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ABSTRACT

Innovative adaptive weighted input estimation inverse methodology for estimating the
unknown time-varying blast loads on the truss structure system is presented. This method is
based on the Kalman filter and the recursive least square estimator (RLSE). The filter models the
system dynamics in a linear set of state equations. The state equations of the truss structure
are constructed using the finite element method. The input blast loads of the truss structure
system are inverse estimated from the system responses measured at two distinct nodes. This
work presents an efficient weighting factor γ applied in the RLSE, which is capable of providing
a reasonable estimation results. The results obtained from the simulations show that the method
is effective in estimating input blast loads, so has great stability and precision.

 Keywords: Input estimation, Kalman filter, blast loads, medium girder bridge, truss structure system,
recursive least square estimator, RLSE, finite element method

NOMENCLATURE

Ae Cross-sectional area of the element

A, B Constant matrices

B s
(k ) Sensitivity matrices

C Damping matrix

E Elastic modulus

F b
(k ) Blast load vector

H Measurement matrix

k Time (discretised)

K Stiffness matrix

Ke Element stiffness matrix

K
a
(k ) Kalman gain

K
b
(k ) Correction gain

l Length of the element

M Mass matrix

M e Element mass matrix

P Filter's error covariance matrix

ρ Mass per unit length of the element

σ Measurement standard deviation

∆t Sampling time (interval)

P
b
(k ) Error covariance matrix

Q Process noise covariance matrix

Q w
Scalar of process noise covariance

R Measurement noise covariance matrix
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R
v

Measurement noise covariance

S Innovation covariance

t Time (continuous)

v (k ) Measurement noise vector

w (k ) Process noise vector

X State vector

Y Displacement vector

Y& Velocity vector

Y&& Acceleration vector

Z (k ) Observation vector

γ( k) Weighting factor

Γ Input matrix

δ Kronecker delta

Φ State transition matrix

Superscripts

^ Estimated

- Estimation value of the filter

T Transpose of matrix

Subscripts

i, j Indices

1 . INTRODUCTION

Rapid movement on the battlefield requires the
existence of the road networks or natural high-
speed avenues that cross an assortment of wet and
dry gaps. The medium girder bridge (MGB) is a
lightweight, hand-built, easily transportable bridge
that can be erected in various configurations to
cover a full range of military and emergency bridging
requirements. The MGB could be damaged by the
exceeding fluctuations due to the external blast
loads. The external blast load determination is a
very important task to ensure the readiness of
MGB. Therefore, the dynamic blast loads on the
structure must be determined using the estimation
method or measurement techniques. One of the
methods is to estimate the blast loads by applying
the measured dynamic responses to the inverse
estimation method.

 Force input estimation is the process of determining
the blast loads by applying the measurements, i.e.,

the responses of the system. Some techniques have
handled the inverse problem during force estimation.
The time domain approach models the structure and
forces with a set of second-order differential equations
by Law1, et al. The forces are modelled as step
functions in a small time interval. These equations of
motion are then expressed in the modal coordinates,
and they are solved using convolution in the time
domain. The forces are then determined using the
modal superposition principle. Druz2, et al. formulated
a nonlinear inverse problem and tried to find the
location and magnitude of the external force. The
modal approach by Chan3, et al. determines the
forces completely in the modal coordinates. Measured
displacements are converted into modal displacements
using an assumed shape function. The forces are
then determined solving the uncoupled equations of
motion in the modal coordinates.

Recently, Huang4 used an algorithm based on
the conjugate-gradient method to estimate the unknown
external forces in the inverse nonlinear force vibration
problem. Tuan5,6 adopted the input estimation method
to inversely solve the 1-D and 2-D heat conduction
problems. Ma7-9 and Deng10 as well used this method
to estimate the force input to the structure system.
This method combines the Kalman filter without
the input term and the adaptive recursive least
square estimator (RLSE) to form a real-time online
estimation method.

In the present work, the input estimation method
uses the recursive form to process the data. As
opposed to the batch process, using the recursive
form is real-time and has higher effectiveness.
This means that the presented algorithm can reduce
both the requirement of storage space and the
computation load of the computer. Conceptually,
the blast loads acting on a structure can be found
by taking the product of the inverse of the dynamic
characteristics and the responses of the system.
However, inverse processes generally tend to be
ill-conditioned, because the estimation results of
the load input are very sensitive to the effect induced
by the noises.

To treat these ill-conditional problems, the adaptive
input estimation method with the finite element
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scheme is used to determine the unknown excitation
blast loads. The method is based on the Kalman
filter and the recursive least square algorithm weighted
by a fading factor, to determine the excitation blast
loads acting on truss structures. The mathematical
model of the truss structure is constructed using
the finite element method (FEM)11. The practicability
of the proposed method can be verified using numerical
simulations of the blast load estimation of a simple
truss bridge. In this study, the MGB is modelled
as a truss structural system. The truss structure
is subjected to decaying exponent blast loads. The
blast loads can be estimated by applying the dynamic
responses to the proposed input estimation algorithm.
By comparing the results with the actual blast
loads, the precision of the present inverse method
can be demonstrated.

2 . PROBLEM FORMULATION

To illustrate the practicability and precision of
the presented approach in estimating the unknown
blast load, the numerical simulations of the MGB
structure are investigated. As shown in Fig. 1, the
MGB is modelled as a truss structural system.

Input estimation is based on the state-space
analysis method. In this study, the FEM to construct
the state-space model of a truss structural system
is used. The FEM of a truss structure is considered
to be an n degrees-of-freedom (DOFs) system.
Therefore, the differential equations of motion of
the system in terms of mass, stiffness, and damping
matrices are shown below:

( ) ( ) ( ) ( )bMY t CY t KY t F t++=&&&

                 
(1)

where M is the n x n mass matrix; C is the
damping coefficient matrix; K is the n x n stiffness
matrix; ( )Y t&& , ( )Y t& , and ( )Y t are the n x 1  acceleration,
speed, and displacement vectors, respectively. F

b
(t)

is the n x 1  blast load vector. The matrices, M
and K, can be obtained using the FEM. The matrix
C was obtained by assembling the matrices M and
K as a proportional damping model.

After converting to the state-space model, the
state variables of the second-order dynamic system
with n DOF are represented by a 2n x 1 state
vector, i.e.

( ) ( )
T

X Y t Y t= 
& .

From Eqn (1), the continuous-time state equation
and measurement equation of the structure system
can be formulated as follows:

( ) ( ) ( )bX t AX t BF t=+&
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( ) ( )Z t HX t=
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Figure 1. Finite element model of the truss structural system. (25 elements with 14 nodes).
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[ ]1 2 2 1 2( ) ( ) ( ) ( ) ( )
T

n nX t X t X t X t X t−=⋅⋅⋅

where A and B are constant matrices composed of
mass, damping, and stiffness of the beam structure
system. X(t) is the state vector, Z(t) is the observation
vector,and H is the measurement matrix.

There always exists the noise turbulence in
the practical environment. This is the reason that
any of the physical systems contains two portions:
One is the deterministic portion, and the other is
the random portion, which is distributed around the
deterministic portion. Equations (2) and (3) do not
take the noise turbulence into account. To construct
the statistic model of the system state characteristics,
a noise disturbance term, which can reflect these
characteristics of the state, will need to be added
into these two equations. Up to now, one of the
random noise disturbances that can be completely
resolved is the Gaussian white noise, which has
been statistically illustrated in full using the probability
distribution function and the probability density function.
Practically, any function corresponding to the functions
mentioned above has the same effect. The characteristic
function of the random variable is one example.
Two most important characteristic values are the
mean and the variance, which represent the statistic
properties of the random process12.

Taking the above consideration into account,
the continuous-time state equation is to be sampled
with the sampling interval, ∆t, to obtain the discrete-
time statistic model of the state equation shown
below13:

( 1) ( ) [ ( ) ( )]bX k X k F k w k+=Φ+Γ+

             

(4)

where

[ ]1 2 2 1 2( ) ( ) ( ) ( ) ( )
T

n nX k X k X k X k X k−=⋅⋅⋅

exp( )A tΦ=∆

[ ]{ }( 1)
exp ( 1)

k t

k t
A k t Bd

+∆

∆
Γ=+∆−∫ ττ

[ ]1 2 1( ) ( ) ( ) ( ) ( )
T

b b b bn bnF k F k F k F k F k−=⋅⋅⋅

[ ]1 2 1( ) ( ) ( ) ( ) ( )
T

n nw k w k w k w k w k−=⋅⋅⋅

where X(k) is the state vector. Φ is the state
transition matrix, Γ is the input matrix, ∆t is the
sampling interval. w(k) is the processing error vector,
which is assumed as the Gaussian white noise.

{ }( ) ( )T
kjE w k w k Q= δ , and 2 2W n nQ Q I ×=×

where Q is the discrete-time processing noise covariance
matrix. d

kj 
is the Kronecker delta function.

When describing the active characteristics of
the structure system, the additional term, w(k),
can be used to present the uncertainty in a numerical
manner. The uncertainty could be the random disturbance,
the uncertain parameters, or the error due to the
over-simplified numerical model.

Generally the system state can be determined
by measuring the output of the system. The measurement
usually has a certain relationship with the system
output. However, there is also the noise issue with
the measurement. As a result, the discrete-time
statistic model of the measurement vector can be:

( ) ( ) ( )Z k HX k v k=+

                        

(5)

where

[ ]1 2 2( ) ( ) ( ) ... ( )
T

nZ k Z k Z k Z k=

[ ]1 2 2( ) ( ) ( ) ... ( )
T

nv k v k v k v k=

Z(k) is the observation vector, v(k) represents the
measurement noise vector and is assumed to be the

Gaussian white noise with zero mean and the

variance { }( ) ( )T
kjE v k v k R= δ ,where 2 2V n nR R I ×=× .

R is the discrete-time measurement noise covariance
matrix, and H is the measurement matrix.
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3 . ADAPTIVE WEIGHTED RECURSIVE
INPUT ESTIMATION METHOD

Adaptive weighted load input estimation is a
process of determining the blast loads by applying
the measurements of the responses of the  system.
The presented adaptive weighted load input estimation
method consists of two parts: (a) Kalmam filter
and (b) estimator. The Kalman filter is used to
generate the residual innovation sequence. The
residual innovation sequence connotes bias or systematic
error from the unknown time-varying input item
and variance or random error form the measurement.
The estimator then computes the histories of the
excitation blast loads by applying the residual innovation
sequence to the adaptive weighted recursive least
square algorithm. The detailed derivation of this
technique can be found in the work by Tuan14, et al.
The equations of the Kalman filter are as follows:

( / 1) ( 1/ 1)X k k X k k−=Φ−−

                

(6)

( / 1) ( 1/ 1) T TP k k P k k Q−=Φ−−Φ+ΓΓ       (7)

( ) ( ) ( / 1)Z k Z k H X k k=−−

                     

(8 )

( ) ( / 1) TS k H P k k H R=−+

                 

(9 )

1( ) ( / 1) ( )T
aK k P k k H S k−=−                   (1 0 )

( / ) ( / 1) ( ) ( )aX k k X k k K k Z k=−+          (11 )

[ ]( / ) ( ) ( / 1)aP k k I K k H P k k=−−

         

(1 2 )

In E q n s (6 ) - (1 2 ) , ( / 1)X k k −

 

d e n o te s s ta te
es tim atio n , P (k /k -1 ) is th e s ta te es tim atio n e rro r

co v arian ce , ( )Z k

 

is th e b ias in n o v a tio n cau sed b y

m easu rem en t n o ise an d in p u t d is tu rb an ce . S (k )
rep resen ts th e in n o v a tio n co v arian ce , ( / )X k k

 

is
the state estim ate, P (k /k) r e p re se n ts s ta te e r ro r
co v arian ce . Q an d R a re th e d isc re te -tim e p ro cess
n o ise co v a rian ce m atr ix an d m easu rem en t n o ise
co v arian ce m atr ix resp ec tiv e ly.

The parameters of Kalman filter must be obtained
at the beginning. The initial values of Xo 

and P
o 

are
adopted. As the observation vector continues to be
applied to the algorithm, the output of the Kalman
filter can be obtained in real-time. The estimation

value ( / 1)X k k −

 
and the state estimation error

covariance P(k/k-1) of the structure system can
be presented immediately. The formulation of the
adaptive weighted recursive least square algorithm
is:

[ ]( ) ( 1)s sB k H M k I=Φ−+Γ

              
(13)
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[ ] 1( ) ( ) ( ) ( 1)b b s bP k I K k B k P kγ −=−−

      

(16)

( ) ( 1) ( )

( ) ( ) ( 1)

b b b

s b

F k F k K k

Z k B k F k

=−+

 −−

                   

(17)

where ( )Z k

 

denotes the innovation, k
b
(k) is the

correction gain, P
b 

represents the error covariance
of the estimated input vector, and ˆ ( )bF k

 

is the
estimated input vector. The weighting factor γ is
employed to compromise between the upgrade of
tracking capability and the loss of estimation precision.
In this study, the adaptive weighting function is
presented. The detailed derivation of this function
are given by Tuan 15, et al.

The adaptive weighting function is shown below:

1 ( )

( )
( )

( )

Z k

k
Z k

Z k

σ
γ σ σ

 ≤
=  >


                  

(18)

where σ is measurement standard deviation, the
measurement noise covariance, 2 2V n nR R I ×=× . Set

2
VR σ= . In Eqns (13)-(17), the Kalman gain K

a
(k)

is computed by the estimator, and the innovation
covariance S(k) and innovation ( )Z k

 

are produced
from the Kalman filter. By substituting Eqn (18)
in Eqns (15)-(16) for the weighting factor γ, the
adaptive weighted recursive least square estimator
is constructed.
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4 . RESULTS AND DISCUSSION

To verify the practicability and precision of the
presented approach in estimating the unknown blast
load, a two-dimensional example is applied to the
input estimation method combined with the finite-
element scheme. The element mass matrix Me and
the element stiffness matrix Ke of the truss are
shown 11 as: 

2 2

2 2

2

2

2 2

2

6 2 2

2

e
e

c cs c cs

s cs sA l
M

c cs

SYM s

ρ



= 



and

2 2

2 2

2

2

e
e

c cs c cs

s cs sA E
K

l c cs

SYM s

 −−


−−= 



where c = sinθ and s = sinθ. θ is an arbitrary angle
of the truss element oriented with respect to the
horizontal axis. ρ = 7860 kg/m3. Ae = 2.5 x 10-3m2.
The elastic modulus of all members, E = 200 GPa. The
proportional damping coefficient, C = αM + βK,
where α = 0.002 and β = 0.00005.

The initial conditions of the error covariance
are given as p(0/0) = diag[108] for the Kilman filter
and p

b
(0) = 108 for the adaptive weighted recursive

least square estimator. The simulation parameters
are set as follows.

Sampling interval, ∆t = 0.01 s. The sensitivity
matrix M(0) is null. The weighting factor is an
adaptive weighting function.

Example: Decaying exponential blast loads

The blast load produces a rapid release of the
energy when the explosive detonates. In the meantime,
a tremendous blast load is produced and spreads
out along with the vibrational wave. This kind of
blast load has the properties of decaying and transient
existence. This is the reason that the blast load is

often approximated in the form of decaying exponent.
This simulation is adopting the decaying exponent
blast loads with different values of amplitude on
Nodes 7 and 11 of the truss structural system. The
numerical model of the blast load inputs are shown
as:

2000000 exp( 3 )  2 7
7( ) ( )

0          0 2b

t t
F t N

t

×−×≤≤
=  ≤<

 (19)

1000000 exp( 2 )  2 7
11( ) ( )

0          0 2b

t t
F t N

t

×−×≤≤
=  ≤<

(20)

The processing noise covariance, Q = Qw
 x I

2nx2n
.

Set Q
w 

= 103. The measurement noise covariance,
R = R

v 
x I

2nx2n
. Set R

v 
= σ2 = 10-12.

By applying the active reaction which contains
noise to the input estimation algorithm, the estimates
of the decaying exponent blast load inputs, Fb

7(t)
and  F

b
11(t), are produced and plotted in Figs 2

and 3. The result reveals the good estimation ability.
The estimation values converge to actual values
rapidly. Since p(0/0)  and pb

(0)  are initially unknown,
the estimator was initialised with large values of
p(0/0) and p

b
(0), such as 108.

The influences produced using different sampling
time on estimation results are shown in Fig. 4. The

 

Figure 2. Inverse estimation of the blast load input, F
b
7(t),

with Q
W

=103, R
V
=10–12, t=0.01.
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four sets of chosen sampling time, ∆t = 0.1 s, 0.01
s, 0.001 s, and 0.0005 s. According to the figure,

the estimation model has the best precision when
the sampling time ∆t is 0.01s. Figures 4(c) and
4(d) show that the severe fluctuation occurred
from t = 2.5 s to 5.5 s. The estimation results are
slightly better when ∆t =0.001 s and 0.0005 s. In
other words, the improvement is not significant.
Besides, when ∆t is < 0.0005 s, the computing time
of the simulation will be longer.

The case has been compared using different
process noise variances Qw 

=10-3, 10-1, 101 and 103

as in Fig. 5. Figure 5 shows that if the process
noise variance Q

w 
increases, it will influence the

estimation resolution. A larger process noise variance
will affect the capability of tracking the time-varying
load input. Figure 6 shows the estimation results
with the process noise variance fixed (Qw 

= 103),
and different measurement error variances
(R

v 
= σ2 =10-12, 10-13, 10-14 and 10-15) from t = 0 s

Figure 3. Inverse estimation of the blast load input, F
b
1(t),

with Q
W

=103, R
V
=10–12, t=0.01.

     

Figure 4. Inverse estimation of the blast load input, F
b
7(t), with Q

W
=102, R

V
=10–12, t = 0.1, 0.01, 0.001 and 0.0005,  respectively.
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Figure 5. Inverse estimation of the blast load input, F
b
7(t), with R

V
=10–12, t = 0.01, Q

W
=10–3, 10–1, 101 and 103 respectively.

to t = 7s. The result shows that when R
v 

is small,
the filter transient performance will be faster with
noise filtered out. On the contrary, the fluctuation
will become severer when Rv 

increases. The filter
transient performance will be slower with more
influence induced by the noise. In other words,
when the measurement variance Rv 

increases, the
Kalman gain [K

a
(k)] in Eqn (10) will decrease.

The reason is that the corrector uses the new
measurement available at time step  k. The correction
in Eqn (11) will proportional increase, and the K

a
(k)

will decrease, which causes the estimate closer to
predicted value than the new measurement.

The estimation results of the proposed method
are highly agreed with the actual values. The results

Figure 6. Inverse estimation of the blast load input, F
b
7(t), with Q

W
=103, t = 0.01, R

V
=10–12, 10–13, respectively.
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Figure 6. Inverse estimation of the blast load input, F
b
7(t), with Q

W
=103, t = 0.01, R

V
=10–14, 10–15, respectively.

show that a larger measurement error can cause
estimation lag and estimate precision degradation
when estimating the decaying exponent blast load.

Figure 7 shows the comparison between the
constant weighting factor and the adaptive weighting

function in affecting the estimation results with
Q

w 
= 102, R

v 
= 10-12 and  ∆t = 0.01s. A smaller

value of γ, despite its leading to a better tracking
ability, involves the fluctuations due to the unwanted
system noise. On the other hand, a larger value

     

Figure 7. Inverse estimation of the blast load input, F
b
7(t), with Q

W
=102, R

V
=10–12, Dt=0.01, g=0.9, 0.5, 0.1 and adaptive function,

respectively.
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of γ is less sensitive to disturbances, but has relatively
poorer tracking ability. Therefore, the selection of
γ is a compromise between the required tracking
and acceptable noise sensitivity. Simulation results
demonstrate that the adaptive weighted input estimation
inverse methodology has good performance in tracking
the time-varying unknown blast loads in the truss
structural system.

5 . CONCLUSIONS & FUTURE STUDY

In this paper, an adaptive weighted input estimation
inverse methodology is applied to estimate the unknown
time-varying blast loads in a truss structural system.
The FEM is adopted to construct the state equation
of the truss structure, and the Kalman filter is
further combined with the adaptive weighted recursive
least square estimator, which recursively estimates
the unknown blast loads under a situation that the
system involves the measurement and modelling
errors. The algorithm is an efficient online recursive
inverse method to estimate the blast loads. Under
the situation that the sampling interval is shorter,
the blast loads can still be precisely estimated using
this method. The results also indicate that the presented
technique will have higher estimation ability adopting
the precise measurement instrument. The simulation
results show the adaptive capability and high performance
in tracking the unknown blast loads, by adopting
the adaptive weighting factor, γ. Future study will
address the issues of the force input estimation in
the 3-D structure system and the applications in
the optimal control scope.
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