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AbstrAct

Motivated by the prospective uses of plastically compressible materials such as, metallic and polymeric foams, 
transformation toughened ceramics, toughened structural polymers etc., the present authors investigate the crack-tip 
radius effect on fatigue crack growth (FCG) of a mode I crack and near-tip stress-strain fields in such plastically 
compressible solids. These plastically compressible materials have been characterised by elastic-viscoplastic 
constitutive equations. Simulations are conducted for plane strain geometry with two different hardness functions: 
one is bilinear hardening and the other one is hardening-softening-hardening. It has been observed that plastic 
compressibility as well as strain softening lead to significant deviation in the amount of crack growth. It has further 
been revealed that the nature of FCG is appreciably affected by initial crack-tip radius. Even though it may look from 
outside that the increase in tip radius will lead to decrease in FCG, but the nature of FCG variation with respect to 
tip radius is found to be a combined effect of tip radius, plastic compressibility and work or strain softening etc. 
As to be expected when the crack-tip radius is low (smallest of the expounded variation of the present study), the 
rate of FCG is found to be maximum for the bilinear hardening material though the nature of FCG variation is 
different in plastically incompressible and compressible solids. In sharp contrast, when the material exhibits work 
or strain softening, the FCG rate is found to be dependent on the instantaneous crack-tip radius. For instance, as a 
quantitative comparison in the present study, after the end of 5th cycle, the normalised crack-tip extension for the 
bilinear material (plastically compressible) corresponding to the smallest tip radius is 2.9 whereas the same for the 
largest tip radius is 1.9. Conversely, for the material (plastically compressible) that exhibits strain softening, the 
corresponding tip extension values are 1.0 and 2.7 for the same smallest and largest radii, respectively.

Keywords: Finite deformation; FCG; Mode I crack; Plastic compressibility; Crack-tip radius; Strain softening

Defence Science Journal, Vol. 71, No. 2, March 2021, pp. 248-255, DOI : 10.14429/dsj.71.15983  
© 2021, DESIDOC

1. INTRoduCTIoN
Geometrical discontinuities such as holes, notches, 

cracks etc are unavoidable in designing engineering 
components and structures. These discontinuities or stress 
risers have been recognised to be the major locations for the 
behaviour estimation of such components and structures. 
Even if one assumes a sharp crack in the beginning of 
numerical computation, the crack-tip will be blunted (with 
highly distorted mesh) after the application of certain amount 
of load1. Therefore, an initially blunted crack with a circular-
arc-tip is mostly considered for numerical simulation. On 
the other hand, it has been reported in literature that the 
deformation of a crack-tip and the field quantities are much 
influenced by the notch tip radius and for example, only a few 
are mentioned here. Experiments on notched polycarbonate 
specimens show that failure at the notch-root is started by 
ductile tearing when the notch-root radius is reasonably large, 
however, when the notch-root radius is relatively small, and 
then failure starts in the form of a crack-like feature at the tip 
of the plastic zone around the notch2-3. Investigations have 

also been made to explore the notch-root radius effect on 
the fracture toughness in ceramic materials and it has been 
reported that the notch-root radius could affect the toughness 
greatly4-6. Rozumek7, et al. examined experimentally the 
notch tip radius effect on FCG for steel and aluminum alloy 
and they observed that the tip radius could influence the 
crack growth much. For a range of notch geometries (very 
sharp to a very blunt notch), Yanase and Endo8 investigated 
the notch effect in FCG for steel. While sizeable amount of 
literatures related to the consequence of crack-tip radius on 
near-tip deformation as well as fields are available for the 
materials mentioned above, but similar studies for plastically 
compressible materials such as compliant foams, plastics, 
transformation toughened ceramics, toughened structural 
polymers etc. are very insufficient even to date.

In recent times, compliant foam-like materials, for 
example, polymeric foams, cellular solid type foams, foams 
of carbon nanotubes have been in use more and more for a 
variety of applications owing to their high energy absorption 
capacity, high strength to weight ratio, highly desired 
electrical, thermal, acoustic as well as radiation-resistant 
properties. Owing to superior blast mitigation and impact Received : 30 May 2020, Revised : 04 January 2021 
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resistance of polymeric foams, they are used much as core 
materials in sandwich structures of aerospace and automobile 
industries. As metallic foam has also the capability to 
absorb high amount of energy before failure, it can play an 
important role in military applications related to armoured 
protection of vehicles or blast mitigation. Vertically aligned 
carbon nanotubes (VACnTs) are found to have prospective 
uses in electromechanical devices, switches and actuators 
where VACnTs are subjected to extensive thermomechanical 
stresses and strains9-11. As for these foams there is volume 
change during the deviatoric loading, they are also known as 
plastically compressible materials. In the theory of classical 
plasticity, the role of hydrostatic pressure is neglected in plastic 
deformation of a material. But, for foams, yielding can occur 
under hydrostatic loading in addition to deviatoric loading and 
hence classical plasticity theory cannot be used to describe 
their behaviour. In numerical computation, the heterogeneous 
metallic foam is commonly replaced by a plastically 
compressible elastic-plastic/ elastic-viscoplastic material12-13. 
however, the successful application of compliant foams 
requires matureness in the fundamental understanding of their 
mechanical properties. Also, the existing computational and 
experimental studies related to the deformation and fracture 
of compliant foams have been limited mostly to compressive 
loading14. Therefore, looking at the potential uses of such 
materials in a variety of applications, it seems, developing 
a predictive framework for the mechanical behaviour of 
such materials under various kinds of loadings would be  
extremely useful.

The FCG is a topic of significant importance in a number 
of engineering applications. Although crack growth in  
plastically compressible materials has been studied to some 
extent, for example, by Singh & Khan15, many fundamentals 
problems are still left unresolved. One key problem is how the 
tip radius size influences the crack-tip plasticity and therefore 
the plastic crack growth under fatigue loading. The main 
objectives of this work are to scrutinize the role of crack-tip 
radius on FCG and near-tip fields for two different plastically 
compressible materials characterised by isotropic and rate 
dependent elastic- viscoplastic constitutive equations. The 
present computations are limited to a mode I crack with plane 
strain deformation, small scale yielding (SSY) and plastic 
normality flow rule.

2. ThEoRETICal FRaMEwoRK
2.1 Material Constitutive Equation

For the constitutive relation, the deformation tensor 
rate, d  is taken to be the sum of isotropic elastic part ed
and a viscoplastic part pd . The elastic part 1 ˆ:ed L−= τ  is 
characterised by modulus of elasticity E along with Poisson’s 
ratio ν  and we assume the elastic strains to be very small. The 
plastic part of the response15 is given as 
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here, 0σ  indicates a reference stress. Also, the effective stress 

eσ  in equation (3) is described as

( )( )22 3 3: :
2 2e p tr σ = τ = τ τ −α τ                              (5)

When the value of α  is  1/3, the present constitutive 
equation becomes that of plastically incompressible Mises 
solid with isotropic hardening. 

2.2 definition of the Problem
numerical results are generated here for two different 

materials, B (bilinear hardening) and E (trilinear hardening-
softening-hardening)14. The hardness function plots of these 
materials are presented in Fig. 1 using equation 4. The values 
of 1h  and 1ε  are same for both the materials and those are 24 
and 0.085, respectively. For material B, 2h  and 3h  are same 
and it is 5.0 while these values are -3.90 and 15.0, respectively 
for material E. The other fixed parameters are 0/ 100E σ = , 

0 1ε =  and m = 0.02. 
A semicircular geometry (as shown in Fig. 2(a)) with 

radius 0 2.0R =  in arbitrary units is considered for simulation. 
In the geometry, a notch of initial radius, 0b  in the same units 
is also there and the centre of the notch is at the origin of the 
reference system, Fig. 2(b).

Figure 1. hardness function plot of materials B and E14.
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2.3 Method of analysis
For generating mesh, we consider quadrilateral 

elements each of which further comprises of four triangular 
elements (with constant strain) arranged in a crossed triangle 
configuration. Where there is finite strain, for reproducing 
localised deformation, such crossed elements with appropriate 
aspect ratio as well as orientation are widely used16. On the 
outside boundary of the geometry, IK field displacements are 
prescribed. 
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where, IK  is the mode I stress intensity factor. The 
analogous value of applied J  i. e.  appJ , during SSY, is given 
by Rice17 as

2 2(1 ) /app IKJ E= − ν
                                                      

(8)

For the present simulation, 
max( ) / 2I refK K =  and 

min( ) / 0I refK K =  with 0 01000refK b= σ . Triangular shape 
waveform has been chosen for all fatigue loading cycles and 
there are total ten load cycles used in the simulation. In this 
finite deformation finite element formulation, for the field 
equations, we use convected coordinate based on lagrangian 
formulation14-15, 18-19. A constant normalised loading rate of 

0 00/IK bσ ε   is found to be approximately 32 with stress 
intensity factor rate 0 00/IK bσ ε  is 1 1MPa ms− . linear increments 
are employed to calculate the deformation history with time 
step size of 0.0002. For the constitutive update, a rate tangent 
modulus method is adopted20. Figure 2 represents the present 
mesh density. This study focuses exclusively on the crack 
growth simulation due to the fact that the crack-tip blunting 
effects are most dominant15.

3. NuMERICal REsulTs
Mesh convergence study was carried out with 24 x 53, 

24 x 63, and 24 x 73 rectangular elements without any special 
element at crack-tip. Plastic strain contours at the tip have 
been compared and the strain contours with respect to 24 x 
63 and 24 x 73 elements are almost identical as compared 
to 24 x 53.  For other mesh densities also, plastic strain 
solutions were generated; apart from the initial coarse mesh, 

the required solutions were quite steady representing too 
small differences at higher mesh densities. Comparing the 
solution accuracy as well as time required for the solution, 
the final mesh density has been fixed at 24 x 63 rectangular 
elements with 1598 nodes. With sufficiently fine mesh at 
the crack-tip, the radial length of a finite element just next 
to the crack-tip is roughly 0 /10b .

The accuracy of the present numerical results can be 
further checked by noting the similarity of the near-tip stress 
distributions for a propagating crack of liu and Drugan21 

under monotonic load. liu and Drugan used linear elastic - 
perfectly plastic material model with E as 200 GPa, ν  as 0.5 
and yield stress as 1.173 GPa. using identical conditions, 
the finite element simulation was run with the present code 

and subsequently the normal and shear stresses are plotted 
in Fig. 3. The maximum xxσ  and yyσ  values (approximately 
1.6 and 2.6, respectively) are almost matching with those of 
liu and Drugan. The pattern of the stress distribution is too 
almost identical. The minute discrepancy may be owing to 
dissimilar finite elements. In this work, we employed crossed 
quadrilateral elements but liu and Drugan considered usual 
quadrilateral elements in their analysis. Therefore, the results 
in Fig. 3 provide us enough confidence to move on with more 
investigations.

Figure 2. Finite element mesh for the analysis; (a) full mesh and (b) 
near-tip mesh.

Figure 3.  distribution of normal and shear stresses ahead of a 
propagating crack (with 2

00.0086( / )Ia K∆ = σ ) in a 
linear elastic - perfectly plastic material.

3.1 Fatigue crack growth
Even though there are various techniques for crack growth 

simulation, like node release scheme, cohesive zone model 
etc., the present crack growth modelling strategy is based on 
crack-tip blunting model15. According to this model, in a single 
complete load cycle, the tip of a crack blunts when the load 
increases from initial to maximum value and the crack-tip re-
sharpens during the period of the unloading. The crack growth 
comes solely by the crack-tip plasticity only. 

The crack growth ( 0/a b∆ ) against time ( 0/t t ) for the 
materials B and E is presented in Figs. 4-5. The normalisation 
time 0t  is defined by, 00 0t /= ε ε , where 00 ( / )E= σε is the 
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strain at yield point and its value is 0.01. The resulting crack 
growth corresponding to each radius may be obtained by joining 
the valley points of the crack growth curve through line/ curve. 
For both the materials the maximum crack growth takes place 
during the first cycle and then it rises slowly. Crack growth is 
very much influenced by plastic compressibility and tip radius. 
Because of plastic compressibility, there is reduction in the 
resulting crack growth for both the materials. In material B for 
minimum tip radius (i. e. 0.001) the resulting crack growth is 
maximum due to the stress concentration effect as would be 
shown later. In Fig. 4(b), the crack growth corresponding to 
radius 0.05 is slightly more as compared to that of radius 0.01 and 
it may be because of the variation in near-tip strain localisation 
pattern for plastically compressible solids as discussed in 
section 3.2. In material E when it is plastically incompressible, 
for the smallest tip radius, the crack growth is again highest and 
also among all the cases Fig. 5(a) shows the greatest amount of 
crack-tip extension due to the material softening. Conversely, 
for material E when 0.28α = , just opposite trend occurs, i. e. 
for the least crack-tip radius, the resulting crack growth is also 
least and crack growth is increased with increase in crack-tip 
radius. This is very unusual and will be cleared from section 
3.2. The rate of crack growth da/dn is maximum during the 

1st cycle and then gradually reducing. Also, because of plastic 
compressibility, da/dn during the first loading cycle is highest 
for the maximum crack-tip radius size and the rate is least for 
the smallest tip radius. The plastic compressibility together 
with material softening diminishes the amount of growth 
significantly. The present FCG for plastically incompressible 
solids shows the similar trend (in a qualitative way) when we 
compare our results with those of Rozumek7, et al., Toribio and 
Kharin22, Borges23, et al.. 

3.2 Effect of Initial Crack-tip Radius size on 
deformation and Near-tip Fields
now, we demonstrate the development of near-tip 

contours of accumulated plastic strain pε  and hydrostatic 
stress ( 0/hσ σ ) together with the crack-tip deformation pattern 
with respect to the number of load cycles for materials B and 
E, Figs. 6 – 13. here, main focus is to correlate the distribution 
of pε and ( 0/hσ σ ) with the crack-tip shape and subsequently 
the FCG. Only plastically compressible solids have been 
considered for illustration. While considering material B,  
Figs. 6 and 7 represent the near-tip distribution of pε and  
( 0/hσ σ ), respectively, corresponding to crack-tip radius of 
0.001 and on the other hand Figs. 8 - 9 represent the similar 

Figure 4. Normalised crack growth versus normalised time near the crack-tip, material B (a) 1/ 3α =  (plastically incompressible) 
and (b) 0.28α = (plastically compressible).

Figure 5.  Normalised crack growth versus normalised time near the crack-tip, material E (a) 1/ 3α = and (b) 0.28α = .

(a)

(a)

(b)

(b)
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distributions corresponding to the tip radius of 0.01. 
The nature of crack-tip blunting is dissimilar for both 
the crack-tip radii. In Fig. 6, as the number of load cycle 
increases the accumulated plastic strain concentrates 
more on the tip (rather than on the crack surface) with 
greater magnitude of the strain and the tip is becoming 
sharper. The near-tip distribution of the equivalent stress 
has also been noted and it is similar to the plastic strain 
distribution and for brevity these are not plotted; the 
corresponding normalised equivalent stress values ( 0/eσ σ ) 

Figure 6. distribution of pε for material B, 0.28α = , and 0 0.001b = ; after (a) 1st cycle, (b) 3rd cycle and (c)10th cycle.

Figure 7. distribution of ( 0/hσ σ ) for material B, 0.28α = , and 0 0.001b = ; after (a) 1st cycle loading phase, (b) 1st cycle, c) 3rd 
cycle loading phase, (d) 3rd cycle, (e) 10th cycle loading phase, and (f) 10th cycle.

Figure 8. distribution of pε for material B, 0.28α = , and 0 0.01b = ; 
after (a) 1st cycle and (b) 10th cycle.

Figure 9. distribution of ( 0/hσ σ ) for material B, 0.28α = , and 0 0.01b = ; after (a) 1st cycle loading phase, (b) 1st cycle, (c) 3rd cycle 
loading phase, (d) 3rd cycle, (e) 10th cycle loading phase, and (f) 10th cycle.
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after 1st, 2nd and the 3rd cycle are 12, 22 and 34, respectively. 
In plastically compressible materials, the hydrostatic stress 
is supposed to play a vital role in localisation of shear band 
and its propagation. The hydrostatic stress distribution for 
both max( )I IK K→  and min( )I IK K→ of 1st, 3rdand 10th cycle 
corresponding to the tip radius 0.001 is plotted in Fig. 7. 
At the end of unloading, the near-tip hydrostatic stress 
is compressive in nature as expected. As the number of 
load cycle increases, the positive and negative maximum 
stress values are concentrated more on the crack-tip like 
the pε  distribution. For the tip radius of 0.01, on the 
other hand, the pε is distributed on the crack surface 
throughout the loading history though there is increase in 
the maximum value of the plastic strain with the number of 
load cycles, Fig. 8. here, initially, the contour of the peak  
( 0/hσ σ ) is slightly away from the tip and with the increase 
in the number of load cycle, the peak stress contour becomes 
attached to the crack surface more with higher compressive 
stress. Further, Figs. 7 and 9 reveal that the compressive 
hydrostatic stress is more for tip radius 0.001 as compared 
to that of corresponding tip radius of 0.01 for unloading 
phase of any cycle and this may be explanation for making 
the crack-tip sharper during the unloading and more FCG 
during the subsequent reloading. 

We next describe the crack-tip contours of pε and (
0/hσ σ ) for material E in Figs. 10 – 13 as the fatigue load 

cycle increases.  In material E, with tip radius of 0.001, in 
the 1st cycle itself, the crack-tip becomes very blunt and 
this shape is continued up to the 10th cycle although the 
maximum plastic strain value increases from 1.5 to 1.9, 
Fig. 10. The deformed crack surface is nearly vertical. The 
shape of the maximum plastic strain contour is slightly 
changed with loading; initially the spread of the contour 
is nearly on the whole crack-tip surface but with increase 
in the load cycle, the maximum plastic strain contour is 
concentrated at the corner of the crack surface. Similarly, 
with increase in the load cycles, the maximum hydrostatic 
stress contour (with more compressive stress magnitude) 
is concentrated in a circular fashion at the corner. here, 
in any cycle, the negative maximum hydrostatic stress 
value is less in comparison with the same of the material 
B because of the material softening, Fig. 11. For the 
crack-tip radius of 0.01, in contrast, the pε  is distributed 
on the tip throughout the loading history and also there is 
increase in the maximum plastic strain value, Fig. 12. Both 
positive and negative peak hydrostatic stress contours are 
attached at the crack-tip though the maximum compressive 
stress value is increasing with load cycle. In contrast to 
the behaviour of material B, as the location of maximum 
negative hydrostatic stress for the crack-tip radius 0.01 is 
at the tip now, the sharpness during the unloading of any 
load cycle is more and this causes the crack growth more. 
Thus, one may conclude that when the initial crack-tip 
radius is lowest, the rate of FCG is found to be highest 
for hardening material; but in sharp disparity, when 
the material (plastically compressible) exhibits strain 
softening, the FCG rate is found to be dependent on the 
instantaneous crack-tip radius.

Figure 10. distribution of pε  for material E, 0.28α = ,and 0 0.001b = ; 
after a) 1st cycle, b) 10th cycle.

Figure 11. distribution of ( 0/hσ σ ) for material E, 0.28α = ,  and 
0 0.001b = ; after (a) 1st cycle loading, (b) 1st cycle, (c) 10th 

cycle loading , and (d) 10th cycle.

Figure 12. distribution of pε for material E, 0.28α = , and 0 0.01b = ; 
after (a) 1st cycle and (b) 10th cycle.

Figure 13. distribution of ( 0/hσ σ ) for material E, 0.28α = , and 
0 0.01b = ; after (a) 1st cycle loading, (b) 1st cycle, (c) 10th 

cycle loading, and (d) 10th cycle.
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4. CoNClusIoNs 
The results of the FCG simulations and near-tip stress- 

strain fields on different crack-tip radii for plastically 
compressible bilinear hardening and trilinear hardening-
softening-hardening materials allow us to draw the following 
concluding remarks:
(i) The crack-tip radius strongly influences the crack-tip 

deformation, fields and the FCG. 
(ii) For the hardening-hardening material, the amount of FCG 

is found to be maximum with smallest crack-tip radius 
though the FCG variation is dissimilar in plastically 
compressible and incompressible solids.

(iii) In presence of strain softening in plastically compressible 
solid, the FCG, however, is dependent on the instantaneous 
crack-tip radius and not on the initial crack-tip radius.

(iv) The plastic compressibility significantly reduces the 
FCG.
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