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AbstRACt
In high-maneuvering missile systems, with severe restrictions on actuator energy requirements, it is desirable 

to achieve the required performance with least actuation effort. Linear Quadratic Regulator (LQR) has been in 
literature for long and has proven it’s mettle as an optimal controller in many benign aerospace applications and 
industrial applications where the response times of the plant, in most cases, are seen to be greater than 10 seconds.  
It can be observed in the literature that LQR control methodology has not been explored enough in the tactical 
missile applications where requirement of very fast airframe response times are desired, typically of the order of 
milliseconds. In the present research, the applicability of LQR method for one such agile missile control has been 
critically explored. In the present research work, longitudinal dynamic model of an agile missile flying at high 
angle of attack regime has been established and an optimal LQR control solution has been proposed to bring out 
the required performance demanding least control actuator energy. A novel scheme has been presented to further 
optimise the control effort, which is essential in this class of missile systems with space and energy constraints, by 
iteratively computing optimal magnitude state weighing matrix Q and control cost matrix R. Pole placement design 
techniques, though extensively used in aerospace industry because of ease of implementation and proven results, 
do not address optimality of the system performance. Hence, a comparative study has been carried out to verify the 
results of LQR against pole placement technique based controller. The efficacy of LQR based controller over pole 
placement design techniques is successfully established with minimum control energy requirement in this paper. 
Futuristic high maneuvering, agile missile control design with severe space and energy constraints stand to benefit 
incorporating the controller design scheme proposed in this paper.
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NoMeNCLAtuRe
LQR Linear Quadratic Regulator
u, v, w Components of missile velocity three axes
p, q, r Roll rate, Pitch rate and Yaw rate
θ Pitch angle
PID Proportional-Integral-Derivative
Fx, Fy, Fz  Components of total force along three axes
L, M, N Rolling moment, Pitch moment, Yawing moment
m Missile mass
Iy Moment of Inertia about y-axis
AoA Angle of Attack
ζ Damping coefficient
MIMO Multi-Input Multi-Output
SISO Single Input Single Outupt
J Cost function Jacobian 
ARE Algebraic Riccati Equation
DoF Degree of Freedom
PP Pole Placement

1. INtRoDuCtIoN
Neutralising the target with high accuracy and precision 

is highly essential in high maneuvering tactical agile missiles. 
Optimal control solution to modern missile design has become 
essential due to fact that there has been a paradigm shift in 
the missile design philosophies. Future requirements in 
state-of-the-art missile design calls for high performance in 
terms of g-maneuvers, high precision attacks, high angle of 
attack operation within stringent space, volume and power 
requirements. Though lot of literature has been found with 
applications in civil aircraft and commercial applications, very 
little practical applications are seen in tactical missile design 
domain. 

Longitudinal dynamics (u, w, q, θ) are the dominant 
states while considering the g-maneuvers and the trajectory. In 
missile design with axi-symmetric configurations, longitudinal 
and lateral modes can be decoupled and independently studied. 
In this paper, the longitudinal dynamics of one such agile 
missile application has been investigated. Main objective in 
design of the tactical missile is to pull high g-maneuvers while Received : 24 August 2020, Revised : 11 February 2021 
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keeping all missile states at trimmed condition, especially the 
longitudinal state parameters. Thus, longitudinal dynamics of 
one such missile is considered in the present study.

Human beings relentless persuasion for optimality of 
a solution is not new and this persuasion goes back till 300 
years. In a historical perspective, it was Professor Johann 
bernoulli, during 1695-1705, first published his solution of 
‘Brachysfochrone Problem’1. Optimal solution in the field of 
aerospace industry is more relevant as we are heading into 
another decade, where we are stretching the boundaries of 
aerospace vehicles in extreme flight regimes, be it in the field 
of missiles, fighter aircrafts and civil airliners.

Fast forwarding 300 years later, the origin of optimal 
control theory can be traced to the work on the ‘Pontryagin 
maximum principle’2 carried out by L.S. Pontryagin, in sixties 
which was primarily intended for military applications.

In missile applications, classical controllers such as PI, 
PD, PID29-31 have been largely successful in autopilot design of 
SISO based systems due to their simplicity in implementation 
and tuning procedures. 

Proportional action in PID speeds up the overall response 
of the system and also helps in reducing the steady-state error but 
suffers from disadvantages of offsets and maximum overshoots. 
Integral action in PID tends towards instability due to it’s slow 
response in negating the error. Derivative controller in PID, 
though improves the transient characteristics, sometimes tends 
to produce saturation effects and amplifies in presence of noisy 
signal. Thus, PID controllers cannot guarantee the optimal 
performance of system with least control effort (a prime 
requirement of autopilot design in tactical missile system) and 
would be a poor choice when dealing with multi-state control 
system. Classical controllers do not address the MIMO plant 
and optimality requirement. Improvements to these stated 
drawbacks of the classical methods were addressed to a great 
extent in pole placement (PP) control design technique.

PP design philosophy23,25, also known as full-state 
feedback (FSF), unlike classical methods, ensures that not 
only the dominant poles, but all poles lie at specified desired 
locations. Though, PP design technique, unlike classical 
methods, addresses the plant as a whole, it does not comply 
with optimality. 

LQR control strategy addresses optimality requirement 
of MIMO plant and hence effort has been made to establish a 
LQR based controller to meet all the autopilot control demands 
requiring least control energy.

Comparison of LQR with classical controllers, such as 
PD controller has been discussed with application to inverted 
pendulum problem3. Similar study has been carried out 
comparing full-state feedback method, i.e. pole placement and 
LQR in controlling the inverted pendulum4. It was shown in3,4 
that LQR provides better results compared with FSF controller 
and was concluded that selection of cost function parameters, 
Q & R, can be adjusted using heuristic techniques for better 
results. However, in both3,4, the results were based on classical 
problem, though it is a very interesting one to study for non-
linear control system engineers. 

Alandoli5, et al carried out a comparative study with 
PID and LQR controllers for position tracking and vibration 

suppression of flexible link manipulator. The simulated 
results showed the capability of LQR controller for vibration 
suppression were better than PID controller. Similar study on 
comparison of pole placement with LQR control strategies 
has been carried out in6 with application to single-link flexible 
manipulator. It was brought out that it was possible in practice 
to conserve material and energy resources using LQR for many 
high speed automation applications. The application of these 
techniques to a system that has one-degree of freedom was 
discussed in6, whereas in missile and aerospace applications one 
has to deal with system of 6-DoF, which is complex in nature 
with its inherent non-linearities and cross-coupled aerodynamic 
and control coefficients. It can be inferred from both5,6 that 
LQR provides a better solution. A comparative study among 
PID, PP and LQR controllers for heat exchanger application 
was carried out in7. The step response showed the adequacy of 
all the three control methods but LQR method performed better 
than PID and pole placement in terms of faster response and 
minimising system overshoots. Longitudinal control of missile 
has been carried out by various researchers using different 
modern control techniques8-10 such as H∞11, back stepping12-

14, sliding model control15. An application of LQR technique 
for UAV was presented in16,17. Flight dynamics of a damaged 
asymmetric aircraft using LQR was carried out to regain the 
aircraft stability was presented in18. Here, the flight dynamics 
were considered for the study and it was presented that LQR 
method would give better transient performances.

based on the extensive literature survey carried out, it can 
be observed that LQR control design approach with minimum 
control energy requirement for missile applications with 
stringent design constraints has not been explored enough. 
In tactical missile applications , there are severe restrictions 
on size, weight and power requirements. Hence, there is a 
requirement to design a control system to achieve the required 
performance expending minimum control energy. 

The main advantages of reducing the control energy 
in a missile system are: (i) desired flight performance and 
manoeuvres can be obtained with small tail control surfaces, 
(ii) saving of on-board power/energy for the demanded control 
deflection.

The main motivation of this research work is to develop 
an autopilot for such an ultra-compact agile missile application.  
Research work towards meeting these critical requirements 
will enable futuristic ultra-compact defence technologies. 

In this paper, a successful attempt has been made to 
apply LQR control design strategies to a highly maneuverable 
missile longitudinal dynamics and the controller adequacy has 
been established. The novelty of the study has been brought 
out by establishing the missile longitudinal dynamics for this 
particular application and designing an optimal controller for 
the highly maneuvering missile system.

In order to compare the efficacy of LQR design method, the 
industry proven pole placement design methodology has also 
been implemented. The paper brings out through an exhaustive 
study, a critical qualitative and quantitative analysis of pole 
placement vs optimal LQR control design methodology. 

As a generic case study, design of optimal control system 
with settling time not exceeding 500 ms and system overshoot 
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less than 2% has been considered as design specification 
requirement for the present work.

2. MIssILe MAtheMAtICAL MoDeL
A representative missile 6-DoF model is shown in Fig. 1. 

Mathematically, the resultant missile velocity, mV


, and angular 
velocity, ω can be expressed as eqn (1)19,20. 

ˆˆ ˆ
mV ui vj wk= + +


;  ˆˆ ˆpi qj rkω = + +
                              (1)

From Newton’s second law, the equations of motion of a 
rigid-body are defined as eqn (2)20-22: 

( )m
I

dF mV
dt

=∑ ; 
I

dHM
dt

=∑                                  (2)

symbol
I
indicates the time rate of change of the vector 

with respect to inertial space. 
The above equations can be expressed in terms of three 

forces and three moments as in eqns (3) and (4):

( )
x

d muF
dt

= ; ( )
y

d mvF
dt

= ; ( )
z

d mwF
dt

=                (3)

and

xdH
L

dt
= ; ydH

M
dt

= ; zdHN
dt

=                                    (4)

The force equation expressed in body axes form as 
eqn(5): 

( )m
M

body

dV
F m m V

dt
 = + ω×  

                 (5)

After substituting MV


 and ω , the translational equations 
of linear motion are obtained as shown in eqn (6):

( )
( )
( )

x

y

z

F m u wq vr
F m v ur wp
F m w vp uq

= + −
= + −

= + −







                                                      (6)

The moment of momentum can be expressed as in eqn 
(7): 

[ ]( )H rdm Vcm r r dm= × + × ω×∑ ∑                            (7)

where 0rdm =∑ .

Since, 1H
dHM H
dt

 ∆ = +ω× 
 

∑ 

where, ( )H r r dm= × ω×∫


Substituting in the above equations we obtain the equations 
of rotational motion as given in eqn (8): 

( )
( )

xx

yy xx zz

zz yy xx

L I p
M I q I I pr
N I r I I pq

=
= + −

= + −







                                                 (8)

2.1 Linearisation of the Non-linear Plant
eqn (6) and eqn (8) form the three translational and three 

moment equations of the full 6-DoF missile dynamics of a rigid 
body. The equations of motion (eoM) are expressed in terms of 

disturbing forces and moments due to i) aerodynamic effects,   
ii) gravitation effects, iii) deflections of aerodynamic controls, 
iv) power effects and v) effects of atmospheric disturbances. 
Therefore, the forces of eqn (6) can be rewritten as shown in 
eqn (9)

x aero gr con po dis

y aero gr con po dis

z aero gr con po dis

F X X X X X
F Y Y Y Y Y
F Z Z Z Z Z

= + + + +

= + + + +

= + + + +

                              (9)

Assuming the aerodynamic force and moment terms are 
dependent on disturbed motion variables and their derivatives 
only, the aerodynamic force can be expressed mathematically 
in terms of Taylor’s series involving system states and their 
derivatives. Further, the expression can be simplified as 
follows:

aero aero u v w p q r w

aero aero u v w p q r w

X X X u X v X w X p X q X r X w
L L L u L v L w L p L q L r L w

= + + + + + + +

= + + + + + + +








Since, the longitudinal EoM depend only on longitudinal 
parameters and hence decoupling them from lateral, EoM given 
in eqn (6) result into following eqn (10)21,22.

cos
sin

u w q e

u w q e

y u w q

mu X u X w X q mg X
mw Z u Z w Z q mg Z
I q M u M w M q M

q

η

η

η

= + + − q q + η

= + + − q q + η

= + + + η

q =









               (10)

where 
trim

u
u

XX
u

∂
=
∂

and so on.

3. MIssILe PLANt DyNAMICs
A yaw-to-turn missile configuration23,24 was chosen 

for establishing the plant dynamics and the aerodynamic 
dimensional derivative data has been used in modelling the 
missile configuration. The data presented are from in-house 
semi-empirical prediction codes and wind tunnel aerodynamic 
data for this configuration. All aerodynamic coefficients are 
referenced to body cross-sectional area and diameter. 

Here, the system dynamics are represented in state-space 
form as shown in eqn (11): 

x Ax Bu
y Cx Du
= +
= +


                                                                  (11)

Figure 1. Missile 6-DoF model.
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In the present study, the nonlinear plant is linearised about 
the trim conditions and matrices A and B are formed with 
constant aerodynamic coefficients. State-space approach is 
considered for designing the above dynamic model. From the 
longitudinal dynamics of eqn. (10), the missile plant can be 
expressed in terms of state variables as shown in eqn (12)25-28. 

0.0089 0.1474 0 9.75
0.0216 0.3601 5.9470 0.151

0 0.00015 0.0224 0.0006
0 0 1 0

A

− − − 
 − − − =
 − −
 
 

9.748
3.77
0.034
0.01

B

 
 
 =
 −
 
 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

C

 
 
 =
 
 
 
0
0
0
0

D

 
 
 =
 
 
 

                                                                       (12)

The variables of eqn (12) are functions of u, w, q and 
q . The missile dynamic model considered in eqn (12) are 
computed at condition M = 0.7, AoA α = 15°, MSL and 
aerodynamic coefficients are as given in eqn (13). The matrices 
of eqn (13) correspond to A, b, C and D of eqn (11).

0 0 1 0 0

u w q

u w q

u w q

u x x x x u x
w z z z z w z
q m m m m q m

q η

q η

q η

       
       
       = + η
       
       
q q       









                  (13)

3.1 stability Analysis
Investigation of system properties, which indicate 

acceptable system performance is the first step in the process of 
control system design. In order to study the stability, the system 
is subjected to step response to find the initial transients to a 
pre-defined disturbance. The system is subjected to min-max 
disturbance ranges experienced during missile flight. Various 
disturbances, typically experienced in actual flights, have been 
simulated and the plant was found to be unstable. The response 
to one of the typical cases is shown in Fig. 2. The system 
open-loop (OL) response has been observed against an initial 
disturbance in all the states, namely, u, w, q and θ of 5 m/sec, 
1m/sec, 1°/sec   and 1° respectively. The system parameters as 
seen in Fig. 2 are not converging in finite time and found to be 
unstable.

3.2 eigenvalues of Plant
It is observed from Fig. 2, that the forward velocity u 

increases with respect to time and is uncontrollable which 
leads to instability of the system. The system eigenvalues are 
computed to confirm the same and given in Table 1. 

For any stable system, as we know, all the roots of control 
system (eigenvalues) must lie in left half of s-plane (LHP)29-31. 
The eigenvalues / poles located away from the origin in LHP 
require more effort: 
(a)   high quality sensors for measurement to control the 

system, which in turn calls for and 
(b)  Large motors to drive the control surfaces leading to cost 

overruns. 
As seen in Table 1, the system OL poles or eigenvalues 

of the plant are complex conjugate and one pair of poles   [p 
= 0.182 + 0.03i] are in right-hand side of the s-plane (RHP). 
The pole locations are also an indication of the eigenvalues of 
the plant. The damping values associated with the eigenvalues 
also suggest that they are negative (ζ = -0.49). Such systems 
will not be able to meet the system objectives, i.e., in case of 
missile system, it may overshoot or undershoot and will not be 
able to follow the planned trajectory and miss the target. Hence, 
it requires augmentation in design of the system damping and 
position of the eigenvalues to meet the system performance. Two 
other real poles are lying in the LHP and heavily damped. It is 
a prerequisite to examine the controllability of the plant before 
embarking on controller design, which is further discussed in 
the following section. 

3.3 Controllability of a Plant
The concept of controllability was introduced by Kalman32-

34 applicable for MIMO systems. For any system, if it is possible 
to take it from any initial state x(t0) to any final state x(tf) in a 
finite time (t=tf-t0) by means of input vector u, it is said to be 
controllable system. generally, an unstable close-loop pole can 
be cancelled with a zero to make the system stable. But, in some 
cases, this results into unstable close-loop (CL) system. Hence, 
the sufficient condition for complete state controllability matrix 
as defined in eqn (14):

2 1( , , ,..., )nP B AB A B A B−=                                              (14)
where P is the rank of the matrix. Since, the rank of the system, 
P is found to be equal to the number of states, 4 and hence the 
system is completely controllable.

The condition number i.e., the determinant of the 
controllability test matrix, det (P) defines the degree of 
controllability. Since, in this case, det (P) ≠ 0 which is also an 
indication that the plant is controllable. However, the condition 
number of missile plant is high (~17200) suggests that the plant 
is weakly controllable.

Various techniques exist today in modern control system 
design to stabilise an unstable MIMO plant. Pole placement is 
one of such proven methods35. The following section presents 
the pole placement control design method in an attempt to 
stabilise the unstable missile plant as shown in Fig. 2. 

table 1. open-Loop Plant damping response characteristics

Pole Damping Frequency
(rad/sec)

time constant
(sec)

-0.366 0.98 0.366 2.74
-0.622 0.96 0.062 1.61

0.182 + 0.03i -0.49 0.037 -55.1
0.182 - 0.03i -0.49 0.037 -55.1
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4. PoLe PLACeMeNt CoNtRoL DesIgN 
teChNIQue
Pole placement method has been applied to stabilise the 

non-linear system dynamics through Ackermann’s formula36. 

4.1 Pole placement design philosophy
Pole placement can be considered as a fancy root locus 

with an objective to find the controller gain matrix. Root locus 
concerns the gain change along the loci, whereas in the pole 
placement the designer has the flexibility in choosing dominant 
poles, i.e., close-loop eigenvalues of the plant. The block 
diagram of pole placement is shown in Fig. 3.

is selected at 0.5*[ 0.5 , 1 2 ]V i i= − ± − ± . As seen in Fig. 4, the 
system response has largely improved from an unstable (Fig. 
2) to stable state. However, oscillating states in u and w are 
observed which are not yet settled even after 10 seconds. High 
oscillations were observed in these two states. The system 
response has been analysed for 10 seconds. The missile under 
consideration is disturbed from its initial value with u = 5 m/
sec, w = 1m/sec, q = 1°/sec and q  = 1° respectively.  The close-
loop plant is monitored with the initial disturbance with the 
pole-placement controller in place in the feedback are hardly 
disturbed in the dynamics even with the disturbances induced in 
the system. Therefore, it is evident from the above analysis, that 
the pole placement design technique is based on ‘trial and error’ 
method and this iterative method of placing the poles may be 
continued until a desired response is achieved which is a time 
consuming process.

The new controller gain elements are several times higher 
to stabilise the system and achieve a satisfactory settling time. 
The input ( )u Kx t= −  is computed and plotted in Fig. 5.

The controller gain matrix computed based on Ackermann’s 
formula will become inaccurate as the order of the plant increase, 
typically more than 1036.

Figure 2. open-Loop response of the system to Initial 
Disturbance.

Figure 4. Close-Loop state response of the system to initial 
disturbance.

In pole placement technique the state matrix is transformed 
as shown below:

)
( )

( r

r

kx
x A Bk x Brk
x Ax B rk −
= − +
= +





(A-Bk) forms the CL plant model. Pole placement 
techniques implemented using Ackermann’s formula and 
Butterworth method are presented in the following subsections 
with simulation results.  

4.2 simulation Results of Pole Placement
A perturbation study of close-loop poles over a range of 

values has been conducted and the initial values of the close-
loop poles are chosen in order to avoid aggressive inputs and/
or loop sensitivity. The CL poles are located at [s = -1+i and s = 
-5+5i]. The characteristic polynomials for the OL and CL poles 
are as given below: 

Open-loop: a) 3 20.3914 0.0086 0.0002 0.0 0s s s+ − + =
Close-loop: b) 3 239 0.0768 0.8819 5.0625 0s s s+ + + =  

The controller gain matrix ‘K’ is computed from the upper 
triangular matrix24. Since, the gain matrix K does not provide 
the desired result, in the next iteration, the desired pole location 

Figure 3. Pole placement block diagram.

Figure 5. Input Force requirement for pole location at [s = 
0.5*(-0.5+j, -1+2j)].

Any stable system requires that all CL poles are placed in 
LHP. If some of the CL poles are located near the imaginary axis 
and others farther, more control energy is required to achieve 
desired system performance. It can be observed from Fig. 5 
that more effort is required with high initial requirement from 
the actuator to stabilise the airframe. In order to minimise the 
control effort butterworth pattern37 is adopted, in which poles 
are placed on a circle of radius ‘R’, centered at origin as given 
in eqn (15). 
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2
( 1)( 1) nS

R
+  = − 

 
                                                              (15)

As a second attempt, Butterworth Pole placement design 
method is applied. As a consequence, it is seen from Fig .6, 
the settling time of the system has improved significantly. 
However, the maximum overshoot is still higher for the system. 
Any control system, especially, in space-constrained missile, 
has stringent requirement on actuator power required to make 
the desired deflection commands to maneuver the missile. It 
is also desirous to make minimum effort while achieving the 
required performance parameters. 

The control input u is monitored as a function of time 
and it is seen that high actuation energy is required to stabilise 
the system as shown in Fig. 7. Sometimes, this high actuation 
energy may not be available in the missile system to deliver to 
the control surfaces. Hence, the poles are further relocated at 
[-8 ± 3i, -4 ± 4i] and the results are indicated in Fig. 7. As seen, 
the overshoot of the system has reduced by half and also the 
settling time improves as all the states which is seen to settle 
within 2.0 seconds. Actuation force requirement being a prime 
criterion, a comparison of the input force for both controller 
gain matrices K1 and K2 are made and shown in Table 2. As 
seen, there is a significant improvement in the control force 
requirement which lessens the burden on the actuator system as 
shown in Fig. 7. This gain K2 is arrived through pole-placement 
design techniques which can lead to realizable controller for 
the given missile plant, however, does not meet the terminal 
requirements.

The controller design through pole placement technique 
is presented in Table 2. However, in stark difference to pole-
placement design methodology, the optimal control system 
directly addresses desired performance objectives, while 
minimising the control effort, which is highly desirable in a 
missile system.

Even though, pole placement has been a popular approach 
in aerospace applications, but is limiting in the intuitive 
understanding of the internal states of the system. Also, when 
optimality of the system requirements are concerned, there is a 
need to shift to more robust techniques in control system design. 
An optimal LQR design methodology has been carried out and 
presented in the following section.

5. LQR CoNtRoL DesIgN teChNIQue
The main idea in LQR control design philosophy is to 

minimise the quadratic Jacobian cost function matrix. This is 
discussed in detail in the following subsections.

5.1 LQR design philosophy
In optimal control, there are at least two elements, 

namely, i) the dynamics f consisting of the state variable x and 
control input u, as given in eqn (16) and ii) the function J to be 
minimised given in eqn (17)25,26. Optimal solution involves a 
minimisation of a function over a set of curves which itself is 
determined by some dynamical constraints. 

( ) ( ( ), ( ), )x t f x t u t t=                                                     (16)
The cost function Jacobian, J can be written as shown in 

eqn (17)

0

1 [ ]
2

T T
x uJ x Q x u R u dt

∞

= +∫                                             (17)

The objective of the optimal control problem is to find a 
control which causes the dynamical system to reach a target 
or follow a state variable and at the same time optimise the 
performance index J. 

The technique for optimisation is discussed in following 
sections.

To optimise the performance index J, the state feedback 
regulator is designed. The gain matrix, Kr, is defined as per 
control law, eqn (18)25 for the plant described in eqns (11) 
and (12) 

table 2. Damping characteristics of the controller gain matrix 
K1 and K2

Pole Damping Frequency 
(rad/sec)

time constant 
(sec)

K1

-13.8 + 5.73i 0.92 15 0.07
-13.8 - 5.73i 0.92 15 0.07
-5.76 + 13.9i 0.38 15 0.17
-5.76 - 13.9i 0.38 15 0.17

Pole Damping Frequency 
(rad/sec)

time constant 
(sec)

K2

-4 +4i 0.71 5.66 0.25
-4 – 4i 0.71 5.66 0.25
-8 + 3i 0.94 8.54 0.125
-8 - 3i 0.94 8.54 0.125

Figure 6. Close-loop state response of the system butterworth 
with regulator gain K2.

Figure 7. Input Force requirement for pole location at [s = -8 
± 3i, -4 ± 4i].
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ru K x= −                                                                      (18)
subject to state equation constraints x Ax Bu= + .

The critical design step in LQR design methodology is 
choosing the weights of xQ  and uR . A priori knowledge of 
the open-loop system is required along with the specification of 
performance objectives to choose values for the cost function 
weight xQ  and uR . The xQ  and uR  matrices can be selected 
using Bryson’s rule38. The stability state space solution for Kr 
can be obtained as shown in eqn (19).

1 T
rK R B S−=                                                                (19)

Solution for S can be obtained from Algebraic Riccati 
equation (ARe): 

1 0T T
xSA A S SBR B S Q−+ − + =                           (20)

Controllability of plant (A, B) will suffice to obtain a 
unique solution to eqn. (20). A regulator designed using this 
philosophy is called Linear Quadratic Regulator (LQR). The 
LQR diagram is shown in Fig. 8.

The open-loop response of the monitored states to step 
command is shown in Fig. 9 to the stated initial disturbance. 
The state parameter u diverges with respect to time. This is 
the dominant parameter which drives the system dynamics to 
instability. The other three parameters, w, q and q  are slightly 
unstable.

 

of LQR has been formulated with the following values of xQ
and uR

1 0 0 0
0 1 0 0

0.1* ; [0.25]
0 0 10 0
0 0 0 10

x uQ R

 
 
 = =
 
 
 

The system is now triggered with a step command to 
monitor the transients and as seen from Fig. 11, and it is 
observed that the system is very lightly damped as the low 
frequency oscillations continue for a long time. However, a 
stark difference is noticed in the maximum overshoot when 
compared with results achieved through pole placement design 
techniques. The results obtained using LQR based design is 
able to bring down the system overshoots to a large extent. It is 
now to be seen on how to draw the fine line where acceptable 
levels of overshoot and settling time response is achieved with 
LQR based controller.

In the next iteration, the value of xQ matrix is penalised 
with 

1 0 0 0
0 50 0 0

0.1* ; [0.25]
0 0 10 0
0 0 0 40

x uQ R

 
 
 = =
 
 
 

The step response is shown in Fig. 12. This further 
improves the system overshoot values when compared with 

Figure 8. LQR controller schematic.

Figure 9. open-loop state response to step command with initial 
disturbance.

Figure 10. state response of system with LQR.

5.2 simulation Results of LQR
LQR control design methodology is introduced to this 

state of missile dynamics after formulation of the LQR control 
law shown in eqn (18). The state response improves using LQR 
as shown in Fig. 10 but far away from desired performance 
index. Two of the states, u and w, have an oscillating tendency 
and do not converge. The other two states, q and  q  are slightly 
unstable in the overall system dynamics after application of 
LQR design method in the feedback loop. The Control Law 

Figure 11. CL response using LQR with unit step command, 
Qdiag =0.1*[1 1 10 10].
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results obtained in Fig. 11. However, the system settling time is 
large and may not be acceptable when fast response is desired. 
A novel method is applied here to further improve the overall 
system performance. In order to control four variables (u, w, q,
q ) independently to optimise the effort, uR  is constructed into 
a 4x4 vector form and xQ is further penalised with 10 times 
weight. 

The final xQ  and uR  matrices are arrived after running 
around 100 numerical simulations in an iterative manner. Each 
state weights has been changed while keeping the other state 
weights constant until the desired state response is achieved for 
each state within the specified settling time. A trade-off study 
between xQ  and uR  weights with the goal of minimising the 
cost function with design constraints has been carried out. 
Numerical simulation results highlighting various control 
effort requirement are shown in Fig. 14.

The constructed cost function takes the form of 

10*x xQ Q=  and

0.55 0 0 0
0 0.45 0 0
0 0 0.35 0
0 0 0 0.25

uR

 
 
 =
 
 
 

 

As xQ  increases the state variables are affected and as 
uR  increases, the input activity gets lesser but state behaviour 

worsens. Hence xQ  is penalised with 10 times weight. As seen 
from Fig. 13, the system output states improve significantly 
and all states settle well within 360 msec.

The overshoot responses are attenuated with the chosen 
cost function and characterise a well-behaved damped   
system.

The controller gain matrix computed is
[ ]2.40 3.85 586.36 116.69LQRK     = − − .

Through LQR design methodology, this gain value has 
been evaluated and chosen for the highly maneuvering missile 
plant system.

It can be well stated that LQR control method when 
compared with pole placement method shows its superiority 
by bringing down the system overshoot and also alleviating 
the system transients much faster and providing excellent 
performance characteristics and applicable to systems where 
fast response with optimum control effort is desired.

6. ResuLts AND DIsCussIoNs
A realistic 6 DoF missile longitudinal dynamic plant has 

been established in state-space form, which, on analysing the 
open-loop response has been found to be unstable and weakly 
controllable.

The controller was designed using traditional pole-
placement methodology. This design process was iterated to 
arrive at satisfactory performance from the close-loop system. 
Pole-placement technique, though, stabilises the system, does 
not give optimal performance in terms of system overshoots 
and settling time. In an attempt to improve the performance of 
the system, Ackermann’s formula and Butterworth design were 
incorporated. Though the system performance significantly 
improved but it failed to meet the terminal requirements (Fig. 
7).

The LQR control design methodology was implemented 
on the baseline missile configuration and it was found that it 
outperformed the pole placement performance indices. 

Table 3 presents the quantitative analysis of the 
performance of both the controllers and as seen, implementing 
LQR controller has vastly improved the system performance 
characteristics. 

In case of LQR, the settling time response is greatly 
improved, viz., by about 9 times for ‘u’ state and 20 times 
for ‘w’. It is also observed that the overshoot is completely 
nullified for all state variables. 

The optimal and least control effort required to meet 
the desired trim condition of flight subjected to the initial 
disturbances is shown Fig. 14. Various costs of xQ  and uR  
matrices have been chosen to arrive at the designed KLQR 
controller gain matrix. The control deflection, an effective trim 
control deflection of dpitch = -9.76° (Fig. 14) is required to bring 

Figure 13. CL response using LQR with unit step command, 
Rdiag = [0.55 0.45 0.35 0.25].

table 3. Comparison of performance of pole placement and 
LQR design techniques

state 
variable

Pole Placement LQR
Rise 
time

settling 
time % os Rise 

time
settling 

time
% 
os

u 0.144 2.65 129.7 0.183 0.326 0.0
w 0.155 2.11 49.7 0.049 0.086 0.0
q 0.050 1.85 0.47 0.160 0.297 0.0
q 0.038 1.75 0.14 0.197 0.356 0.0

Figure 12. CL Response using LQR with unit step command, 
Qdiag = 0.1 * [1 50 10 40].
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the airframe to a stable state, much within the actuator control 
limits. It can be observed from Fig. 7 and Fig. 14 that even 
after spending approximately 28% more actuator energy than 
LQR, PP technique is not meeting the terminal requirements.

The non-minimum phase behaviour is also noticed  
(t = 0 – 0.03 sec) in the response of the control effort as the fin 
deflection is seen to move in the opposite direction initially, a 
typical characteristic of tail-controlled missile.

7.  CoNCLusIoN
The non-linear missile dynamic model derived forms the 

bedrock of the missile control design. The non-linear missile 
dynamics, presented in this paper, was defined in complete 
6-DoF model and was further decoupled, trimmed and 
linearised about the operating point. The model formulated in 
the state-space form was used to synthesise pole placement and 
LQR control algorithms.

LQR based design incorporates cost function J in the 
feedback loop, where the plant dynamics and actuator are 
penalised with Qx and Ru respectively. In order to compare 
the efficacy of LQR design method, the industry proven pole 
placement method has been used for comparison studies. 

Based on the numerical simulation results, it has been 
established that LQR based design performs better than pole-
placement method in terms of state overshoot and settling time. 
The results indicate that the controller gain parameters for the 
plant are well established. 

The novel approach presented in this paper can be used 
for design of autopilot for agile missiles with low energy 
requirements. 

As part of future work, further investigation can be taken 
up on robust control design of missile system using LQR in 
presence of system noise & flight disturbances.
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