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Inverse Estimation of Time-varied Heat Flux and Temperature on 2-D Gun
Barrel using Input Estimation Method with Finite-element Scheme
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ABSTRACT

When a gun fires, a large amount of heat flux is triggered by the propellant gas acting on
the gun barrel inner wall, leading to the rise of temperature, which will cause serious destruction.
In this paper, an inverse method based on the input-estimation method including the finite
inverse heat conduction problem (IHCP) element scheme to inverse estimate the unknown heat
flux on the 2-D gun barrel has been presented. The use of the online accuracy to inversely
estimate the unknown heat flux on the chamber has been made using 7.62 mm gun barrel outer
wall temperature measurement data. Using simulation uniform and non-uniform heat flux q(z,t)
cases involves a gun barrel inner wall that varies with time t and the axial z-location with convection
situation in the outer surface. Computational results show that the proposed method exhibits
a good estimation performance and highly facilitates practical implementation.

 Keywords: Heat flux, input-estimation method, finite element scheme, inverse heat conduction, inverse
estimation
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1 . INTRODUCTION

Gun barrel heating from multiple firings continues
to be a subject of concern to ordnance engineers.
Continuous gun firing raises the barrel temperature,
producing several adverse effects on the system
performance. In rapid firing situation, combustion
gases and the projectile's sliding friction will produce
chemical, mechanical, and temperature variations.
The propellant gas temperature is the major factor
to gun material melting, cracking, erosion, and
wear1-4, etc. The heat flux triggered by the propellant
gas acts on the gun barrel chamber by way of
thermal conduction. It leads to the high temperature
effects to limit the performance of guns. It is
suggested to use the outer surface temperature
measurement to inversely estimate the unknown

heat flux in the inner wall, which belongs to a
hollow cylinder inverse heat conduction problem
(IHCP). A number of investigators5-11 have a sequence
of discussions about heat transfer of gun tube. In
these studies, the finite-difference scheme is used
to solve the problem and described in detail in the
1-D problem. The heat flux  variation in 2-D problem
are seldom discussed. In this research, 2-D problem
has been studied, and the heat flux q(z-t) that
varies with time and position has been discussed.

In this paper, an inverse-estimation method
based on the input-estimation method including the
finite element scheme, to inversely estimate the
unknown heat flux on the 2-D gun barrel IHCP
has been presented. The finite element discretisation
concept has been applied to IHCP12-14. Irregularly

z Axial direction
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α Thermal diffusivity

γ Forgetting factor
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δ Dirac delta function
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noise
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Subscripts

1,2,…,n Sensor measurement location
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Superscripts

¯ Estimated by filter
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T Transpose of matrix

e Element
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R Measurement noise variance
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Inner radial
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s Innovation covariance

t Time
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{T} Temperature vector

∆t Sampling time interval

v Measurement noise vector

NOTATIONS

ε Effective strain rate

ε Effective strain

β Temperature sensitivity term

T Temperature in absolute value

τ Shearing stress

Ω Contact surface between platen and tube

D Mean diameter of tube

t Thickness of tube
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shaped boundaries can be approximated using elements with straight sides or matched exactly using
elements with curved boundaries. Therefore, this method is not limited to regular shapes with easily
defined boundaries in the future study. The input-estimation method uses the Kalman filter to generate
the residual innovation sequence. A recursive least-squares algorithm is derived that uses this residual
sequence to compute the value of the heat flux15. The proposed method for solving a 2-D gun barrel
IHCP is also used for studying the modelling error effect and the temperature containing measurement
errors. The uniform and non-uniform heat flux cases are simulated. These flux cases vary with time t
and the axial z-location with convection situation in the gun barrel outer surface. Then the sample time,
model error, and measurement error are compared. The results demonstrate good performance and
accuracy in tracking the unknown boundary heat flux q(z,t) of a thermal system.

2 . INPUT-ESTIMATION ALGORITHM

The recursive input-estimation algorithm consists of two parts, one is a Kalman filter and the other
is a recursive least-squares algorithm. The input parameter is the unknown time-varying heat flux, the
Kalman filter requires an exact knowledge of the process noise variance (Q) and the measurement noise
variance (R), where R depends on the sensor measurements. The Kalman filter is used to generate the
residual innovation sequence. This recursive least-squares algorithm is derived by residual sequence to
compute the value of the input heat flux.

The Kalman filter equations are given by

h)k/k(X)k/k(X Λ+−−Φ=− 111 (1)

TT Q)k/k(P)k/k(P ΓΓ+Φ−−Φ=− 111 (2)

RH)k/k(HP)k(s T +−= 1 (3)

)k(sH)k/k(P)k(K T 11 −−= (4)

( ) )k/k(P]HkKI[)k/k(P 1−−= (5)

)k/k(XH)k(Z)k(Z 1−−= (6)

)k(Z)k(K)k/k(X)k/k(X +−= 1 (7)

The Kalman filter is a time-varying digital filter, which uses information from both the state Eqns
(1) and (6); embedded within the Kalman filter is a set of recursive matrix equations permitting the
performance analysis of the filter before any data is processed, to precompute the state estimation-error
covariance matrices prior to data processing is possible; K(k) is the Kalman gain matrix, P(k/k−1) is

the state prediction-error covariance matrix, P(k/k) is the state filtering-error covariance matrix, )1/( −kkX

is the state filtering-error covariance matrix, )1/( −kkX is the recursive predictor and )/( kkX is the

recursive filter.

Let )k/k(X̂ and )k/k(X denote the estimate of X(k) with and without unknown input q(k-1).
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( ) ( ) ( )11/1ˆ1/ˆ −Γ+Λ+−−Φ=− kqhkkXkkX (8)

From Eqns (1) and (7), one gets:

( ) ( ) ( ) ( )
( )[ ] ( )[ ] ( ) ( )kZkKhkkXHkKI

kZkKkkXkkX
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+−=

1/1

1//
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kZkKkqhkkXHkKI

kkXHkZkKkkXkkX

+−Γ+Λ+−Φ−=

−−+−=
(10)

Assume q(k–1) is a constant at time interval,   k = n, n+1,..., n+l.
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Equation (10)- Eqn (9), let ∆X = X̂ (k/k)– X (k/k), then
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Let ∆X(k) = M(k)Γq, and from Eqn (12)
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nkkkXkkX

,//ˆ
,//ˆ

(14)

M(k) can be computed from Eqn (13).

Let ( )kẐ and ( )kZ denote the residual sequence of measurement data with and without unknown

input q(k-1).

( ) ( ) ( )
( ) ( ) hHk/kXHkZ

k/kXHkZkZ

Λ−−−Φ−=

−−=

11

1
(15)

( ) ( ) ( )
( ) ( ) ( )11/1ˆ

1/ˆˆ

−Λ−Λ−−−Φ−=

−−=

kqHhHkkZHkZ

kkZHkZkZ
(16)

Equation (15)- Eqn (16), and from Eqn (14), one can get a recursive relationship:
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( ) ( )
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nknqkBkZ

nkkZ
kZ

Here are the equations for a recursive least-squares algorithm. To understand the actual values, one
can get15:

( ) ( )[ ]Γ+−Φ= IkMHkB 1 (17)

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 111 11
−−− +−−= kskBkPkBkBkPkK T

b
T

bb γγ (18)

( ) ( ) ( )[ ] ( )11 −−= − kPkBkKIkP bbb γ (19)

( ) ( ) ( ) ( ) ( ) ( )[ ]1ˆ1ˆˆ −−+−= kqkBkZkKkqkq b (20)

where ( )kq̂ is the estimated input vector, P
b
(k) is the error covariance of the estimated input vector,,

B(k) and M(k) are the sensitivity matrices, and   K
b 

is the correction gain. ( )kZ is the bias innovation

caused by the measurement noise and input disturbance. s(k) is the covariance of the residual. γ is a

forgetting factor. K(k), s(k), and ( )kZ are obtained from the Kalman filter. The correction gain K
b
(k)

for updating ( )kq̂ in Eqn (20) is diminishing as k increases, which allows ( )kq̂ to converge to the true
constant value. In the time-varying case, however, one likes to prevent K

b
(k) from reducing to zero. This

is accomplished by introducing the factor, γ. For 0 < γ ≤ 1, K
b
(k) is effectively prevented from shrinking

to zero. Hence, the corresponding algorithm can preserve its updating ability continuously.

3 . PROBLEM FORMULATION

For the hollow cylinder transient heat conduction problem, where r,θ,z are the radial, circumferential,
and axial axes, respectively. The temperature (T) is independent of the circumferential axis (θ). This is
a case, where the domain is axisymmetric and all of the described boundary conditions are also axisymmetric.
Therefore, the governing equation is simplified in two-dimensional, R

i 
≤ r ≤ R, 0 ≤ z ≤ L. The initial

temperature is T (r,z,0) = 0. For time, t > 0 the boundaries at z = 0, z = L are kept insulated and outer
surface, r = R

o 
is convection situation, convection coefficient is h =

25 W /(m2.oC). The simulated measured temperatures Z
m
(t), m =1,2,3... are known. The IHCP investigated

here involves estimating heat flux input q̂ n
(t), n=1,2,3... acting on the surfaces, r = R

i 
in different

position, respectively. To demonstrate the finite element method application to temperature distribution
determination with a conducting body, Fig. 1 shows the geometry and discrete models. The mathematical
formulation of the two-dimensional, transient, heat conduction problem can be generalised as

t
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Figure 1. Geometry and discrete models.
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Z m
(t) = T(R

0
,z

m
,t) + v(t) r = R

0
, z = z

m
, m = 1,2... (27)

where T 0 
is the uniform initial temperature, q(z,t)  is the unknown heat flux input to be estimated. There
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is a non-uniform distribution at the z-axial, and Z
m
(t) are the noise-corrupted temperature measurements.

v(t) is the measurement noise assumed with zero mean and white Gaussian noise.

The calculus of variations provides an alternative method for formulating the governing Eqn (21) and
boundary conditions [Eqns (23)-(26)]. Variational calculus states that the minimisation of the functional16,
can be written as

[ ]
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Equation (29) must be minimised wrt the set of nodal temperature values {T}.
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When the minimisation process is complete, the following system of equations results17:
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where Eqn (31) is a system of first-order linear differential equations. The element contributions to [C},
[M], {F} are summed in the usual manner.
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[B] is obtained by differentiating [N] wrt r and z, and [D] matrix consists of the conductivity values.
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q
n
,n =1,2,3...  are the unknown input heat flux at

the inner wall, r = R
i 

and the convection loss h (t-
t∞) at the outer wall, r = R

o 
boundary. All of the

integrals in Eqns (32)-(34) were evaluated over a
single element. The element contributions are summed
in the usual manner. From Eqn (31) and considering
the process noise inputs18, the continuous time state
equation can be written as

httqtTTT Θ++Ω+= )]()([)()( ωψ (35)

][])[1( 1 MC −−=Ψ

][])[1( 1 ffC −−=Ω

][])[1( 1 GC −−=Θ

where the state vector T(t) is N× 1, N is the total
nodes, and Ψ, Ω, and Θ are the coefficient matrices.
ω(t) is a continuous time white-noise process. This
noise term represents the modelling error.

Assume the state variable (X) represents the
temperature.

X=[T1 
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2 
T

3
... T

N-1 
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N
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hkkqkXkX Λ+−+−Γ+−Φ= )]1()1([)1()( ω (36)

In general, one must compute Φ, Γ using numerical
integration, and these matrices change from one-
time interval to the next. The solution to state
Eqn (35) can be expressed as
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where state transition matrix Φ(t,τ) is the solution
to the following matrix homogeneous differential
equation:
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Next, one assumes that q(t) is a piecewise

constant function of time for ],[ 1 kk ttt −∈
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where X represents the state vector, Φ is the
state transition matrix, Γ is the input matrix,
ω(k−1) is a discrete-time white-Gaussian sequence
that is statistically equivalent through its first-two
moments to
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The mean and covariance matrices of ω(k−1)
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where δ
kj 

is a Dirac delta function. Because, the
measurements have been assumed to be available
only at sampled values of t at t = t

i
, i=1,2,....,.To

compare the results for situations involving measurement
errors, one can express Eqn (27) as
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Equations (35) and (37) constitute the discretised
state-variable model, where X

exact 
is the solution



65

CHEN & LIU: INVERSE ESTIMATION OF TIME-VARIED HEAT FLUX

for the direct problem with a known q(k), Z is the measurement data at time k∆t, assumed to have zero
mean and white noise. The variance of v(k) is given by

kjnnkjkj
T IRjkE δσδσδνν ..)}()({ 22

×===

Figure 2 is the flow chart of the finite element including input-estimation algorithm.

4 . RESULTS AND DISCUSSION

To illustrate the accuracy of the proposed approach in predicting the input heat flux q̂ (K),a 2-D
example is used to check the feasibility of the input-estimation method including the finite element
scheme. The following physical quantities were used in the calculation:

Thermal properties of gun steel 19

Parameter Values

Specific heat C
p 

= 460 J/(kg oC)

Density ρ = 7,833 kg/m3

Thermal conductivity K
rr 

= K
zz 

= 40 J/m.s.oC

Thermal diffusivity α = 1.11×10-5 m2/s

The total time is t
f
, the sampling interval ∆t = 0.01s, and the unknown heat flux q(z,t) is applied to

the inner surface, r = R
i
=0.00381 m, 0 ≤ z ≤L, L=0.30000 m. Thermocouples were placed in different

nodes on the outer surface r = R
o
=0.00381 m,  respectively, elements number E = 300, total number of

spatial nodes N = 186, the initial temperature T
0
= 0, convection coefficient is h = 25 W/m2.oC. The above

is a simulation of 7.62 mm gun under firing condition.

Because P(–1/–1) and P b
(–1) are normally unknown, the estimator was initialised with P(–1/–1)

and P
b
(–1) as very large numbers such as 1010 and 1010, respectively. P is the error covariance of the

estimated state and P
b 

is the error covariance of the estimated input vector. This had the effect of
treating the initial errors as very large. The estimator will therefore ignore the first few initial estimates20.

The initial conditions for the input estimator were given by X (–1/–1)=[0 0 ...0]T and P(–1/–1)=Diag[1010]

for the Kalman filter. The recursive least-squares algorithm initial conditions were given by q̂ (–1)

=[0 0 ...0] T, P
b
(–1)=1010.I

nxn
, and M(–1) was set using a zero matrix. The Kalman filter for the recursive

input-estimation algorithm requires exact knowledge of the process noise-variance matrix (Q) and the
measurement noise-variance matrix R, where R is dependent on the sensor measurements. The value of
Q in the filter from Eqn (2) and the value21  of γ = 0.8995 in the sequential least-squares from Eqn (18)
approach interactively affect the fast adaptive capability for tracking the time-varying parameter. The
test-input heat flux is given by

Example 1. Combined triangle and sine waveform in q(t) (W/m2). The input heat flux q(t) is
assumed in the form:
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Figure 2. Flow chart of the finite element including input-estimation algorithm.
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Firstly, consider the estimation input-heat flux, q(t) is uniform on the boundary, r = R
i
, at z = 0 and

z = L are kept insulated, the sensor location is at r = R
0
, z=L/2 (node 96), elements number, E=300, the

initial temperature T
0
= 0, the sampling time interval ∆t = 0.01 s, forgetting factor, γ = 0.8995, the outer

wall surface is convection situation h = 25 W/(m 2.oC), T∞=25 oC process noise covariance Q = 1, and
the measurement noise covariance, σ = 0.0010, σ = 0.0001. The estimates of q(t) are shown in
Figs 3-4 for σ = 0.001and σ = 0.0001, respectively. The outer wall temperature is shown in
Fig. 5 and the convection effect in amplifying temperature scale in fig. 6. One can see the convection
effect in Fig. 6. In this case, a uniform heat flux in every position is used to test this method. From Figs
3 and 4, one finds this method can estimate the unknown heat flux accuracy, and although the measurement
error influences the estimate resolution, the results are still good.

Example 2. Five different levels input-heat flux are modelled by Weibull distribution form

( ) ( )
,
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n = 1,2,3,4,5 at the inner wall, r = R
i
=0.00381 m assumed in the form:

( )














=====
===

≤≤×




 −×××

<≤

=





 −−−

−

3,5.2,2,5.1,1

5,4,3,2,18.1,8.4

2
2

102

200

,

54321

21
7

zzzzz

iba

tte
a

t

a

b
e

t

tz
i

q f

b

a

tb

iz

(W/m2) (40)

Here, simulate the unknown input heat flux q(t) on the boundary. It is in a manner like the gun in
firing with a large amount of heat flux from burning propellants in a short time. At z = 0 and z = L are
kept insulated with the sensors location at r = R 0

, z = node 24,60,96,132,168, elements number E = 300,
the initial temperature, T

0
= 0, the sampling time interval, ∆t = 0.01s, forgetting factor γ = 0.8995,

convection situation,  h = 25 W/(m 2.oC), T∞= 25oC, process noise covariance, Q = 1,10 and measurement
noise covariance, σ = 0.001, 0.0001 . The estimates of q(t) are shown in Fig 7-10, respectively.

Now, make a table about relative root-mean square-error with different parameters.

∆t(∆t
1
= 0.1s, ∆t

2
= 0.01s, ∆t

3
= 0.001s), Q(Q =1, Q =10),

R(σ =10-2, σ =10-3, σ=10-4) as presented in Table 1.

The relative root-mean-square error (RRMSE) is defined22 as

[ ] 2

1

ˆ( ( ) ( ) / ( )
n

exact i est i exact i
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q t q t q t

RRMSE
n

=
−

=
∑

(41)

From Figs 7-10, just as the measurement variance (R) increases, the Kalman gain [K(k)] Eqn (4)
decreases. Kalman filter Eqn (7) is proportional to the difference between that measurement and its best
predicted value and when the σ increases, from Eqn (7) the Kalman gain [K(k)] decrease causes the
estimate more believe-predicted value than new measurement. One can find that if the modelling error(Q)
from Eqns (2)-(4) increases, it will make K(k) increase, which leads to estimation quickly in Figs 8 and
10. The sample time chosen must be small (∆t

3
), but if the sample time is too large (∆t

1
) the accuracy

will decrease. In this case, from Table1, if one chooses the sample time (∆t
2
), it can reach accuracy.

From Figs 7-10 show that a larger measurement error can cause estimation lag and estimate accuracy
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Figure 4. Inverse estimation for q(t) for example 1 with = 0.001 and Q = 1.

Figure 3. Inverse estimation for q(t) for example 1 with = 0.0001 and Q = 1.



69

CHEN & LIU: INVERSE ESTIMATION OF TIME-VARIED HEAT FLUX

Figure 5.  Outer wall temperature for example 1.

Figure 6. Convection effect in amplifying temperature scale for example 1.
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Figure 7. Inverse estimation for q(t) for example 2 with = 0.001 and Q = 1.

Figure 8. Inverse estimation for q(t) for example 2 with = 0.001 and Q = 10.
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Figure 10. Inverse estimation for q(t) for example 2 with = 0.0001 and  Q = 10.

Figure 9. Inverse estimation for q(t) for example 2 with = 0.0001 and  Q = 1.
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degradation for the Weibull distribution function heat flux. The estimation results from the proposed
method show excellent agreement with the exact value.

Example 3. In this example, 15 different levels input-heat flux are modelled by Weibull distribution
form; the unknown input-heat flux [q(z,t)] is assumed in the following form:
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∆t
1
= 0.1s ∆t

1
= 0.01s ∆t

2
= 0.001s

q
1

0.0117 0.0027 6.9151e-004

q
2

0.0147 0.0034 8.6868e-004

q
3

0.0145 0.0035 9.0465e-004

q
4

0.0134 0.0025 6.7997e-004

q
5

0.0032 0.0006 5.3625e-005

q
1

0.0081 0.0011 2.9796e-004

q
2

0.0096 0.0012 3.4139e-004

q
3

0.0091 0.0012 3.3514e-004

q
4

0.0098 0.0011 3.0865e-004

q
5

0.0012 0.0005 1.3227e-004

q
1

0.0049 6.4927e-005 6.0416e-006

q
2

0.0055 6.8465e-005 6.8864e-006

q
3

0.0052 6.3483e-005 5.6045e-006

q
4

0.0057 7.1907e-005 7.7857e-006

q
5

0.0020 5.2549e-005 2.9741e-006

q
1

0.0110 0.0024 6.9149e-004

q
2

0.0137 0.0029 8.6869e-004

q
3

0.0134 0.0030 9.0463e-004

q
4

0.0129 0.0023 6.7997e-004

q
5

0.0018 6.1071e-005 5.3606e-005

q
1

0.0058 2.2952e-004 4.7871e-005

q
2

0.0065 2.3849e-004 5.0075e-005

q
3

0.0062 2.2429e-004 4.6245e-005

q
4

0.0067 2.4219e-004 5.1054e-005

q
5

0.0023 1.9048e-004 3.7680e-005

q
1

0.0048 3.7001e-005 8.3940e-007

q
2

0.0053 3.9820e-005 1.5420e-006

q
3

0.0050 3.6059e-005 5.6847e-007

q
4

0.0055 4.2749e-005 2.2980e-006

q
5

0.0021 2.7469e-005 1.4967e-006

σ =10-2, Q=1

σ =10-3, Q=1

σ =10-4, Q=1

σ =10-2, Q=10

σ =10-3, Q=10

σ =10-4, Q=10

Table 1. Relative root mean square error (RRMSE) compare table
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Figure 11. Inverse estimation for q
6-10

(t) for example 3 with = 0.001 and Q = 10.

Figure 12. Inverse estimation for q11-15
(t) for example 3 with = 0.0001 and  Q = 10.
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Figure 13. 3-D heat flux (z, t, q) for example 3.

Figure 14. 3-D temperature (z, t, T) for example 3 in the inner wall.
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In this example, 15 different level input heat
flux decreases with exponent form in different
positions, and enlarge 10 times of heat flux compared
to example 2. The sensors location are at r = R0

,
node 12,24,36,...156,168,180. One chooses the
measurement error, σ = 0.001 and σ = 0.0001,
process noise variance Q=10 and the sampling
time interval ∆t = 0.01s. In this case, one plots

the )(ˆ 106 tq − . The estimated )(ˆ 106 tq − is shown in
Figs 11-12, 3-D heat flux (z,t,q), and inner wall
temperature (z,t,T) in Figs 13-14. In this example,
one can find the heat flux magnified 1 order and
the result is also excellent.

The above simulation results demonstrate that
the proposed method has good performance in
tracking unknown heat flux cases that vary with
the time and the z-axial location, and the algorithm
is capable of dealing with online 2-D gun barrel
hollow cylinder IHCP.

5 . CONCLUSIONS

An online methodology, based on the input
estimation method including the finite element scheme,
has been developed to estimate the unknown input
heat flux that varies with the time and the z-axial
location on 2-D gun barrel. The results of the
simulation show that this method using the measured
temperature on 2-D gun barrel outer surface can
precisely estimate the unknown time-varying heat
flux, and the temperature field distribution on the
chamber in real-time. The proposed method is effective
for IHCP, it can be useful in making quick and
efficient identification of unknown heat flux on
the inner surface. In the future, it can be further
applied to other gun life prediction and relative
nondestruction tests.
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