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ABSTRACT

Bearings-only tracking (BOT) plays a vital role in underwater surveillance. In BOT, measurement is 
tangentially related to state of the system. This measurement is also corrupted with noise due to turbulent underwater 
environment. Hence state estimation process using BOT becomes nonlinear. This necessitates the use of nonlinear 
filtering algorithms in place of traditional linear filters like Kalman filter. In general, these nonlinear filters utilize 
the assumption of measurements being corrupted with Gaussian noise for state estimation. The measurements cannot 
be always corrupted with Gaussian noise because of the highly unstable sea environment. These problems indicate 
the necessity for development of nonlinear non-Gaussian filters like particle filter (PF) for underwater tracking. 
However, PF suffers from severe problems like sample degeneracy and impoverishment and also it is tedious to 
select an appropriate technique for resampling. To overcome these difficulties in PF implementation, the strategy of 
combining PF with another filter like unscented Kalman filter is proposed for target’s state estimation. The detailed 
analysis of the same is presented in comparison with other particle filter combinations using the simulation results 
obtained in Matlab.
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1. InTRodUCTIon
Nonstationary inverse problems commonly referred as 

state estimation problems needs a lot of attention due to its 
numerous real time applications such as air and underwater 
surveillance, computer vision and target tracking etc. In these 
problems, the state dynamic variables of interest are estimated 
sequentially with the use of obtainable measured data along 
with previous knowledge of the physical phenomenon. It 
is performed in such a manner that the error/variance is 
significantly reduced.

Surveillance in underwater is commonly carried out 
by Bearings-only tracking1 (BOT). In underwater BOT, 
the observer and target can be a ship or submarine. The 
measurement, bearing is an angle measured in the direction 
of the clock, between the line joining observer and target 
with true north. It is generated by passive sonar arranged on 
an observer’s hull using the noise produced by target. The 
bearing angle is tangential (nonlinearly) related with the state 
vector. The measurements are typically contaminated with 
noise from surrounding waters rendering the state estimation 
process highly nonlinear. Using these measurements, the 
state estimation cannot be done with the traditional filters 
like Kalman filter2 which works only for the linear dynamic 
systems. The estimated parameters in BOT usually diverge 
using the Kalman filter as the system and measurements used 
are nonlinearly related.

  The foundational nonlinear algorithm available in the 
literature for BOT is extended Kalman filter (EKF). It gives 
effective results only when nonlinearity is of first order. The 
primary disadvantage of EKF is its flimsiness. The modified 
extended Kalman gain filter (MGEKF) is another alternative 
to EKF that improves the stability3 in the estimation process 
convincingly. However, it gives only first order accuracy as 
EKF and fails in case of higher order of nonlinearity. The above 
mentioned problems are resolved by the unscented Kalman 
filter (UKF) that utilizes a sigma points approach to encapsulate 
the posterior covariance and mean, when propagated through 
the nonlinear system up to third-order accuracy4,5. EKF, 
MGEKF, and UKF use Gaussian assumption of noise in the 
estimation process and measurement models. Recent research 
work6 done in this field, proposed filters like ensemble Kalman 
filter7, shifted Rayleigh filter8,9, Gauss-Hermite filter10 and their 
variants also used Gaussian assumption of noise.  The noise 
cannot be always Gaussian, this urges  the requirement of 
nonlinear non Gaussian filter like particle filter11 (PF) for state 
estimation.

The particle filter is a powerful Monte-Carlo approach 
to estimate a nonlinear non-Gaussian process. Being Monte-
Carlo based recursive optimal Bayesian filtering technique, 
PF is neither restricted by linearity of system nor Gaussian 
distribution of state. The pivotal principle of PF is to collect 
random samples (particles) based on the representation of 
state’s posterior density function, with similar weights and to 
calculate the estimates based on these samples with related Received : 07 September 2020, Revised : 25 January 2021 
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weights. These particles allow approximating any distribution 
of interest. This produce the finest state estimate as the number 
of particles reach infinity. Therefore, the accuracy of PF mainly 
depends on probability density function (pdf) of samples/
particles and scheme of resampling of samples/particles that 
describe the system dynamics. Therefore, the research is 
centered on developing a good method of sampling density as 
well as refining the resampling scheme to increase performance 
of PF. The three main steps in PF are propagation of particles, 
particle weight calculation, and resampling. The first two steps 
of PF include particle dissemination and giving weights to the 
particles. The next step in PF is resampling which includes 
replacing the older set of particles with a new set of particles 
and associated weights generated based on the weights of the 
older particles12,13.

The most important and crucial part is resampling14 
because it accounts for the generation of a new particles set 
with relevant weights in place of old ones. This resampling 
technique if not carried out properly, results in a corrupted 
set of particles causing sample impoverishment or sample 
degeneracy. By repeating the resampling steps, degeneracy of 
samples occurs when particles of less weight are eliminated, 
resulting in a situation where all the particles are concentrated at 
one point i.e., sample degeneracy that in turn results in sample 
impoverishment and vice-versa.  Hence there is a necessity that 
proper care is taken while selecting the resampling scheme. 
Hence the research in choosing suitable resampling methods 
in PF has increased. There are many resampling techniques 
developed so far like random sampling, stratified, systematic, 
auxiliary, etc. However, there are some displeasing effects 
using resampling methods which urged the researchers to try 
other methods15. Besides, in realistic engineering applications, 
perturbations caused by irregularities in the measurement and 
kinematic noise model are inevitable. In addition, PF is also 
generating a costly computational charge due to the use of a 
large number of particles. also, the environment in underwater 
is always unpredictable, making it difficult to select an optimal 
resampling scheme always. as proposed by Dan Simon16, 
PF combination with other nonlinear filters like UKF called 
PFUKF filter is tried out for underwater BOT and the same is 
compared with filters like particle filter combined with other 
filters like EKF (PFEKF) and MGEKF (PFMGEKF). PFUKF 
is a method that uses unscented transform (UT) to compute 
the posterior state’s probability density function for achieving 
improved sampling density function. Shared-memory 
architecture with parallel implementation, and reduction in 
order of the framework modelling help to minimize filtering 
dimensionality. This Improved algorithm structure is just a 
consideration that can be followed to boost PF’s computational 
efficiency. 

2. MAThEMATICAl ModEllIng
2.1 System Modelling 

In BOT, the target-observer scenario is modelled 
mathematically based on following assumptions. It is supposed 
that the observer and target are moving with constant course and 
speed. The target’s state vector ( )sX  in Cartesian coordinates 
of the target is represented as

( ) ( ) ( ) ( ) ( )s st x st y st x st y stX r r r r Γ = Γ Γ Γ Γ              (1)

where ( )x str Γ , ( )y str Γ , ( )x str Γ , ( )y str Γ  are the components 
of speed and range in the coordinates x and y, respectively 
at sample number stΓ . The subsequent instant relative state 
vector based on the current instant   ( ( 1, ))s st stX Γ + Γ  is given 
by       

( 1, ) ( ) ( ) ( )s st st st s st stX A XΓ + Γ = Γ Γ +µε Γ                     (2)             

where ( )stA Γ  is matrix representing the system mobility 
given as 
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                                                 (3)

where ‘ t ’ represents the interval at which samples are 
obtained.

It is assumed that the system noise ( )stε Γ , obey Gaussian 
distribution with mean=0 and covariance q and the system 
noise gain matrix µ   is given in matrix form as 

2
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The system noise covariance q is given in matrix form 
as
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where 2σ  is system noise variance.
The measurement equation is given by

1( 1) tan ( ( ) ( ))m st x st x st bb r r−Γ + = Γ Γ + γ                          (6)
where mb  is the measured bearing angle.
The measurement model equation Z at sample 1stΓ +  is 

specified by 
( 1) ( 1) ( 1)st st s st bZ H XΓ + = Γ + Γ + + γ                           (7)            

where H  is the matrix of the measuring model and 
bγ  is the noise of the measurement. Here the noise in the 

measurement is supposed to obey Gaussian distribution, with 
standard deviation of 0.33o.

The detailed mathematical modelling of PFEKF algorithm 
is given by Dan Simon16 and for PFMGEKF algorithm refer17.

2.2 PFUKF Algorithm
1. It is assumed that the initial state’s pdf is known, 

based on which ‘ N ’ particles are randomly generated. The user 
selects the parameter ‘ N ’ as a trade-off between computational 
effort and precision estimation.

2. The state estimate  ( )sX at time ( )stΓ  based on all 
particles is calculated as

0
( ) ( ) ( )

N
i i

s st st s st
i

X w x
=

Γ = Γ Γ∑                                           (8)
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where 0,1,.........i N= particles, ( )i
s stx Γ is state vector for 

each particle, iw  is the weight associated with each particle, 
and the covariance, assuming independent and additive system 
noise, is computed as

0

ˆ( ) ( ) ( ) ( )
N

i i
st st s st s st

i
P w x X

=

 Γ = Γ Γ − Γ ∑  

            
* ( ) ( )

Ti
s st s stx X Γ − Γ                                         (9)                         

3. Prediction and updation of the covariance and mean 
of particles at time  stΓ  using UKF. 

(a) The sigma points of each particle are calculated as 
follows.

( )
( )

( )

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )
x

T

i
s st

i i
s st s st x st

j

i
s st x st

j L

x

x x L P

x L P
−
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 Γ 
 Γ = Γ + + λ Γ 
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 Γ − + λ Γ
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             (10)

where xL  is the state vector’s dimension of target i
sx  of 

each particle. also in the second term j varies as 1, 2,...... xj L=  
and in the third term j  varies as 1,......2x xj L L= + . This is 
how the sigma points are generated for all the particles.

(b) Calculate the weights
( )

0
M

xW L= λ + λ
( ) 2

0 (( ) (1 ))c
xW L= λ + λ + −ϑ + ξ

( ) ( ) 1 (2( ))M c
j j xW W L= = + λ 1,2,.....2 xj L=        (11)

where λ  is a scaling parameter given by 2 ( )x xL Lλ = ϑ +α − . 
( 1 3)eϑ = −  is a small positive value that indicates the spread of 

sigma points around the mean. ( 0)α =  is a secondary scaling 
parameter and ξ  includes advance understanding of the 
distribution of x . ( )

0
MW and  ( )

0
cW  represent the target’s state 

vector initial weights and weights of state covariance matrix. 
( )MW and ( )cW  represent the  target’s state sigma point vector 

and state sigma point covariance matrix respectively. 
(c) The estimation of state predicted at time 1stΓ +  by 

using the measurement at stΓ  is computed as

 
2
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s st st j s st st

j
x W x j

=
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and the covariance matrix predicted, assuming independent 
and additive system noise, is computed as 

2
( )

0

ˆ ( 1, ) [ ( , ( 1, ))
xL

c i
st st j s st st

j
P W x j

=
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s st st s st st s st stx x j x− Γ + Γ ∗ Γ + Γ − Γ + Γ                              

       (13)                    
Using the measurement facsimile given in eqn. (5), 

transform the expected sigma points. 
(d) The measurement model matrix prediction 

ˆ ( 1, )st stZ Γ + Γ  is given as
2

( )

0

ˆ ( 1, ) ( , ( 1, ))
xL

M
st st j st st

j
Z W Z j

=

Γ + Γ = Γ + Γ∑                   (14)

where ( , 1, ) ( ( 1, ))i
st st s st stZ j H xΓ + Γ = Γ + Γ

(e) The computation of innovation covariance matrix ẑzP  
is given as

 2
( )

0

ˆ ˆ( 1, ) ( , ( 1, )) ( 1, )
xL

c
zz st st j st st st st

j
P W Z j Z

=
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T

st st st st b stZ j Z ∗ Γ + Γ − Γ + Γ + σ Γ 
                                                                                     (15)       
(f) The computation of cross covariance matrix x̂zP  is 

given as
2

( )

0

ˆ ( 1, )
xL

c
xz st st j

j
P W

=

Γ + Γ = ∑

( , ( 1, )) ( 1, )i i
s st st s st stx j x ∗ Γ + Γ − Γ + Γ 

ˆ( , ( 1, )) ( ( 1, )
T

st st st stZ j Z ∗ Γ + Γ − Γ + Γ                        (16)                                           

(g) The computation of Kalman gain iG  is given as
1ˆ ˆ( 1) ( 1, )( ( 1, ))i

st xz st st zz st stG P P −Γ + = Γ + Γ Γ + Γ            (17)                                                      

(h) The computation of estimated state i
sx  is given as

( 1) ( 1, )i i
s st s st stx xΓ + = Γ + Γ

ˆ( 1)( ( 1) ( 1, ))i
st st st stG Z Z+ Γ + Γ + − Γ + Γ                      (18)

where ( 1)stZ Γ +  is measurement vector matrix.
(i) The estimation of the error covariance matrix is 

computed as 
ˆ ˆ( 1) ( 1, )st st stP PΓ + = Γ + Γ

ˆ( 1) ( 1, )( ( 1))i i T
st zz st st stG P G− Γ + Γ + Γ Γ +                     (19)                 

4. Now calculate the relative likelihood iQ  of each 
particle ( 1)i

s stx Γ +  conditioned on measurement. 
5. Scale the relative probability calculated in step 4 as 

follows:

( 1) ( )i i
st stw wΓ + ∗ Γ

( ( 1) | ( ))i i
s st s stprobabilityof x x∗ Γ + Γ

( ( 1) | ( ))i
st s stprobabilityof Z x∗ Γ + Γ                            (20)

and normalize the weights using eq. (21)
   

1
( 1) 1

N
i

st
i

w
=

Γ + =∑                                                          (21)                                  

This redefines the set of a posteriori particles  ( )i
s stx Γ and 

covariance ˆ( )stP Γ  based on the relative likelihoods ( )i
stw Γ .

6. Posteriori particles ( )i
s stx Γ  and covariance  ˆ ( )stP Γ  

are obtained now. Calculate the target state parameters. On the 
income of the next measurement set 1st stΓ = Γ +  and go to 
step 3 otherwise exit.

The flowchart of the PFUKF algorithm is given in 
appendix a.

3. SIMUlATIon And RESUlTS
To implement the proposed algorithm, the initialisations 

are done as follows. The observer is chosen to be at origin 
and the target is chosen to be at some position P. The speed of 
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observer is assumed to be less than target speed which helps 
the observer to track the target easily. Observer course, target 
course and the bearing measurements are measured w.r.t true 
north. Initial bearing is taken in between 0-40o. The observer 
performs the traditional S- maneuver in the line of sight (lOS) 
as given in figure 1 which helps to get the observability of the 
process. Initially the particles are generated randomly using 
‘randn’. For each particle, UKF algorithm is applied. The 
initial estimate of target state vector is chosen as 

[ ](0,0) 5 5 5000sin 5000coss m mX b b=              (22)              
The particles generated are added to the state vector initial 

estimate. The elements of initial covariance diagonal matrix 
which follows uniform distribution is given as

ˆ(0,0)P
2 22 24 (0,0) 4 (0,0)4 (0,0) 4 (0,0)

12 12 12 12
y yx xr rr r

diagonal
 

=  
  





(23)
The number of particles taken for simulation purpose is 

1000. This number can be increased further but this enhances 
both complexity and computation time. The application and 
accuracy required decides the number of samples/particles to 
be selected. as the BOT is a stochastic process, it is necessary 
to calculate the confidence of the solution obtained.

It is readily done by PF, is Monte-Carlo based simulation 
method. Every filter is simulated for 800 measurement 
samples.  The scenarios chosen for simulation, following 
above-mentioned criteria, are given in Table 1. The scenarios 
are categorised depending upon angle on target bow (aTB)5 as 
low, medium and high. when the ATB is in the range of 0o-30o, 
it is termed as low aTB. Similarly, the range of angles 30o-40o 

and 40o-90o are termed as medium and high aTB respectively.

Depending on the guidance algorithm of weapon, the 
solution is said to be achieved when the Root Mean Square 
(RMS) error in the range estimate is less than 2.66% of the 
true range, the RMS error in the course estimate is less than 
1o and the RMS error in the speed estimate is less than 0.33 
m/s. These scenarios are evaluated in the Matlab platform. 
Based on the acceptance criteria, the solution obtained for the 
scenarios in Table 1 using PFEKF, PFMGEKF and PFUKF is 
tabulated in Table 2. By observing the results, it is understood 
that using PFUKF, solution is obtained in only medium ATB 
scenarios whereas PFEKF and PFMGEKF gives solution for 
all scenarios. It is emphasised from Table 2 that PFEKF and 
PFMGEKF are generating solution for all scenarios and the 
convergence time obtained is almost similar for all scenarios. 
MGEKF is more stable than EKF however when combined 
with PF, stability in the filtering algorithm is reduced. PFUKF 
fails for many scenarios because of the complexity that is 

created in execution by combining with 
UKF. The UKF uses sigma points to estimate 
the state mean and state covariance. when 
UKF is used alongside PF which already 
uses randomly generated particles for state 
estimation, the complexity multiplies and 
creates hurdles to state estimation rather than 
improving it. The target path estimated using 
PFEKF, PFMGEKF and PFUKF for scenario 
5 (medium aTB) and scenario 7 (high aTB) 
are given in figures 2 and 3 respectively. The 
true and estimated paths of the target are 

Table 1. Scenarios selected for performance analysis of the filters

 
Scenario 

no.
Range

(m) 
observer’s 

velocity
(m/s)

Target’s 
velocity
 (m/s)

Target’s 
initial course 

(deg)

Initial 
bearing 

(deg)
ATB
(deg)

1 4000 8 12 180 10
low2 4000 8 12 185 30

3 4500 9 11 170 10
4 4500 9 11 165 20

Medium5 5000 7 10 160 20
6 5000 7 10 170 20
7 4000 8 12 135 30

High8 4500 9 11 160 40
9 5000 7 10 145 20

Figure 1. observer and target movements.

Table 2. Convergence time (CT) in seconds for 1000 particles

s.no
PFEKF PFMgEKF PFUKF

Range Speed Course CT Range Speed Course CT Range Speed Course CT
1 291 291 288 291 289 289 283 289 - - 452 -
2 264 298 274 298 299 270 298 299 639 - 356 -
3 393 366 377 393 382 366 377 382 - - - -
4 367 288 348 367 324 268 292 324 374 320 337 374
5 289 347 382 382 289 347 382 382 288 347 348 348
6 347 256 242 347 347 275 249 347 366 417 361 417
7 270 347 458 458 382 382 466 466 - - - -
8 256 303 432 432 298 320 438 438 491 - 506 -
9 259 354 432 432 320 382 438 438 338 - 441 -
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Figure 2. (a) observer, target’s true and estimated paths using 
PFEKF for scenario 5, (b) observer, target’s true 
and estimated paths using PFMgEKF for scenario 
5, and (c) observer, target’s s true and estimated 
paths using PFUKF for scenario 5.

Figure 3. (a) observer, target’s true and Estimated paths using 
PFEKF for scenario 7, (b) observer, target ‘s true 
and estimated    paths using PFMgEKF for scenario 
7, and (c) observer, target’s true and estimated paths 
using PFUKF for scenario.

(a)

(b)

(c)

(a)

(b)

(c)
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converged using PFEKF, PFMGEKF and PFUKF algorithms 
for scenario 5 and the same is shown in figure 2(a) to 2(c). 
The true and estimated paths of the target are diverged using 
PFEKF, PFMGEKF and PFUKF algorithms for scenario 7 and 
the same is shown in figure 3(a) to 3(c). 

From Table 2, it is understood that for medium ATB 
scenarios, all the three algorithms proved to be efficient 
whereas PFUKF failed for low and high ATB scenarios. For a 
sample scenario say 4, PFEKF converges at 367, 288 and 348 
seconds in range, speed and course respectively and the overall 
convergence time is 367 seconds. For the same scenario, 
PFMGEKF converges at 324, 268 and 292 seconds in range, 
speed and course respectively and here, the overall convergence 
time is 324 seconds. Similarly, PFUKF converges at 374, 320 
and 337 seconds in range, speed and course respectively for 
the same scenario 4 and here, the overall convergence time is 
374 seconds. Similarly, for scenario 2, the overall convergence 

time using PFEKF and PFMGEKF are 298 and 299 seconds 
respectively. Using PFUKF, only the range and course 
converged at 639 and 356 seconds respectively and the speed 
is not converged. The RMS error in estimated range, speed 
and course of target using PFEKF, PFMGEKF and PFUKF 
algorithms for scenarios 5 and 7 are given in figures 4(a) to 
4(c) and 5(a) to 5(c) respectively. From figures 4(a) and 5(a), it 
is understood that estimated range’s RMS error using PFEKF 
is less when compared to PFMGEKF and PFUKF. The same 
is observed in comparison of RMS error of course and speed 
using the algorithms which given by figures 4(b) and 5(b) for 
speed, figures 4(c) and 5(c) for course. Also, PFMGEKF is 
having less RMS error than PFUKF i.e. in low and high ATB 
scenarios, PFUKF diverges fast and then PFMGEKF diverges. 

Figure 5. (a) Estimated range’s RMS error for scenario 7, (b) 
Estimated speed’s RMS error for scenario 7, and (c) 
Estimated course’s RMS error for scenario 7.

Figure 4. (a) Estimated range’s RMS error for scenario 5, (b) 
Estimated speed’s RMS error for scenario 5, and (c) 
Estimated course’s RMS error  for scenario 5.

(a)

(b)

(c)

(a)

(b)

(c)
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Hence it is suggested to utilize PFEKF for estimating the TMP 
in BOT and obtaining the solution with faster convergence.  
The efficiency of PFEKF and PFMGEKF is nearly equal for 
all the scenarios and PFUKF failed for low and high ATB 
scenarios.

4. ConClUSIon
This paper analyses the application of PFUKF algorithm 

and compares the performance with PFEKF, PFMGEKF 
for underwater state estimation using bearings only  
measurements. The algorithms are simulated using Matlab. 
From the analysis of the simulated results, it is evident that 
the PFUKF filter is gives weaker results when compared to 
other PF combinations. UKF’s sigma points approach for 
state estimation enables it to give a solution to third-order 
accuracy in any nonlinear process. PF uses samples/particles 
to represent the real pdf of the target state. However, the 
combination of the two i.e. PF and UKF in PFUKF, generates 
9 sigma points for each particle thereby multiplying the 
computational complexity. Hence PFUKF instead of giving a 
very good solution fails to give a solution. MGEKF stabilizes 
the solution and also prevents the divergence of the solution 
once it converges. However, this is not the case in PFMGEKF, 
the modified gain added to EKF for stability purpose, 
increase the complexity further when combined with PF.  
Hence this paper recommends the utilisation of PFEKF for 
underwater state estimation rather than the proposed algorithm 
PFUKF.
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The state and covariance of the target’s state are initialised. 
N particles are randomly created based on the pdf of the 
target’s state at time stΓ . For each particle, UKF algorithm 
is applied to generate the new particle using the measurement 

( )stZ Γ . The mean and covariance are calculated for each 
particle at time stΓ . The weights are updated using the relative 

likelihood. now the weights are normalised and new particles’ 
set and covariance is created. The mean of all the particles is 
calculated to get a single value for each element of target state 
vector. Now the target motion parameters are estimated. The 
sample number is incremented to the process is repeated to 
update the state using the incoming measurement.

Appendix A

Figure A. Flowchart of PFUKF algorithm.


