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ABSTRACT

Coverage path planning methodology for an autonomous underwater vehicle to search multiple non-overlapping 
regions has been proposed in the paper. The proposed methodology is based on the genetic algorithm (GA). The 
GA used in the proposed methodology has been tuned for the specific problem, using design of experiment on 
an equivalent travelling salesman problem benchmark instance. Optimality of the generated paths was analysed 
through simulation studies. Results indicated that the proposed methodology generated shorter paths in comparison 
to conventional methods. 
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1. INTRODUCTION
Autonomous underwater vehicles (AUVs) have been 

widely developed in the last few decades1. Their use includes 
persistent intelligence, surveillance, reconnaissance (ISR) 
operations, covert operations in confined and complex areas2, 

including mine counter measure (MCM) missions. AUV carries 
out a given mission in a hazardous undersea environment before 
it runs out of battery, so mission timing is extremely critical to 
mission success1. Conventional deployment of AUVs typically 
involves a human user specifying a series of waypoints3. But, 
with limited battery endurance of the AUV, the path planning 
problem is one of the most critical problems to tackle. It is 
concerned with determining an optimal path from the start to 
destination to complete a given mission4. 

Extensive works on AUV start-to-goal (STG) path 
planning are available in the literature. It involves determining 
a path that incurs the least energy cost or length without hitting 
any obstacles4. Diverse methods like Potential field method5, 
A* algorithm6, genetic algorithm7-8(GA), particle swarm 
optimisation9 (PSO), and neural network10 (NN) have been 
used for STG path planning. Another targeted research area in 
AUV path planning is Task Scheduling. This problem involves 
determining an optimal path to visit several predetermined 
targets, perform some tasks at the target locations, and then 
return home. In literature, travelling salesman problem11 (TSP) 
has been used to tackle such a problem. Task scheduling is 
extensively used in AUV monitoring missions. Coverage 
path planning (CPP) is another widely studied area of AUV 
path planning. CPP involves determining an optimal path to 

exhaustively search a given area. It has wide applications in 
MCM, ISR and search missions. Diverse solutions to CPP12-15 
for AUV are available in the literature. 

AUV search mission requires the covering of single or 
multiple areas. Possible scenarios are:
• Single AUV searching a single area
• Multiple AUVs searching multiple areas
• Multiple AUVs searching a single area 
• Single AUV searching multiple areas

CPP has been extensively studied for the first three 
scenarios. Whereas, the fourth scenario has not received 
any attention. This lack of research could be due to the low 
battery endurance of the AUV. However, in recent years, high 
endurance AUVs are being developed. There are currently 
available AUVs15 with sufficient endurance to exclusively 
search in multiple regions. So, path planning would be needed 
for efficiently conducting such missions. The problem involves 
the determination of an optimal AUV path covering multiple 
spatially distributed regions. The specific problem is not only a 
CPP problem but a combination of Task Scheduling and CPP. 
It consists of finding inter-region (connecting the regions) and 
intra-region (covering each region) optimal path.

A similar problem is observed for unmanned aerial vehicle 
(UAV) termed as the integrated travelling salesman-coverage 
path planning (TSP-CPP) Problem4. Dynamic programming 
(DP) based solutions4 is proposed for the problem, but these 
suffer from the curse of dimensionality. The equivalent 
problem for AUV has enormous size due to low underwater 
sensor ranges. Hence, these solutions are not applicable for 
AUV. The paper proposes a GA based CPP methodology for 
a single AUV multi-region search mission. The GA used in Received : 31 July 2020, Revised : 10 August 2021 
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the methodology is tuned using a design of experiment (DoE) 
on a comparable TSP benchmark instance. The optimality of 
the path generated using the proposed methodology is analysed 
through simulation studies.

2. PROBLEM FORMULATION
Consider a scenario where an AUV is assigned to search 

n non-intersecting rectangular regions of different sizes.  
These regions are indexed as i=1 to n. Say, AUV is launched 
at a point with co-ordinates s. It exhaustively searches all 
the n regions and is retrieved at a point with co-ordinates 
d. These launch and retrieval points are indexed as i=0 and 
n+1, respectively. It is assumed that the AUV conducts the 
mission at a constant depth, so the problem is formulated in 
two dimensions.

Let Pi=(pim): m=1,2,…,ni be the ordered sequence of co-
ordinates of the points on the ith search region. The ith search 
region is fully covered if and only if the AUV moves through 
the entire sequence of points of Pi in order. To find the sequence 
of visit to n search regions, a decision variable xij is used i,j=0, 
1,2,,…,n+1 such that:

xij= 1   if AUV moves from ith region or starting point to jth 
region or retrieval point

xij= 0   Otherwise 
The total distance connecting the n search regions is:
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where d(a, b) is the Euclidean distance from location a to 
location b. pini and pj1 are the last and first point in the ordered 
sequence on ith and jth search region respectively.

The total distance within the n search regions is:
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where pim and pi(m+1) are the consecutive points in the ordered 
sequence on the ith search region.

The distance from the launch point to the first search 
region is:
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where, pi1 is the first point in the ordered sequence on the ith 
search region.

The distance from the last region to the retrieval point is:
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where pini is the last point in the ordered sequence on the on the 
ith search region.

The TSP-CPP problem4 is formulated as finding the values 
of Pi and xij, such that the distance z is minimised.

Min z=D1+D2+D3+D4                      (5)
Subject to the constraints:

1

0,
1, 0 1

n

ij
j i j

x i  to n
+

= ≠

= ∀ = +∑                                             (6)

1 1

0, 0,
0,

n n

ij ji
j i j j i j

x x
+ +

= ≠ = ≠

− =∑ ∑  0 1i  to n∀ = +                         (7)

The solution to the TSP-CPP problem yields the optimal 
path for the mission. The proposed methodology for the solution 
to the formulated problem is explained in the next section. 

3. PROPOSED METHODOLOGY
The proposed methodology consists of two steps:

• Cell decomposition of each search regions to reduce the 
TSP-CPP to TSP

• Determine the optimal path by solving the TSP using 
GA.
The proposed methodology is illustrated in Fig. 1.
Each step of the proposed methodology is explained in 

the following subsections.

Figure 1. Proposed methodology.

3.1 Decomposition of the Search Regions
The regions are decomposed into uniform cells of size 

equals to (or less than) the AUV sensor field of view. So, 
visiting its centroid will ensure coverage of the entire cell. The 
field of view of the AUV sensor is assumed to be r×r square 
meters. Say, each region i has width wi and height hi. The total 
number of cells (ki) in each region and size (S) of each cell 
are:

i i
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On cell decomposition of the search regions, this problem 

is reduced to visiting 
1

n

ik k= ∑  points with additional launch 
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and retrieval points, i.e., TSP with k+2 cities. Solving this TSP 
will yield the optimal path for the AUV. 

However, TSP is classified as a Non-Deterministic 
Polynomial-time (NP) problem. To solve these problems, 
especially with large sizes, Meta-heuristics methods are more 
suitable than conventional optimisation methods16. GA is one 
of the favourite techniques used for solving TSP16. The reduced 
TSP from TSP-CPP is solved using GA in the proposed 
methodology. 

3.2 Solution based on Genetic Algorithm
To solve the TSP, first each of the points in the problem 

is labelled. The centroids of the cells obtained from cell 
decomposition and are labelled as i =2, ..,k+1. The launch 
and retrieval points are labelled as i =1 and k+2 respectively.  
Then path representation is used to encode the problem as it is 
the most natural way to represent a path in a TSP problem18. 
Prior to solving the TSP using GA, it is to be noted that there 
are several operators and parameters in GA. These are listed 
as follows:
• Population initialisation methodology
• Population size (P)
• Crossover operator
• Probability of crossover (Pc)
• Mutation operator
• Probability of  mutation (Pm)
• Fitness function
• Total number of generation (G)

The performance of GA depends on the proper selection 
of these operators and parameters. The main drawback of 
GA is that most research applying GA to solve problems do 
not initially investigate these factors and are usually defined 
in an ad-hoc fashion16. In the proposed methodology, the GA 
used for solving the TSP is tuned by identifying its optimum 
settings. The optimum settings are investigated using a DoE 
on a comparable TSP benchmark instance. The description 
of the DoE and the method of identification of comparable 
TSP benchmark instance are explained in the following 
subsections.

3.2.1 Design of Experiment for Tuning Genetic 
Algorithm 

In literature numerous GA operators have been developed 
for solving the TSP. These operators are shown in Table 1.

All these numerous operators, together with the 
parameters, each of which can be set at numerous levels, leads 
to a combinatorial explosion of GA16. So, a proper DoE is 
needed to analyse these combinations. There are few works 
in the literature that uses DoE for investigating the settings of 
GA16-17,24. The DoE used in the paper is 34-2 fractional factorial 
experimental (FFE) design, embedded within a full Latin 
Square16 (LS).

The FFE design is applied to Initialisation, P/G, Pc, and 
Fitness function. Three levels are considered for each factor 
to model the relationship as a quadratic. This design results in 
nine combinations of treatment, denoted by A, B, C, D, E, F, 
G, H, and I. Each combination is embedded in an LS design. 
The LS design is used to eliminate two nuisance sources of 

variability by systematically blocking in two directions.  
The crossover and mutation operators are two sources of 
variability in the GA solution and these have been used in the 
LS design. The random seed is a potential nuisance factor, so to 
analyse its effects, the experiment is replicated five times with 
different random seeds. The basis of the selection of this DoE 
is its efficiency. The main factor effects of GA can be analyse 
using this DoE by conducting 9×9×5=405 trials. However, 
the full factorial design would need 3×3×3×9×9×3×5=32,805 
trials for the same analysis. (Note: Pm was found to be  
insignificant on initial cause-effect analysis so it is not 
considered as a factor in the experiment. A prescribed value of 
0.5 is used in the study16).

This DoE is used to tune the GA by conducting experiments 
on TSP bench instance. 

Table 1. GA operators 

Crossover operators 
1 One point17 1PX
2 Two points centre17 2PCX
3 Two points end17 2PX
4 Cycling18 CX
5 Enhanced edge recombination19 EERX
6 Edge recombination20 ERX
7 Maximal preservation21 MPX
8 Position17 PBX
9 Partially mapped22 PMX

Mutation  operators 
1 Displacement Mutation17 DM
2 Two operations adjacent swap17 2OAS
3 Two operations random swap17 2ORS
4 Three operations adjacent swap17 3OAS
5 Three operations random swap17 3ORS
6 Centre inverse24 CIM
7 Enhanced two operations random swap24 E2ORS
8 Inversion25 IM
9 Shift operation17 SOM

Population initialisation
1 Randomly initialise the population R1

2 Add one sorted individual in the randomised 
population R2

3 Initialise the population with chromosomes 
where adjacent genes are very close cities26 R3

Fitness functions16

1
pop

i j i
j

f T t= −∑ (10) FF1
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where, fi= fitness value of chromosome i
Ti= the tour distance of the chromosome i
Tw = the worst tour distance in the population.
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3.2.2 Identification of TSP Benchmark Instance 
TSP is one of the most popular combinatorial problems, 

and several benchmark instances of the problem and its 
optimal solutions are available online27. A comparable 
benchmark instance for the path planning problem is identified 
as follows:

The distance (s) to be travelled by an AUV to search a 
rectangular region of size w×h using the rectangular pattern is 
given by4:

( ) ( ) ( ) ( )min ,w hS h r w r w r h r
r r

  = − + − − + −    
    (13)

If the maximum endurance, sensor detection range, 
number of search areas and average speed are assumed to be 
one day, 400 m, 5 and 3 knots respectively. Then by eqn-(13) 
five regions of size 1.5 nM ×1.5 nM (approximately) can be 
searched within the available time.  Cell decomposition of five 
such regions gives 180 cells i.e. the expected size of the TSP 
is 180 cities. So, the TSP benchmark instances with the closest 
number of cities: rat195 and d198 are selected for the study. 
These two TSP benchmark instances are used as follow:
(a) rat195: for the setting of GA parameters and operator 

through DoE .i.e. to tune the GA 
(b) d198: for comparison of the tuned GA with other GA 

available in the literature.
The results and discussion are illustrated in the next 

section.

4. RESULTS AND DISCUSSION
Three experiments are conducted in the study:

• Experiment-A: to tune the GA
• Experiment-B: to compare the performance of the tuned 

GA with other tuned GA available in the literature
• Experiment-C: to compare the proposed methodology 

with the conventional methods.

4.1 Experiment-A
The experiment is conducted on the benchmark instance 

rat195. The DoE and the range of values considered for each 
factor are shown in Table 2.

Analysis of variance (ANOVA) is used to analyse the 
results obtained from five replications of the experiment. The 
hypothesis of interest is H0: all main factor effects=0 against 
the alternative hypothesis H1: At least one main factor effect 
≠0 with α=0.01. The ANOVA table for the experimental result 
is shown in Table 3. 

The p-values from Table 3 indicate that the null hypothesis 
is rejected at 0.01 significance level i.e. all the main factor 
effects except random (Rn) seed are statistically significant. 
This analysis shows that all the main factors (except Rn) need 
to be optimally set to tune the GA.

To identify the optimal setting of the GA, the main effect 
plot of all statistically significant main factors is drawn, shown 
in Fig. 2. Those factor levels that yield the lowest path length 
(marked as red boxes) give the optimal GA settings. Thus, P/G, 
initialisation, Pc, Crossover operator, Mutation operator and 
fitness function are set to 50/1000, R3, 0.9, ERX, SOM and 
FF2 respectively to obtain own tuned GA.

Experiment-B is conducted to compare the performance 
of this own tuned GA with other tuned GA available in the 
literature.

4.2 Experiment-B
In literature, various studies exist where GA is tuned 

to specific problems. Three tuned GA: S1
16, S2

29 and S3
29 are 

selected for comparison with own tuned GA. The reason being: 
these GA are tuned considering all the operators and parameter 
values similar to own tuned GA. The setting of these GA and 
own tuned GA is shown in Table 4.

These four GA are implemented in MatLab R2010. 
Comparison of the results (five replications) on solving the 
TSP benchmark instance d198 are shown in Table 5.

Table 2. DoE for tuning the GA 

Embedded one-ninth fractional design

Combine P/G Ini PC FF

A 100/500 R1 0.1 FF1
B 100/500 R2 0.5 FF2
C 100/500 R3 0.9 FF3
D 50/1000 R1 0.9 FF2
E 50/1000 R2 0.1 FF3
F 50/1000 R3 0.5 FF1
G 500/100 R1 0.5 FF3
H 500/100 R2 0.9 FF1
I 500/100 R3 0.1 FF2

Latin square design
1PX 2PCX PX CX EERX ERX MPX PBX PMX

DM A I H G F E D C D
2OAS B A I H G F E D E
2ORS C B A I H G F E F
3OAS D C B A I H G F G
3ORS E D C B A I H G H
CIM F E D C B A I H I
E2ORS G F E D C B A I A
IM H G F E D C B A B
SOM I H G F E D C B A

Table 3. ANOVA table for GA main factor effects

Source SS Dof MS F P

P/G 381128004.82 2 190564002.41 74467.14 0.00

Ini 3565954453.33 2 1782977226.67 696738.18 0.00

PC 8246964.90 2 4123482.45 1611.34 0.00

Cross 217099573.11 2 108549786.56 42418.25 0.00

Mut 7268438.26 8 908554.78 355.04 0.00

Fit 7070709.09 8 883838.64 345.38 0.00

Rn Seed 1266.52 4 316.63 0.12 0.97

ERROR 962197.07 376 2559.03

Total 4187731607.10 404
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Obtained path lengths (best, average and worst) in Table 
5 shows that own tuned GA gives the shortest path, nearest 
to the optimal value compared to S1, S2 and S3. But the 
computation time of own tuned GA is higher than others. This 
may be due to the additional processing needed for population 
initialisation. Since, the path planning procedure is an offline 
pre-launch activity; the additional computation time will not 
affect its practical use. However, a different problem arises 
and demands additional analysis. There is a possibility that in 
similar computation time, S1, S2 and S3 may generate better 
solutions. So, solutions were generated with S1, S2 and S3 
with 1500 generations (denoted by S1

G, S2
G and S3

G). Table 
5 shows that, despite similar computation times, path length 
obtained using own tuned GA are shorter than S1

G, S2
G and 

S3
G. However, it should be noted that S1 and S2 were tuned 

for scheduling problems. S3 was tuned for TSP with a smaller 
number of cities.  Each of these GA was tuned to problems of 
different nature and complexity.

This own tuned GA is used in the proposed methodology 
and the optimality of the generated path is studied in 
Experiment-C.

4.3 Experiment-C
A MatLab application was developed for painting multi-

region search scenarios. Scenario painting consists of defining 
different launch and retrieval points and search rectangles 
of varying sizes. One hundred scenarios were painted in 
the application, with an average mission time of thirty 
hours. Path planning for each scenario was done using three 
methodologies:
i. Conventional deployment: User-defined sequence of 

visit to the regions and rectangular pattern28 for region 
coverage 

ii. Task Scheduling5: the sequence of visit to the regions 
computed using TSP on the region centroids and 
rectangular pattern28 for region coverage 

iii. Proposed methodology: used for path planning 
Paths generated in a particular scenario are shown in Fig. 3.
In this particular scenario, the path obtained using the 

proposed methodology (66.75 NM) is shorter than paths 
obtained from conventional deployment (84.09 NM) and 

Figure 3. Path obtained by (a) Conventional deployment, (b) 
Task scheduling, (c) Proposed methodology.

Figure 2. The main effects of GA parameters and operators.

Table 4. GA settings used for the comparison study

Settings S1 S2 S3 Own
Initialisation R1 R1 R1 R3

Pc 1 0.3 0.9 0.9
Pm 1 0.18 0.5 0.5

Crossover operator 2PX EERX ERX ERX
Mutation operator SOM 2OAS SOM SOM
Fitness function FF2 FF2 FF2 FF2

Note: P/G value for S1, S2 and S3 was increased to 50/1000 for uniform 
comparison

Table 5. Comparison of tuned GA and others available in the 
literature  

Path length: Optimal value=15780
Best Worst Average

Own 18842 19527 19272
S1 45047 48968 46747
S2 43211 45764 44092
S3 40125 43773 42223
S1

G 42331 46327 44531
S2

G 38551 44538 42833
S3

G 37741 41553 39958
Computation time (Secs)

Best Worst Average
Own 27.04 57.3 38.43

S1 11.52 33.96 20.09
S2 17.99 44.24 29.75
S3 14.67 46.57 29.19
S1

G 23.21 59.54 39.6
S2

G 25.23 61.32 41.21
S3

G 28.46 60.16 43.2
 S1

G, S2
G, S3

G  are S1, S2, S3 with 1500 generations
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Task scheduling (78.19NM). For overall comparison, a 99% 
Confidence Interval (CI) is constructed for the lengths of paths 
generated by the proposed methodology using five replications 
with different random seeds. The CI and the path lengths 
obtained using the methodologies for each scenario are plotted 
in Fig. 4. 

factors like presence of obstacles in the area of operation, and 
underwater current. This could be explored by modelling the 
ocean environment extracting the obstacle data from Electronic 
Navigational Charts and using the past-cast, now-cast or fore-
cast undercurrent data. The proposed methodology would be 
used over the constructed ocean model. Future work will also 
focus on improving the efficiency of the proposed methodology 
by using parallelisation method.
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