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1. INTRODUCTION
There is a steady growth in the entrenchment of global 

navigation satellite systems (GNSS) in current and upcoming 
markets, having penetrated various consumer products, such 
as cell phones, personal navigation devices (PNDs), cameras 
and assimilation with radio-frequency identification (RFID) 
tags, for various applications, including navigation, surveying, 
timing reference and location based services (LBS). While the 
global positioning system (GPS), operated by the US Air Force 
(USAF), is the primarily used GNSS system worldwide, the 
upcoming Galileo and Compass systems, and the imminent 
conversion of global’naya navigatsionnaya sputnikovaya 
sistema (GLONASS) signals from frequency division multiple 
access (FDMA) to code division multiple access (CDMA) look 
set to make multi-satellite GNSS configurations the positioning, 
navigation and timing (PNT) standard for the future.

However, many GNSS users are still not fully aware of the 
vulnerabilities of GNSS systems to various error parameters, 
such as ionospheric and tropospheric delays, satellite clock, 
ephemeris and multipath errors, satellite positioning and 
geometry, and signal interferences and obstructions. These 
error parameters can severely affect the accuracy of GNSS 
readings, and in a number of cases, disrupt GNSS signals1-6.

One particular vulnerability that has received significant 
attention is jamming. Jamming is defined as the broadcasting 
of a strong signal that overrides or obscures the signal being 
jammed7,8. Since GNSS satellites, powered by photocells, are 
approximately 20,200 km above the earth surface, GNSS signals 
that reach the Earth have very low power levels (approximately 
-160 dBm to -130 dBm), rendering them highly susceptible 
to jamming5, 9-12. For example, a simple 1 W battery-powered 

jammer can block the reception of GNSS signals approximately 
within a radius of 35 km from the jammer10. Given the 
various incidents of intentional and unintentional jamming 
of GNSS signals, including military GNSS signals9,13-16, the 
development of various GNSS anti-jamming technologies has 
received significant attention11,17-21. In addition, many current 
GNSS receiver evaluations concentrate on radio frequency 
interference (RFI) operability22-25. 

In order to study the effect of RFI on the GPS L1 coarse 
acquisition (C/A) signal, the Science and Technology Research 
Institute for Defence (STRIDE), Malaysia conducted a 
series of tests specifically aimed at evaluating the minimum 
interference signal power levels required to jam various GPS 
receivers26, 27. However, interference signals with power levels 
below the minimum jamming threshold could still severely 
distort GPS accuracy, rendering it useless for applications 
requiring high precision. To this end, Dinesh28, et al. studied 
the effect of RFI on GPS accuracy. The study was conducted 
via field evaluations using live GPS signals. However, such 
field evaluations are subject to various error parameters which 
are uncontrollable by users.

The ideal GPS receiver evaluation methodology would 
be using a GPS simulator, which can be used to generate 
multi-satellite GPS configurations, transmit GPS signals 
which simulate real world scenarios, and adjust the various 
error parameters. This would allow for the evaluations of GPS 
receiver performance under various repeatable conditions, 
as defined by users. As the evaluations are conducted in 
controlled laboratory environments, they will not be inhibited 
by unwanted signal interferences and obstructions29-32.

In this study, GPS simulation is employed to study the 
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effect of RFI on the accuracy of two handheld GPS receivers; 
Garmin GPSmap 60CSx (evaluated GPS receiver)33 and 
Garmin GPSmap 60CS (reference GPS receiver)34. Both 
GPS receivers employ the GPS L1 C/A signal, which is an 
unencrypted civilian GPS signal widely used by various GPS 
receivers. The signal has a fundamental frequency of 1,575.42 
MHz, and a code structure which modulates the signal over a 2 
MHz bandwidth2, 35, 36.

2. METHODOLOGY
The apparatus used in the study were an Aeroflex GPSG-

1000 GPS simulator37, an Advantest U3751 spectrum analyser38, 
an IFR 2023B signal generator39, a Hyperlog 60180 directional 
antenna40, and a notebook running GPS Diagnostics41 v1.05. 
The study was conducted in the STRIDE semi-anechoic 
chamber42 to avoid external interferences signals and multipath 
errors. The test setup employed is as shown in Fig. 1. Simulated 
GPS signals were generated using the GPS simulator and 
transmitted via the coupler, while interference signals were 
generated using the signal generator and transmitted via the 

S 51° 37’ W 69° 12’ (Rio Gallegos, Argentina).• 
Trimble  Planning44 was used to estimate GPS satellite 

coverage in the test areas for the period of the tests as shown 
in Fig. 2.

Once a location fix was obtained with the GPS receiver, 
the values of horizontal probable error (HPE), vertical probable 
error (VPE) and estimate probable error (EPE) were recorded 
using GPS Diagnostics. The interference signal used was a 
frequency modulated (FM) signal with carrier frequency of 
1,575.42 MHz, bandwidth of 2 MHz and information frequency 
of 5 kHz. Interference signal transmission was started at 
power level of -140 dBm. The power level was increased by 
increments of 3 dBm, and the corresponding values of HPE, 
VPE and EPE were recorded. 

3. RESULTS AND DISCUSSION
Prior to transmission of interference signals, the evaluated 

GPS receiver recorded lower probable error values as compared 
to the reference GPS receiver as shown in Table 1. This occurred 
as the evaluated GPS receiver has higher receiver sensitivity, 
and hence, is able to obtain lower PDOP values. In addition, 
it has lower receiver noise, reducing the value of its user 
equivalent ranging error (UERE), which is the total expected 
magnitude of position errors due to measurement uncertainties 
from the various error components for a particular receiver2, 

35, 36.
For all the readings, the values of VPE are larger than 

HPE, as GPS receivers can only track satellites above the 
horizon, resulting in GPS height solution being less precise 
than the horizontal solution28, 35, 36, 45. The difference between 
VPE and HPE values is significantly larger for the reference 
GPS receiver as compared to the evaluated GPS receiver. The 
reference GPS receiver, having lower receiver sensitivity, has 

directional antenna. The following assumptions 
were made for the tests:
• No ionospheric or troposheric delays
• Zero clock and ephemeris error
• No multipath fading or unintended   
 obstructions 
• No unintended interference signals.

The date of simulation was set at 10 
January 2012. The almanac data for the period 
was downloaded from the US Coast Guard’s 
web site43, and imported into the GPS simulator. 
The GPS signal power level was set at -131dBm, 
which is the highest value permitted by the 
GPS simulator. For each GPS receiver, the 
test procedure was conducted for coordinated 
universal time (UTC) times of 0000, 0300, 
0600, and 0900 for the following coordinates:

N 2° 58’  E 101° 48’ (Kajang, Selangor,  • 
Malaysia)
N 39° 45’  W 105° 00’ (Denver, Colorado, • 
USA)
S 16° 55’  E 145° 46’ (Cairns, Queensland, • 
Australia)

Location UTC
time

Probable error (m)
Evaluate GPS receiver Reference GPS receiver

HPE VPE EPE HPE VPE EPE

Kajang

0000 2.9 3.6 4.6 10.3 16.3 19.2
0300 2.7 4.8 5.5 8.6 16.6 18.7
0600 2.5 3.5 4.4 7.1 13.1 14.9
0900 1.9 4.9 5.3 7.8 22.3 23.6

Denver

0000 3.1 3.2 4.5 5.1 6.3 8.1
0300 2.5 3.5 4.2 3.8 6.2 7.3
0600 3.3 3.4 4.7 5.7 8.3 10.1
0900 3.1 3.2 4.5 8.3 11.4 14.1

Cairns

0000 4.6 13.7 14.5 13.7 19.5 23.8
0300 2.5 3 3.9 4.9 6.1 7.8
0600 8.3 11.6 14.3 13 23.3 26.7
0900 2.9 3.9 4.9 5.3 6.3 8.2

Rio 
Gallegos 

0000 2.4 4 4.7 4.2 6.6 7.8
0300 6.6 9.6 11.7 11.8 14 18.3
0600 3.1 3.2 4.5 4.8 5.5 7.3
0900 2.8 4.6 5.4 5.4 7.3 9.1

Figure 1. The test setup employed.

Table 1. HPE, VPE, and EPE values prior to transmission of interference 
signals



DEF. SCI. J., VOL. 62, NO. 5, SEPTEMBER 2012

340

Figure 2. Position dilution of precision (PDOP) of GPS coverage at the test areas for the period of 
the tests: (a) Kajang,  (b) Denver  (c) Cairns  (d) Rio Gallegos. (Source: Screen captures 
from Trimble Planning)
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much better horizontal component accuracy as compared to the 
vertical component. For the GPS evaluated receiver, with higher 
receiver sensitivity, while the horizontal component accuracy 
is still larger, the difference with the vertical component is 
much smaller. 

As observed in Figs 3-10, with increasing interference 
signal power level, probable error values increase due to 
decreasing carrier-to-noise density (C/N0) levels for GPS 
satellites tracked by the receiver, which is the ratio of received 
GPS signal power level to noise density. Lower C/N0 levels 

result in increased data bit error rate when extracting navigation 
data from GPS signals, and hence, increased carrier and code 
tracking loop jitter. This, in turn, results in more noisy range 
measurements and thus, less precise positioning2, 28, 35, 36, 46. 
At some points, depending on GPS coverage, the horizontal 
component accuracy became lower than the vertical component 
due to significant reduction of C/N0 levels for overhead satellites 
as compared to satellites above the horizon. 

Varying probable error patterns are observed for the each 
of the readings. This is due to the GPS satellite constellation 

Figure 3. Recorded probable error values for the evaluated GPS receiver at Kajang for periods of: 
(a) Best coverage: 0900  (b) Worst coverage: 0300.

Figure 4. Recorded probable error values for the reference GPS receiver at Kajang for periods of: 
(a) Best coverage: 0900  (b) Worst coverage: 0300.

Figure 5. Recorded probable error values for the evaluated GPS receiver at Denver for periods of: 
(a) Best coverage: 0600  (b) Worst coverage: 0300.



DEF. SCI. J., VOL. 62, NO. 5, SEPTEMBER 2012

342

Figure 6. Recorded probable error values for the reference GPS receiver at Denver for periods of: (a) Best 
coverage: 0600  (b) Worst coverage: 0300.

Figure 7. Recorded probable error values for the evaluated GPS receiver at Cairns for periods of: (a) Best 
coverage: 0300  (b) Worst coverage: 0000.

Figure 8. Recorded probable error values for the reference GPS receiver at Cairns for periods of: (a) Best 
coverage: 0300  (b) Worst coverage: 0000.

being dynamic, causing varying GPS satellite geometry over 
location and time, resulting in GPS accuracy being location/
time dependent2,28,35,36, 45. In general, the highest probable error 
values were observed for readings with the highest PDOP 
values (Kajang at 0300, Denver at 0600, Cairns at 0000 and 
Rio Gallegos at 0300), while the lowest probable error values 
were observed for readings with the lowest PDOP values 

(Kajang at 0900, Denver at 0300, Cairns at 0300 and Rio 
Gallegos at 0600).

It was observed that the interference signal power levels 
required to affect the location fixes of the GPS receivers 
(Table 2) are significantly high as compared to the GPS signal 
power level, as the noise-like C/A code structure allows 
for the signal to be received at low levels of interferences. 
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The precision encrypted (P(Y)) code (restricted to the US 
military) has a more robust structure, modulating the L1 and 
L2 signals over 20 MHz bandwidths, and has better resistance 
to interference2,35,36. 

For a number of the readings, it is observed that the 
interference signal power levels required to cause the first 
degradation of accuracy are higher for the reference GPS 
receiver as compared to the evaluated GPS receiver, due to 
the initial probable errors of the reference GPS receiver being 
significantly higher. The probable errors of the evaluated 
GPS receiver increased to values that are significantly 
higher than the reference GPS receiver (Tables 3 and 4). 
This occured as the evaluated GPS receiver requires higher 
interference signal power levels to be jammed as compared 
to the reference GPS receiver. Interference signal power 
levels that are just slightly lower than the evaluated GPS 
receiver’s jamming threshold cause significant degradation 
of accuracy. The tests conducted in this study employed 
GPS signal power level of-131 dBm. Usage of lower GPS 
signal power levels would result in reduced C/N0 levels and 
hence, higher rates of increase of probable error values. 
In addition, the minimum interference signal power levels 
required to jam the GPS receivers would also be lower.

4. CONCLUSIONS
Based on the results of this study, it is found that with 

increasing interference signal power level, probable error 
values GPS receivers increase due to decreasing C/N0 levels for 
GPS satellites tracked by the receivers. Varying probable error 
patterns are observed for readings taken at different locations 
and times. This is due to the GPS satellite constellation being 
dynamic, causing varying GPS satellite geometry over location 
and time, resulting in GPS accuracy being location/time 
dependent. In general, the highest probable error values were 
observed for readings with the highest PDOP values, and vice 
versa.

This study has highlighed the relative ease to conduct 
GNSS jamming.  Low power level interference signals, from 
intentional or unintentional sources, can cause the disruption 
of GNSS signals. Given the increasing dependence on GNSS 
for PNT applications, GNSS disruptions could prove to be 
problematic, if not disastrous. Hence, GNSS vulnerability 
mitigations steps should be given emphasis, including navigation/
positioning/timing backups, making full use of ongoing GNSS 
modernisation programs, increased ability to identify and locate 
GNSS jammers, integrity monitoring and augmentation, and 
anti-jamming technologies.

Figure 9. Recorded probable error values for the evaluated GPS receiver at Rio Gallegos for periods of: (a) 
Best coverage: 0600  (b) Worst coverage: 0300.

Figure 10. Recorded probable error values for the reference GPS receiver at Rio Gallegos for periods of: (a) 
Best coverage: 0600  (b) Worst coverage: 0300.
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Location UTC 
time

Probable error (m)
Evaluated GPS receiver Reference GPS receiver

HPE VPE EPE HPE VPE EPE

Kajang

0000 27.2 30.7 41.0 12.2 17.8 21.6
0300 34.5 44.1 56.0 18.8 41.2 45.3
0600 21.5 30.0 36.9 10.5 24.3 26.5
0900 15.5 18.6 24.2 15.7 21.2 26.4

Denver

0000 14.7 19.7 24.6 7.4 9.3 11.9
0300 18.5 20.0 27.2 7.1 9.4 11.8
0600 16.9 40.3 43.7 8.2 13.1 15.5
0900 14.9 21.7 26.3 8.3 11.4 14.1

Cairns

0000 14.5 33.3 36.3 19.7 25.3 32.1
0300 11.8 18.9 22.3 9.9 14.3 17.4
0600 19.7 18.4 27.0 19.7 24.0 31.0
0900 10.3 24.7 26.8 9.6 14.0 17.0

Rio 
Gallegos

0000 19.8 33.8 39.2 12.2 14.3 18.8
0300 24.4 39.5 46.4 12.2 19.6 23.1
0600 18.4 18.3 26.0 9.3 10.0 13.7
0900 18.4 24.5 30.6 7.7 10.4 12.9

Location UTC time

Interference signal power level (dBm)
Evaluated GPS receiver Reference GPS receiver

First 
degradation of 

accuracy

Location fix 
lost

First degradation 
of accuracy

Location fix 
lost

Kajang

0000 -86 -65 -83 -77
0300 -86 -68 -86 -77
0600 -86 -65 -83 -80
0900 -89 -68 -86 -80

Denver

0000 -89 -68 -83 -77
0300 -86 -65 -80 -77
0600 -92 -71 -80 -77
0900 -86 -68 -83 -77

Cairns

0000 -92 -74 -86 -83
0300 -92 -71 -86 -80
0600 -92 -74 -86 -80
0900 -92 -71 -83 -80

Rio 
Gallegos

0000 -92 -71 -86 -80
0300 -95 -74 -86 -80
0600 -92 -74 -86 -80
0900 -92 -72 -86 -80

Table 2. Interference signal power levels at which the first degradation of accuracy is noticed 
and the location fix is lost

Table 3. Maximum probable errors for the GPS receivers prior to location fix loss
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