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ABSTRACT

When a gun fires, alarge amount of heat flux is triggered by the propellant gas acting on
the gun barrel inner wall, leading to the rise of temperature, which will cause serious destruction.
In this paper, an inverse method based on the input-estimation method including the finite
inverse heat conduction problem (IHCP) element scheme to inverse estimate the unknown heat
flux on the 2-D gun barrel has been presented. The use of the online accuracy to inversely
estimate the unknown heat flux on the chamber has been made using 7.62 mm gun barrel outer
wall temperature measurement data. Using simulation uniform and non-uniform heat flux q(zt)
cases involves agun barrel inner wall that varies with timet and the axial z-location with convection
situation in the outer surface. Computational results show that the proposed method exhibits
a good estimation performance and highly facilitates practical implementation.

Keywor ds. Heat flux, input-estimation method, finite element scheme, inverse heat conduction, inverse

estimation
NOMENCLATURE K, Correction gain
B Sensitivity matrix K. .K, Thermal conductivity
[C] Capacitance matrix L Length of z-direction
C ) Specific heat M Sensitivity matrix
[D] Matrix of the conductivity values [M] Global conductance matrix
E Elements number N Total number of spatial nodes
{F} Thermal load vector [N] Shape function matrix
H Measurement matrix P Filter's error covariance matrix
h Convection heat transfer coefficient P, Error covariance matrix
[ Identity matrix q Heat flux
k Time (discretised) Q Process noise variance
K Kalman gain X State vector
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z Axial direction

Z Measurement data

a Thermal diffusivity

% Forgetting factor

r Input matrix

0 Dirac delta function

p Density

AW, Coefficient matrices

Q.0

O] State transition matrix

{ff},[G] Coefficient matrix

0,,, ., Standard deviation of the measurement
noise

() Process noise vector

Subscripts

1,2,...,n Sensor measurement location
S Body surface

Superscripts

B Estimated by filter

A Estimated

T Transpose of matrix

1. INTRODUCTION

Gun barrel heating from multiple firings continues
to be a subject of concern to ordnance engineers.
Continuous gun firing raises the barrel temperature,
producing several adverse effects on the system
performance. In rapid firing situation, combustion
gases and the projectile's dliding friction will produce
chemical, mechanical, and temperature variations.
The propellant gas temperature is the major factor
to gun material melting, cracking, erosion, and
wear’?, etc. The heat flux triggered by the propellant
gas acts on the gun barrel chamber by way of
thermal conduction. It leads to the high temperature
effects to limit the performance of guns. It is
suggested to use the outer surface temperature
measurement to inversely estimate the unknown
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e Element

r Axial direction

R Measurement noise variance
R Inner radial

R, Outer radial

S Innovation covariance

t Time

T Temperature

{T} Temperature vector

At Sampling time interval

v Measurement noise vector
NOTATIONS

& Effective strain rate

T Effective strain

B Temperature sensitivity term
T Temperature in absolute value
T Shearing stress

Q Contact surface between platen and tube
D Mean diameter of tube

—

Thickness of tube

heat flux in the inner wall, which belongs to a
hollow cylinder inverse heat conduction problem
(IHCP). A number of investigators* have a sequence
of discussions about heat transfer of gun tube. In
these studies, the finite-difference scheme is used
to solve the problem and described in detail in the
1-D problem. The heat flux variation in 2-D problem
are seldom discussed. In this research, 2-D problem
has been studied, and the heat flux q(z-t) that
varies with time and position has been discussed.

In this paper, an inverse-estimation method
based on the input-estimation method including the
finite element scheme, to inversely estimate the
unknown heat flux on the 2-D gun barrel IHCP
has been presented. The finite element discretisation
concept has been applied to IHCP*. Irregularly
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shaped boundaries can be approximated using elements with straight sides or matched exactly using
elements with curved boundaries. Therefore, this method is not limited to regular shapes with easily
defined boundaries in the future study. The input-estimation method uses the Kalman filter to generate
the residual innovation sequence. A recursive least-squares algorithm is derived that uses this residual
sequence to compute the value of the heat flux®®. The proposed method for solving a 2-D gun barrel
IHCP is also used for studying the modelling error effect and the temperature containing measurement
errors. The uniform and non-uniform heat flux cases are simulated. These flux cases vary with time t
and the axial z-location with convection situation in the gun barrel outer surface. Then the sample time,
model error, and measurement error are compared. The results demonstrate good performance and
accuracy in tracking the unknown boundary heat flux q(zt) of a thermal system.

2. INPUT-ESTIMATION ALGORITHM

The recursive input-estimation algorithm consists of two parts, one is a Kalman filter and the other
is a recursive least-squares algorithm. The input parameter is the unknown time-varying heat flux, the
Kaman filter requires an exact knowledge of the process noise variance (Q) and the measurement noise
variance (R), where R depends on the sensor measurements. The Kalman filter is used to generate the
residual innovation sequence. This recursive least-squares algorithm is derived by residual sequence to
compute the value of the input heat flux.

The Kalman filter equations are given by

X(k/k-1)=®X(k -1/ k -1)+Ah (1)
P(k/k-1)=®P(k -1/ k-1)®T +rQr’ (2)
s(k)=HP(k/k-1)HT +R (3)
K(k)=P(k/k-1)H s™(k) (4)
P(k/k)=[1-K({KH]P(k/k-1) (5)
Z(k)=Z(k)-HX(k/k-1) (6)
X(k/k)=X(k/k-1)+K(k)Z(k) (7)

The Kalman filter is a time-varying digital filter, which uses information from both the state Eqns
(1) and (6); embedded within the Kalman filter is a set of recursive matrix equations permitting the
performance analysis of the filter before any data is processed, to precompute the state estimation-error
covariance matrices prior to data processing is possible; K(k) is the Kalman gain matrix, P(k/k-1) is

the state prediction-error covariance matrix, P(k/K) is the state filtering-error covariance matrix, X(k/k-1)

is the state filtering-error covariance matrix, X(k/k-1) is the recursive predictor and X(k/k) is the
recursive filter.

Let X(k/k) and X(k/k) denote the estimate of X(k) with and without unknown input g(k-1).
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X (k/k -1)= X (k -1/k -1)+ Ah + Fq(k - 1) (8)
From Eqgns (1) and (7), one gets:

X(k/k)= X(k/k-1)+K(K)Z(K)

= [ - K(H][oX (- 17k -1)+ A+ K (K)Z (k) ©)
X (k/K)= X (K/k=1)+ K(K)[Z(K) = HX (k/k=1)]
=[I - K(K)H][®X (k/k=1)+ Ah+Tq(k - 1] + K (k) Z (k) (10)
Assume q(k-1) is a constant at time interval, k = n, n+l1,..., n+l.
_ 00, k<n O
q(k_l)_Eq, n< kSn+IE (11)
Equation (10)- Eqn (9), let AX =X (k/k)—X (k/K), then
00, k< n O
Bx()= H1 - KH][eax(k- 1)+ k-1, n< ks n+1F
(12)
Let AX(k) = M(k)lg, and from Egn (12)
00 k<n O
M(k)_[ |- K(H][oM(k-1+ 1], nsksn+IF (13)
%X(k/k): X(k/k), k<n
AX(k/K)= X(k/K)+ M(K)F g, n< k< n+ (14)

M(k) can be computed from Eqgn (13).

Let z(k) and Z(k) denote the residual sequence of measurement data with and without unknown
input q(k-1).

Zk)=z[k)-HX(k/k-1)
=Z(k)-HoX (k -1/ k -1)- HAh

Zk)=zk)-Hz [/k -1)

=7 k)-H®Z k -1/k -1)-HAh - HAq(k -1)

(15)

(16)

Equation (15)- Egn (16), and from Egn (14), one can get a recursive relationship:
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= \3Z (k) k<n
zZk)o-, 7
( )Bz(k)+ Bk)g, nsksn+1

Here are the equations for a recursive least-squares algorithm. To understand the actual values, one
can get's:

Bk)=H[om (k-1)+1]r (17)
i (9=y* B (kD8 ()[B(kY R (k-1)8" ()+ (k)] (18)
p,k)=l -K,k)BK)ly R (k-1) (19)

ak)=ak -1)+K,()|z{)-Bk)ak-1) (20)

where q(k) is the estimated input vector, P,(k) is the error covariance of the estimated input vector,

B(k) and M(k) are the sensitivity matrices, and K, is the correction gain. Z(k) is the bias innovation
caused by the measurement noise and input disturbance. s(k) is the covariance of the residual.y is a
forgetting factor. K(k), s(k), and Z(k) are obtained from the Kalman filter. The correction gain K (k)

for updating (k) in Egn (20) is diminishing as k increases, which allows g(k) to converge to the true
constant value. In the time-varying case, however, one likes to prevent K (k) from reducing to zero. This
is accomplished by introducing the factor, y. For 0 <y< 1, K (k) is effectively prevented from shrinking
to zero. Hence, the corresponding algorithm can preserve its updating ability continuously.

3. PROBLEM FORMULATION

For the hollow cylinder transient heat conduction problem, where r,0,z are the radial, circumferential,
and axial axes, respectively. The temperature (T) is independent of the circumferential axis (8). This is
a case, where the domain is axisymmetric and all of the described boundary conditions are al so axisymmetric.
Therefore, the governing equation is simplified in two-dimensional, R <r < R, 0 < z< L. The initial
temperature is T (r,z,0) = 0. For time, t > 0 the boundaries at z = 0, z = L are kept insulated and outer
surface, r = R, is convection situation, convection coefficient is h =
25 W /(m?.°C). The simulated measured temperatures Z (t), m=1,2,3... are known. The IHCP investigated

here involves estimating heat flux input g (t), n=1,2,3... acting on the surfaces, r =R in different

position, respectively. To demonstrate the finite element method application to temperature distribution
determination with a conducting body, Fig. 1 shows the geometry and discrete models. The mathematical
formulation of the two-dimensional, transient, heat conduction problem can be generalised as

K a?r+K”aT+K OZTZpCa_T Cr <R O<7<L 150 o1
"2 r or  ZoZ " ot R<r<R,0sz<L, (21)
T(r,z0)=T,=0 R<r<R, 0sz<L,t=0 (22)
oT
_Krra_r:q(zlt) r = Ri’ O<z<L (23)
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oT
Ky o-=h(r-T.) r=R,0<zs<L (24)
a_T:O R < <R =0 25
0z =P Ehe 2 (25)
T _p R<r<R z=L 26
> Sr<R,z= (26)
Z (1) = T(R,z,t) + v(t) r=R,z=z,m=12. (27)

where T is the uniform initial temperature, q(zt) isthe unknown heat flux input to be estimated. There
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Figure 1. Geometry and discrete models.
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is a non-uniform distribution at the z-axial, and Z (t) are the noise-corrupted temperature measurements.
v(t) is the measurement noise assumed with zero mean and white Gaussian noise.

The calculus of variations provides an alternative method for formulating the governing Eqn (21) and
boundary conditions [Egns (23)-(26)]. Variational calculus states that the minimisation of the functional®,

can be written as

T T 1
rK -~ x Cp—tT dv  [qT ]ds 2—h(r T )ds (28)
s s
_ ‘ . 6{T}
—ZJ’—{T} {B}[D* ]{B}{T}dV+jrpC [N“HTHIN*]——
+ q[N°KT}dSH q,[N°KT}dS+ [q[N{T}dS
I* . | (29)

h 2
+£?{T} INTIN T} dS—‘Sl'ShTm{Ne}{T} dS+§£gdeS

Equation (29) must be minimised wrt the set of nodal temperature values {T}.

aJ ¢
wmz 23 (30)

When the minimisation process is complete, the following system of equations results'’:

(31)

(] "{T} +IMI{T} +{F} =0

where Eqgn (31) is a system of first-order linear differential equations. The element contributions to [C},
[M], {F} are summed in the usual manner.

(CI3 167 =3 [reC,INI'INIv (32)
E E

[MI5 M iEfB]T[D”B]dV f h{N}T{N}dsE (33)

(g +elh (34)

{F} = i{f y i[@lquds f_mies

[B] is obtained by differentiating [N] wrt r and z, and [D] matrix consists of the conductivity values.
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g,n =1,2,3... are the unknown input heat flux at
the inner wall, r =R and the convection loss h (t-
t ) at the outer wall, r =R boundary. All of the
integrals in Eqns (32)-(34) were evaluated over a
single element. The element contributions are summed
in the usual manner. From Eqgn (31) and considering
the process noise i'fptltescontinuous time state
equation can be written as

T&T) =@T (t) + Qq(t) +(t)] + ©h (35)
W =(-1)[C] [M]
Q=(-Y[C] [ ff]

©=(-D[C] ™G]

where the state vector T(t) is Nx 1, N is the total
nodes, and W, Q, and © are the coefficient matrices.
w(t) is a continuous time white-noise process. This
noise term represents the modelling error.

Assume the state variable (X) represents the
temperature.

X=[T, T, T,. T, T
X (k) = ®X (k -1) +Tq(k 1) +w(k -1] +Ah  (36)

In general, one must compute ®, I using numerical
integration, and these matrices change from one-
time interval to the next. The solution to state
Egn (35) can be expressed as

X(t) =o(t,t5) X(ty)

+[etDam)ar) + Q@ )] dr

t

+ J’CD(t,r)[Gh] dt

where state transition matrix ®(t,t) is the solution
to the following matrix homogeneous differential
equation:

Ht1)=W(t) D(t,T) (37)

Next, one assumes that q(t) is a piecewise

constant function of time for ¢t ] and set

t=1t,and t=tinEqgn (37), to obtain the values
of the different matrices:

® =e™ gl + WAL

ty 2
M= I g’ bt QAL + wg% OQAt

tk-l

k
A= Ie“’ & edr

0%}

a(k) =[a,(k) a,(k) a,(k) ... an(K)]’

where X represents the state vector,® is the
state transition matrix, I is the input matrix,
w(k-1) is a discrete-time white-Gaussian sequence
that is statistically equivalent through its first-two
moments to

wk-1)= j'lda(tk QT )w(t)dt

t1

The mean and covariance matrices of w(k—-1)
are:

Elwk-D} = Egjdb(tk 0)Q@)w(t)dt %: 0
B

k-1

E{ (k) w'([)} =Q84 = Q. 1Oy

where 6kj is a Dirac delta function. Because, the
measurements have been assumed to be available
only at sampled values of tat t = t, i=1,2,....,.To
compare the results for situations involving measurement
errors, one can express Egn (27) as

Z(K) = HX gt (K) +V(K) (38)

212, 2, Z,... Z,]

Equations (35) and (37) constitute the discretised
state-variable model, where X___ is the solution

exact
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for the direct problem with a known q(k), Z is the measurement data at time kAt, assumed to have zero
mean and white noise. The variance of v(k) is given by

E{v (kV' (j)}= R, =026kj =02.Inxn.6kj
Figure 2 is the flow chart of the finite element including input-estimation algorithm.
4. RESULTS AND DISCUSSION
To illustrate the accuracy of the proposed approach in predicting the input heat flux 4 (K),a 2-D

example is used to check the feasibility of the input-estimation method including the finite element
scheme. The following physical quantities were used in the calculation:

Thermal properties of gun steel *

Parameter Values

Specific heat C, = 460 J/(kg °C)
Density p = 7,833 kg/m®
Thermal conductivity K, =K, =40 Jms°C
Thermal diffusivity o = 1.11x10° m?s

The total time is t, the sampling interval At = 0.01s, and the unknown heat flux q(zt) is applied to
the inner surface, r = R=0.00381 m, 0 < z <L, L=0.30000 m. Thermocouples were placed in different
nodes on the outer surface r = R =0.00381 m, respectively, elements number E = 300, total number of
spatial nodes N = 186, the initial temperature T,= 0, convection coefficient is h = 25 W/n¥.°C. The above
is a simulation of 7.62 mm gun under firing condition.

Because P(-1/-1) and P (-1) are normally unknown, the estimator was initialised with P(-1/-1)
and P (-1) as very large numbers such as 10" and 10%, respectively. P is the error covariance of the
estimated state and P, is the error covariance of the estimated input vector. This had the effect of
treating the initial errors as very large. The estimator will therefore ignore the first few initial estimates®.

The initial conditions for the input estimator were given by X (=1/=1)=[0 0 ...0]and P(-1/—1)=Diag[10v]
for the Kalman filter. The recursive least-squares algorithm initial conditions were given by ¢(-1)
=[00..0] T, P(-1)=10".1 , and M(-1) was set using a zero matrix. The Kalman filter for the recursive
input-estimation algorithm requires exact knowledge of the process noise-variance matrix (Q) and the
measurement noise-variance matrix R, where R is dependent on the sensor measurements. The value of
Q in the filter from Eqn (2) and the value®* of y= 0.8995 in the sequential least-squares from Eqn (18)
approach interactively affect the fast adaptive capability for tracking the time-varying parameter. The
test-input heat flux is given by

Example 1. Combined triangle and sine waveform in q(t) (W/n¥). The input heat flux q(t) is
assumed in the form:

0 O0<t<412<t<20,25<t <t
O f
q():D106X(—4) 4<t<8
0108 x( -t x12) 8<t<12 (W/m?) (39)

2 x10° x(1 +sin[&3(t -20)], @ =0.95, 20<t<25
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Figure 2. Flow chart of the finite element including input-estimation algorithm.
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Firstly, consider the estimation input-heat flux, g(t) is uniform on the boundary, r = R, at z= 0 and
z =L are kept insulated, the sensor location is at r = R, z=L/2 (node 96), elements number, E=300, the
initial temperature T = 0, the sampling time interval At =0.01 s, forgetting factor, y = 0.8995, the outer
wall surface is convection situation h = 25 W/(m2.°C), T_=25 °C process noise covariance Q = 1, and
the measurement noise covariance, ¢ = 0.0010, o = 0.0001. The estimates of q(t) are shown in
Figs 3-4 for o = 0.00land o = 0.0001, respectively. The outer wall temperature is shown in
Fig. 5 and the convection effect in amplifying temperature scale in fig. 6. One can see the convection
effect in Fig. 6. In this case, a uniform heat flux in every position is used to test this method. From Figs
3 and 4, one finds this method can estimate the unknown heat flux accuracy, and although the measurement
error influences the estimate resolution, the results are still good.

Example 2. Five different levels input-heat flux are modelled by Weibull distribution form

(n-1)L nL _ _
qn(Z,t),TS ZS?, n=1,234,5 at the inner wall, r = R=0.00381 m assumed in the form:

0o O<t<?2
D 1 N _Zé)
(Zt)_%x107xe 4 XEE[__Zg xePal 2<t<t,
4 et= aba O W/m? 40
-48b=18 iz12345  (W/m?) (40)

Hz=2,=1512,=2,2,=25,7 =3

Here, simulate the unknown input heat flux q(t) on the boundary. It is in a manner like the gun in
firing with a large amount of heat flux from burning propellants in a short time. At z=0and z=L are
kept insulated with the sensors location at r = R,, z = node 24,60,96,132,168, elements number E = 300,
the initial temperature, T = 0, the sampling time interval, At = 0.01s, forgetting factor y = 0.8995,
convection situation, h =25 W/(m?2°C), T_= 25°C, process noise covariance, Q = 1,10 and measurement
noise covariance, o =0.001,0.0001 . The estimates of q(t) are shown in Fig 7-10, respectively.

Now, make a table about relative root-mean square-error with different parameters.
At(At= 0.1s, At= 0.01s, At,= 0.001s), Q(Q =1, Q =10),
R(o =102, o =103, 0=10") as presented in Table 1.

The relative root-mean-square error (RRMSE) is defined® as

S (o (1) = G () G 6] >
RRMSE = 'Zl - = i (41)
n

From Figs 7-10, just as the measurement variance (R) increases, the Kalman gain [K(k)] Egn (4)
decreases. Kalman filter Eqn (7) is proportional to the difference between that measurement and its best
predicted value and when the o increases, from Eqn (7) the Kalman gain [K(k)] decrease causes the
estimate more believe-predicted value than new measurement. One can find that if the modelling error(Q)
from Egns (2)-(4) increases, it will make K(k) increase, which leads to estimation quickly in Figs 8 and
10. The sample time chosen must be small (At,), but if the sample time is too large (At)) the accuracy
will decrease. In this case, from Tablel, if one chooses the sample time (At,), it can reach accuracy.
From Figs 7-10 show that a larger measurement error can cause estimation lag and estimate accuracy
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Figure 7. Inverse estimation for q(t) for example 2 with ¢ =0.001 and Q = 1.
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Figure 8. Inverse estimation for q(t) for example 2 with ¢ = 0.001 and Q = 10.
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Figure 9. Inverse estimation for q(t) for example 2 with ¢ =0.0001 and Q = 1.
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Figure 10. Inverse estimation for q(t) for example 2 with ¢ =0.0001 and Q = 10.
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Table 1. Relative root mean square error (RRM SE) compare table

At=0.1s At=0.01s At,= 0.001s

a, 0.0117 0.0027 6.9151e-004

a, 0.0147 0.0034 8.6868e-004

0 =102, Q=1 a, 0.0145 0.0035 9.0465e-004
a, 0.0134 0.0025 6.7997e-004

a, 0.0032 0.0006 5.3625e-005

a, 0.0081 0.0011 2.9796e-004

a, 0.0096 0.0012 3.4139e-004

0 =103 Q=1 a, 0.0091 0.0012 3.3514e-004
a, 0.0098 0.0011 3.0865e-004

a, 0.0012 0.0005 1.3227e-004

a, 0.0049 6.4927e-005 6.0416e-006

a, 0.0055 6.8465e-005 6.8864e-006

0 =104 Q=1 a, 0.0052 6.3483e-005 5.6045e-006
a, 0.0057 7.1907e-005 7.7857e-006

a, 0.0020 5.2549e-005 2.9741e-006

a, 0.0110 0.0024 6.9149e-004

a, 0.0137 0.0029 8.6869e-004

0 =102, Q=10 a, 0.0134 0.0030 9.0463e-004
a, 0.0129 0.0023 6.7997e-004

q, 0.0018 6.1071e-005 5.3606e-005

a, 0.0058 2.2952e-004 4.7871e-005

a, 0.0065 2.3849e-004 5.0075e-005

o =103, Q=10 a, 0.0062 2.2429e-004 4.6245e-005
a, 0.0067 2.4219e-004 5.1054e-005

a, 0.0023 1.9048e-004 3.7680e-005

a, 0.0048 3.7001e-005 8.3940e-007

a, 0.0053 3.9820e-005 1.5420e-006

0 =104 Q=10 a, 0.0050 3.6059e-005 5.6847e-007
a, 0.0055 4.2749e-005 2.2980e-006

a, 0.0021 2.7469e-005 1.4967e-006

degradation for the Weibull distribution function heat flux. The estimation results from the proposed
method show excellent agreement with the exact value.

Example 3. In this example, 15 different levels input-heat flux are modelled by Weibull distribution
form; the unknown input-heat flux [g(zt)] is assumed in the following form:

0 O<t<2
= gl
_%xmgxe_4 xBB_—zg xe D&t 2<t<t,
Gj @t)= afjga [
=4.8,b=18 i=123.....1415 (42)
B, =1+0.2x( -1) i=123,.....1415
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Figure 11. Inverse estimation for g, (t) for example 3 with ¢ =0.001 and Q = 10.
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Figure 12. Inverse estimation for q,, ,,(t) for example 3 with ¢ =0.0001 and Q = 10.
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Figure 13. 3-D heat flux (z, t, ) for example 3.
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Figure 14. 3-D temperature (z, t, T) for example 3 in the inner wall.
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In this example, 15 different level input heat
flux decreases with exponent form in different
positions, and enlarge 10 times of heat flux compared
to example 2. The sensors location are at r = R,
node 12,24,36,...156,168,180. One chooses the
measurement error, ¢ = 0.001 and o = 0.0001,
process noise variance Q=10 and the sampling
time interval At = 0.01s. In this case, one plots

the Gs10(t). The estimated Gs-10(t) is shown in
Figs 11-12, 3-D heat flux (zt,q), and inner wall
temperature (z,t,T) in Figs 13-14. In this example,
one can find the heat flux magnified 1 order and
the result is also excellent.

The above simulation results demonstrate that
the proposed method has good performance in
tracking unknown heat flux cases that vary with
the time and the z-axial location, and the algorithm
is capable of dealing with online 2-D gun barrel
hollow cylinder IHCP.

5. CONCLUSIONS

An online methodology, based on the input
estimation method including the finite element scheme,
has been developed to estimate the unknown input
heat flux that varies with the time and the z-axial
location on 2-D gun barrel. The results of the
simulation show that this method using the measured
temperature on 2-D gun barrel outer surface can
precisely estimate the unknown time-varying heat
flux, and the temperature field distribution on the
chamber in real-time. The proposed method is effective
for IHCP, it can be useful in making quick and
efficient identification of unknown heat flux on
the inner surface. In the future, it can be further
applied to other gun life prediction and relative
nondestruction tests.
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