rules mentioned in Table 1, FIE, aggregator, and
defuzzification. Figure 5 illustrates the 3-D surface
view of FIS for present application. The properties
of FIS used in the present work are: (i) FIS type:
mamdani, (ii) AND operator: min, (iii) OR operator:
max, (iv) fuzzy implication method: min, (v) aggregation
method: max, and (vi) defuzzification method: centroid. 

xeµ

xe
Figure 2. Membership functions for input e

x 
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degree of membership). 

xeµ

xe
Figure 3. Membership functions for input &xe
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Table 1. Fuzzy associated memory for output C
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with 49 rules 
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Figure 4. Membership functions for output c
x
.
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• In Eqns (13) and (14), superscript KF is replaced
by FKF, which means that state estimation is
performed using FKF instead of KF.

• The fused states are obtained by modifying
Eqn (15), given as under

( )
( )

1
1 3 3 4

2 1

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) (16)

FKFF FKF
f

FKF FKF

X k X k w k w k w k

X k X k

−=++

−

The point to be noted here is that Eqn (16) is
obtained from Eqn (11) by replacing 1̂

KFP ,  2̂
KFP with

w
3 

and w
4
, respectively.

4 . VALIDATION OF VARIOUS FILTERING/
FUSION SCHEMES

4.1 Target Tracking

The target data in x-direction is generated using
constant acceleration model with process noise
increment. With sampling interval  T = 0.1 s, a total
of N = 100 scans are generated. The data simulation
proceeds using target state [Eqn (1)] and measurement
[Eqn (2)] with the following assumed parameter

values: (a) initial states of target ( , ,x x x&&&) are (0 m,

100 m/s, 0 m/s2) respectively, (b) process noise
variance Q = 0.0001, and (c) measurement noise
variance R = 10, and measurement vector H = [1 0 0],
and constant acceleration model given below:

21 / 2

0 1

0 0 1

T T

F T


= 



                            

(17)    

3 2/ 6 / 2G T T T= 

                          

(18)

The initial conditions, F, G, H, Q, and R for
both the filters are kept the same. The initial state
vector estimate ˆ (0 / 0)X is kept close to initial state
vector of simulated model. The results for both the
filters are compared in terms of true versus estimated
states and states errors with bounds at every scan
number. Figure 9 shows the comparison of true
and estimated positions, velocities and accelerations
of target in x-direction. Every effort was made to
tune the KF properly. It is clear from the plots that
KF shows initial transient and takes more time to
settle down as compared to FKF. Figure 10 illustrates

the comparison of state errors which are within ˆ2 ( , )P i i±
bounds for both the filters. Evidently, it is observed
that FKF performs much better compared to KF.

 
Sensor 1 

(
1 1 1
, ,m m mx y z ) 

Sensor 2 
(

2 2 2
, ,m m mx y z ) Fuzzifier

 
Fuzzy 

Inference 
Engine 

Defuzzifier

 
FKF 1

 
FKF 2

  
Q 

 
1R

  

2R

   
+

  
_

   
+

  
_

 
Fuzzifier

 
Fuzzy 

Inference 
Engine 

Defuzzifier

 

Fusion 

  
FKFF
1e

  
FKFF
2e

  
3w

  

4w

 

Fused states

 

Figure 8. Proposed Scheme for FKFF method.
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4.1.1 Consistency Check of KF and FKF

The normalised cost function (CF) is computed
using the following formula:

1

1

1
( ) ( ) ( )

N
T

k

CF e k S k e k
N

−

=
= ∑                  (19)

Here, e is innovation sequence vector. The
filter performance is consistent when its normalised
CF in Eqn (19) is equal to the dimension of measurement
vector. The consistency check of KF and FKF is
done for the following: (a) case 1: only position as
measurement (R = 100), (b) case 2: only position
and velocity as measurements [R = diag(100,1)],
and (c) case 3: only position, velocity and acceleration
as measurements [R = diag(100,1,0.01)]. It is observed,
from Table 4, that the cost function for KF is close 
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Figure 9. Comparison of true and estimated states.

Figure 10. States errors with bounds.

Normalised cost function 

Computed 

 
True 

KF FKF 

Case 1 1 0.93 0.85 

Case 2 2 1.96 1.84 

Case 3 3 2.94 2.85 

Table 4. Comparison of cost function for KF and FKF

to the theoretical value, therefore filter performance
is consistent. For FKF, its cost function is slightly
away from the theoretical prediction but still comparable
with KF. This means that FKF is approximately a
consistent filter.

Figures 11-13 illustrate position, velocity, and
acceleration errors. From these results one observed:
(a) for KF the state error reduces when additional
observables (like velocity) are used as measurements,
(b) for FKF even the use of only position measurements
give considerable reduction in state error compared
to KF, (c) FKF shows overall better performance
than KF for all the three cases, and (d) since, for
KF and FKF, the theoretical innovations covariance
happens to be the same, the CF for FKF is lower
than that of KF (since the computed innovations
of FKF gives lower variance than the KF). This
requires further study.

Both the filter schemes are also evaluated for
the state estimation of target data in x- and y-
directions. It is assumed that target motion in each
axis is independent. With that assumption, target
data in y- direction is simulated (using the same
models/parameters as used in x-direction) with an

initial states of , ,y y y&&&= [0 m, –100 m/s, –10 m/s2].
Due to inclusion of y-direction data, matrices such
as F, G, H, and R used is both the filter are as
follows:

2
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Figure 11. Comparison of position error for both the filters. 
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The same FCV is used for y-direction. For
y-axis, similar performance (as reported in Figs 9-10)
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is observed for both the filters, therefore, it is not
shown again. The performances of both the schemes
are also compared in terms of RSSPE [root sum
square position error

RSSPE = 
2 2ˆ ˆ( ( / ) ( / )) ( ( / ) ( / ))x k k x k k y k k y k k−+− ].

Figures 14-16 compare the RSSPE, RSSVE,
and RSSAE computed using true and estimated
states for both the filters. Although the performance
of the KF is satisfactory and acceptable, the FKF
performs better than the KF. For the same target
data (i.e. x and y axes), the performance of KF
with FKF is compared for two cases: (i) when all
the 49 rules are taken into consideration (Table 1),
and (ii) only 4 rules are used (Table 5). The membership
functions for new FCV are shown in Figs 17-19.
Figure 20 shows the 3-D surface view of input-
output mapping for new FCV. Figure 21 compares
the RSSPE of FKF for these two cases. The filter
with 49 rules shows better performance than the
filter with only 4 rules, although the performance
with 4 rules is acceptable. Thus to have a good
FKF, just a sufficient number of rules is needed
to get continuous and smooth input-output mapping.

4.2 Tracking of Manoeuvering Target

For tracking manoeuvering target, it is essential
to re-design the FCV to capture the various possible
manoeuver modes of the target. Re-designing of
FCV involves: (a) proper selection of membership
functions of inputs and output, (b) tuning of selected

Table 5. Fuzzy associated memory with 4 rules
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Case A: Mild Manoeuver Data

To generate mild manoeuver data, the previous
data were used with minor modification in arbitrary
acceleration injection points. A total of 17 scans
were generated. Accelerations were injected at
scans 8 (xacc

= 6 m/s2 and y
acc

= –6 m/s2) and 15
(x

acc
= –6 m/s2 and y

acc
= 6 m/s2) only.

Case B: Evasive Manoeuver Data

To generate evasive manoeuver data, the same
points for arbitrary acceleration injection but with
a manoeuver magnitude of 40*9.8 m/s2 (i.e., instead
of 9*9.8 m/s 2) are used. The results for these
cases are obtained for 100 Monte-Carlo runs. The
initial state vectors of KF and FKF are the same
and kept close to initial true simulated states. Initial
state error covariance matrices for both the filters
are kept to unity.

Figure 23 compares the measured, true, and
estimated x-y target positions for Case A. The comparison
of estimated trajectories from KF and FKF with
true and measured trajectory is reasonably good.
Some discrepancies are observed in the manoeuvering
phase of the flight where FKF exhibits better
performance than KF.  Similar observations are
made for Case B (results not shown). In Fig. 24
of Case B, the RSSPE, RSSVE, and RSSAE for
KF are found to be large compared to those for
FKF, indicating that KF is unable to satisfactorily

track the target during the manoeuver phase compared
to FKF.

4.3 Comparison of FKF, KF, and Adaptive KF

The performance of FKF is compared with KF
and adaptive KF (AKF) using simulated data of
Case A: mild manoeuver. The equations of AKF
are the same as those of KF (mentioned in Section
2) but with varying process noise covariance Q,
estimated online using Maybeck method8. The equations
required to estimated Q are given by

# #ˆ ˆ( ) ( )T TQ k G P FP F G−+=−            (30)

#ˆˆ ( ) ( ) *( )TP K k A k H− =                      (31)

ˆ ˆ ˆ( )P P K k HP+−−=−                       (32)

1

1ˆ( ) ( ) ( ) ;
k

T

j k WL

A k e j e j k WL
WL =−+

=≥ ∑      (33)

Here, # stands for pseudo-inverse, e is the
innovation sequence vector computed using Eqn.(4),
k is the scan number and WL (=5 for the present
case) is the window length. It is important to
note that online value of Q can be made available
to AKF only from WL th  scan which means that
accuracy of Q will  depend upon its initial guess(for 
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target positions-mild manoeuver.

Figure 24.Comparison of RSSPE, RSSVE, and RSSAE for
both the filters-evasive manoeuver.
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k =1 to WLth -1 scans) chosen by a filter designer.
Figure 25 compares the measured, simulated true,
and estimated x-y target positions. It is clear
that AKF exhibits better tracking accuracy, especially
during target manoeuver, as compared to KF but
still it has slightly degraded performance as compared
to FKF. For non-manoeuvering phases of target
motion, AKF and KF perform almost similar.
During the manoeuvering portion, it is found that
for AKF, the magnitude of online Q increases,
and hence, also Kalman gain, which in turn assigns
more weight to measurement model and thus
aids in convergence of the estimated states to
true values at a much faster rate than as seen
for KF only.

Additionally, a sensitivity study of AKF wrt
different values of WL (5 and 10) was carried out
and its performance in terms of RSSPE (Fig. 26)
was compared with KF and FKF. It can be observed
that RSSPE of AKF during manoeuvering phase
is high for WL = 10 compared to for WL = 5. This
could be due to non-availability of online Q and
with an assumption that its initial guess is not
appropriate at a time when actual manoeuver starts
i.e., at k = 8. An appropriate selection of WL
requires a priori knowledge about when the target
will manoeuver first (that may not be available for
an enemy target) puts a limitation on AKF as
compared to FKF.

4.4 Fusion

To compare the performance of various fusion
algorithms such as SVF, KFF, and FKFF, new
data are generated by modifying the arbitrary
acceleration injection points used to generate
previous data. For a new data set, a total of 25
scans were generated. Accelerations were injected
at scans 8 (xacc

= 6 m/s2 and y
acc

= –6 m/s2) and
15 (x

acc
= –6 m/s2 and y

acc
= 6 m/s2) only. The

measurements for two sensors were generated
with SNR of 10 for sensor 1 and SNR of 20 for
sensor 2. The measurements from each sensor
were processed by KF and FKF (tuned FCV
obtained in Section 4.2 is used here) for 100
Monte-Carlo runs. The initial states (80 % of
true initial state) and error covariance were kept
the same. Figure 27 shows the comparison of
true x-y target positions with estimated positions
obtained using SVF, KFF, and FKFF methods.
The comparison of estimated trajectories from
three methods with simulated true trajectory is
reasonably good, especially before the target
first manoeuvres (i.e., 0 < k < 8). Some discrepancies
were observed in the manoeuvering phase of the
flight where FKFF exhibited better performance
than SVF and KFF. Figures 28-29 illustrate the
position error comparisons for: (i) SVF, FKFF,
and (ii) KFF, FKFF. Figures 30-31 compare the
velocity and acceleration error, respectively. 
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Following observations are made: (i) FKFF
results are better than those of SVF and KFF, (ii)
during manoeuvering, portion FKFF shows overall
less state error as compared to rest of fusion schemes,
and (iii) since FKFF method depends directly on
the empirical errors, it is expected to give better
accuracy as compared to SVF method in which
state error covariance matrices are based on prediction
given out by the KF.

Figure 32 shows the computed weights for
KFF and FKFF methods. It can be observed from
the top two subplots that initial values of w1 

and
w

2 
are comparable but as more number of data

points are processed, value of w
2 

becomes larger
than w

1
, which simply means that lesser weight is

assigned to estimated states from sensor 1 as compared
to sensor 2. This is logically correct because sensor
1 gives nosier measurements (SNR=10) as compared

to sensor 2 (SNR=20). The bottom sub-plot of Fig. 32
shows the summed weights and it is observed that
values are around 1 (as expected) for KFF and
FKFF methods.

4.5 Real Data Analysis using Fuzzy EKF

The performance of EKF4 and FEKF was
compared using real data. The real data consists
of target information in polar frame measured by
a sensor. The state estimation, consisting of target's
position, velocity, and acceleration information, was
carried out in 3-D Cartesian frame using constant
acceleration model and polar data. The sampling
time interval chosen was 0.25 s with process noise
covariance Q kept at 0.0001*eye(9,9), whereas,
measurement noise covariance value R was obtained
from sensor specification. The initial state of EKF
and FEKF was kept close to simulated true initial 
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Figure 27. True and estimated fused trajectories. 
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Figure 29. RSSPE - KFF/FKFF.

Figure 30. RSSVE - SVF/KFF/FKFF.
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rules could be used rather than a large number of
rules to develop an efficient FCV, and in turn, good
FKF. KF, and FKF are compared with AKF and
it is found that although AKF shows better result
as compared to KF but still not as good as FKF,
especially during manoeuvering phase of the target.
The fused trajectories obtained using SVF, KFF,
and FKFF are compared and it is found that FKFF
shows overall better performance as compared to
SVF and KFF algorithms. The performance of
EKF and FEKF is compared using real data and
it is found that FEKF yields better estimates than
EKF, especially in the region where target manoeuvers.
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Figure 33. RSSPE comparison of EKF and FEKF.

target state and accordingly initial state error covariance
is computed. The FCV for FEKF is kept the same
as used in Section 4.2. It is clear form the Fig. 33
that by in large RSSPE of EKF is comparable with
that of FEKF except at few points where target
exhibits manoeuvers. At these points RSSPE was
higher for EKF. Similar observations were made
for RSSVE and RSSAE errors.

5 . CONCLUSIONS

Several variants of fuzzy logic-based Kalman
filters and fusion schemes are evaluated using
simulation data for target tracking. To track
manoeuvering target, FCV is re-designed using
training and checking data sets obtained from simulated
true and measured target positions. It is clear that
FKF gives comparatively better performance than
KF. It is suggested that just sufficient number of
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