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AbsTrAcT

This paper particularly focuses on 2D materials and their utilization in military applications. 2D and 
heterostructured 2D materials have great potential for military applications in developing energy storage devices, 
sensors, electronic devices, and weapon systems. Advanced 2D material-based sensors and detectors provide high 
awareness and significant opportunities to attain correct data required for planning, optimization, and decision-making, 
which are the main factors in the command and control processes in the military operations. High capacity sensors 
and detectors or energy storage can be developed not only by using 2D materials such as graphene, hexagonal boron 
nitride (hBN), MoS2, MoSe2, MXenes; but also by combining 2D materials to obtain heterostructures. Phototransistors, 
flexible thin-film transistors, IR detectors, electrodes for batteries, organic photovoltaic cells, and organic light-emitting 
diodes have been being developed from the 2D materials for devices that are used in weapon systems, chemical-
biological warfare sensors, and detection systems. Therefore, the utilization of 2D materials is the key factor and 
the future of advanced sensors, weapon systems, and energy storage devices for military applications.
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1. INTrODUcTION
Materials have always been fundamental to engineering 

in constructing and developing applications1. Therefore, 
developing new materials is an important research area for 
all fields of science2,3. Material researches are shaped into the 
pertinent application field in which they are targeted or needed. 
Materials used in the air, land, or sea platforms of the military 
are produced by pure, alloy, or composite forms of metals 
and non-metallic substances to enhance military capabilities4. 
The durability of the devices or systems, especially under 
challenging conditions, is directly related to materials and their 
appropriate utilization. Durability and effective life-cycle of 
the weapon systems, military vehicles, and electronic devices 
highly depends on the strength and development level of the 
materials in the challenging operating conditions5. Advanced 
materials are the source of new technologies that any army 
requires for improved situational awareness, command-and-
control, communication, and sensing to achieve success in the 
operation field6. 

In military operations, systems consisted of advanced 
materials have a crucial role in the success of the operation 
and military organization from tactical to strategic level7. 
For example, some advanced materials are used to reflect or 
absorb radar emissions and infrared waves, providing stealth 
or deception for detection and tracking systems8,9. Besides, 

a variety of materials ranging from nano to macro scale are 
developed for sensor technologies such as detectors, and 
electronic card components like chips, microprocessors, and 
diodes10,11. Specifically, sensors provide the required data to 
evaluate or optimize the required decision making in military 
operations12,13. Moreover, advanced electronic devices such 
as processors or nano/microchips are essential to high-speed 
data and image processing, computing, and networking, 
especially to process and optimize big data. The performance 
of the processors or nano/microchips can be upgraded or novel 
variants can be developed by using advanced materials. These 
materials range from nanoscale like 2D materials in one-atom-
thickness to macro scales14. 2D materials have been one of the 
most popular research fields of advanced materials over the 
past decade and the well-known 2D materials are graphene, 
MoS2, hBN, WS2, WSe2. They can also be combined to create 
new materials with enhanced thermal, electronic, mechanical, 
or optoelectronic properties that are named heterostructures15. 
MXenes are other kinds of 2D materials with higher saturable 
absorption (SA) than the other 2D materials. Having higher SA 
(up to 50%) provides increased modulation depth for optical 
isolator applications16. This paper mainly focuses on advanced 
materials, including 2D materials and their utilization in 
military applications. 2D materials are the future of advanced 
military systems and 2D material researches are essential to 
developing novel, long-ranged/high capacity and advanced 
sensors, weapon systems, and energy storage devices for 
military applications. 



ÖZkan, et al.: TwO DIMEnSIOnal MaTERIalS FOR MIlITaRy applICaTIOnS

673

2. bAcKGrOUND
Owing to their superior electrical, chemical, optical, 

thermal, structural, and mechanical properties, two-dimensional 
(2D) materials have been widely studied in the literature for 
several engineering applications17 as shown in Fig. 1. The 
above-stated properties can be exemplified as follows:
(i) Electrical conductivity: Some 2D materials have high 

electron carrier capability like a mechanically exfoliated 
single-layer graphene that has a carrier mobility of 200000 
cm2/(V.s)18. 

(ii) Thermal conductivity: The high thermal conductivity 
property of the 2D materials is the key factor to 
develop high performance and efficient energy storage,  
nanoelectronics, and optoelectronics devices19. Each 2D 
material has different lattice thermal conductivity, for 
example, the thermal conductivity of single-layer MoS2 is 
reported to be 84 w/m.k whereas single-layer graphene 
can present the ultimate thermal conductivity of 4100 w/m.
k20. This is originated from not only electrons but also 
phonons that account for the total thermal conductivity21.

(iii) Optical properties: Within the 2D materials family, 
graphene has good optical transparency higher than 90% 
therefore, it can be used to develop new detector and 
sensor technologies22.

(iv) Mechanical properties: 2D materials have high stiffness 
and strength properties with approximately one atomic 
thickness, as well as bending flexibility. Single-layer 
graphene in one atomic thickness has a hundred times 
higher strength than steel with 1 TPa elastic modulus23. 
The van der Waals forces between layers determine the 
mechanical properties such as shear, friction, and fracture 
characteristics in multilayer 2D materials24. 

(v) Chemical properties: Chemically inert 2D materials can 
make chemical absorption on their surface that yields a 
change in the electrical properties of 2D materials, this 
change is used to detect chemical or biological molecules 
information for developing sensor devices25.
2D materials are crystalline materials that consist of a 

single or a few layers of atoms and are used as superconductors 
for electronic devices either pure or combined with other 2D 
materials to improve their desired ability such as thermal 
and electric conductivity26. Furthermore, some of them have 

good mechanical strength that is suitable for friction and 
wear reduction, which eventually increases the corrosion 
resistance in tribological systems27. Therefore, 2D materials 
can be used as solid lubricants for the application in micro and 
nano-electromechanical systems (MEMS/nEMS), which are 
used to develop chemical or biological sensors for detection 
of chemical gasses and biological agents in chemical and 
biological warfare, identification friend or enemy (FOE) 
systems, active surfaces, distributed sensor network, micro-
robotic electronic disabling systems28.

2D materials have been a strong candidate for 
optoelectronic device applications such as photodetectors, 
light-emitting diodes, and photovoltaic devices29. The most 
widely known and the precursor of the 2D materials are 
graphene, molybdenum disulfide (MoS2), and hexagonal boron 
nitride (hBn) with one atom thickness (named single layer) 
or more than two layers (referred to as multi-layer)30. Each of 
them has different properties that can be used in the different 
application fields; for example, graphene is found to be an 
excellent electrical conductor whereas hBN is an insulator with 
a large bandgap. However, contrary to electric conduction, hBN 
has better tribological properties than graphene, especially in 
high temperatures31. MoS2 with different electrical, chemical, 
biological, and mechanical properties than other 2D materials 
are used in electronics, catalysis, biomedical, and energy-
related fields as nanosheets32. Semiconductor MoS2 can 
retrieve the weakness of the graphene band gap and is used 
in optoelectronic applications33. 2D materials have great 
potential for military applications to develop energy storage 
devices, sensors, electronic devices, and armors. 2D materials 
can be used to develop cathodes having high power density, 
long-life and shorter start-up time for thermal batteries which 
are employed for power delivering to electricity supply, 
electronic and activation systems of guided missiles, torpedos, 
and rockets34. To date research interest and trends in material 
science and technology have not only focused on understanding 
the behavior of these materials at the nanoscale, but also under 
extreme conditions at the macro-scale35. 

3. TWO DIMENsIONAL MATErIALs AND 
MILITArY APPLIcATIONs

3.1 Graphene
Graphene has been the most attractive 2D material since 

it was discovered by Geim and novoselov in 200436 and it has 
been the pathfinder of the 2D materials researches. Graphene 
consists of two-dimensional hexagonal lattice carbon atoms 
bonded with sp2 covalent bonds37. With superior properties 
such as chemical inertness, thermal stability, electrical 
conductivity, oxidation resistance, and mechanical strength, 
graphene is the most promising 2D material for all application 
fields38. Graphene can be produced by two main methods that 
involve mechanically breaking layers of stacked graphite to get 
a single layer carbon atom, and synthesizing graphene from 
alternative carbon-containing sources39,40. 

In the first method, graphene is obtained via exfoliation 
of graphite mechanically by using Scotch tape or chemical 
exfoliation of graphite using as a sacrificial electrode in H2SO4-
kOH solutions41. The second method contains chemical vapor Figure 1. Properties of the two-dimensional (2D) materials.
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deposition (CVD) that depends on the thermal decomposition 
of hydrocarbon and further deposition or accumulation on 
a substrate either in monolayer or multilayer as a Carbon 
nanosheet42 as shown in Fig. 2. CVD is the most common 
method for producing large scale graphene on active metals 
such as Cu, Ni, Ru, Pt and Cu either at ambient or vacuum 
pressure. Cu is one of the most commonly used substrates 
for graphene growth on a large scale due to its low diffusion 
barrier to carbon43. In this method, graphene can be grown 
using Ar, H2, and precursor Carbon sources like methane 
and acetylene44 on copper, nickel in a high-temperature tube 
furnace (see Fig. 2(a)) at approximately 1000 °C by breaking 
the C-H bonds to form a layer consisted of C-C atoms. This 
layer is then transferred onto any desired surface by polymethyl 
methacrylate (PMMA)-mediated wet transfer method45.

Single-layer graphene that is grown on the Cu sample shows 
no graphitic (002) peak whereas multilayer graphene shows 
the (002) graphitic peak at 26.5° indicating graphitic lattice 
spacing of 0.335 nm. C1s peak at a binding energy of 284.5 eV  
is attributed to typical sp2 hybridized carbon atoms of graphene48. 

Mechanical characteristics of graphene were identified 
by AFM nanoindentation, scratching tests, and wear, friction 
behavior of graphene was evaluated via ball on disk tribometer 
tests. From the tribological aspect, graphene acts as a strong solid 
film with higher than 1 Tpa reported elastic modulus between 
the sliding surfaces that reduces the friction and wear of the 
tribological system49. Meanwhile, graphene nanoparticles have 
been added to the engine oil and tested against base oil in recent 
studies, where significant friction and wear reduction have 
been reported50. However, there hasn’t been any commercial 
tribological application of graphene in the military yet.  
Figure 4 demonstrates nanoscale friction force evaluation by 
atomic force microscopy of mono and multilayer graphene 
on the steel surface. a significant friction force reduction was 
observed for graphene at 50 nn loads.

Due to its higher mechanical strength than steel (tensile 
strength=0.4 Gpa) with 130 Gpa tensile strength, graphene has 
the potential to be a light ballistic armor material51. In the case 
of the application of multi-layer graphene, on-body armors 
will increase the mobility of the soldiers in the operation field. 
On the other hand, recent researches reported that hydrophobic 
graphene increases the corrosion resistance of the surfaces. 
Parasai52, et al. reported that graphene significantly reduces 
the oxidation of the metals and it is the thinnest corrosion 
protective coating.

kousalya5, et al. reported that synthesized graphene on 
the copper surface can be an oxidation and corrosion protective 
coating for refrigeration systems that run in the liquid or liquid-
vapor phase of refrigerant. Graphene has not been a commercial 
corrosion protection application yet due to the difficulty of large 
scale production and transfers to the desired surface. However, 
researches on large scale graphene coating or directly graphene 
growth on metals has still been continuing with different growth 

Figure 3. raman mapping of a larger area monolayer and 
multilayer cVD grown graphene on a steel surface 
(blue area with blue raman spectrum is monolayer 
graphene and red area with raman spectrum shows 
multilayer graphene on steel surface).

Figure 2. (a) cVD set up for graphene growth, (b) Monolayer 
graphene nanosheet image, and (c) multilayer graphene 
nanosheet image.

Molecular beam epitaxy (MBE) is another carbon sourced 
application of graphene growth. In this application, C60 and SiC 
sources are used to obtain the carbon flux molecular beams for 
thermally decomposed graphene growth at 1600 °C46. Graphene 
is mostly characterized by Raman analysis using the 532 nm 
laser wavelength. The typical fingerprint of the graphene is the 
G and 2D peaks at 1570 and 2670 ± 20 cm-1, respectively as 
shown in Fig. 3. The intensity ratio of 2/G DI I identifies the 
layer number of graphene where the ratio increase with layers 
and IG/I2D<1 indicates monolayer graphene, 21 / 2G DI I< <
and 2/ 3G DI I >  show bilayer and multilayer graphene47. 
Fig. 3 shows Raman spectroscopy characterization of a large 
area of mono and multi-layer graphene that is grown by 
CVD and then transferred on to the aISI 316 steel surface 
by wet transfer method using pMMa. In addition to Raman 
spectroscopy characterization, X-ray diffraction, and X-ray 
photon spectroscopy are also used to characterize graphene. 
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methods54. With the high corrosion resistance, graphene can be 
used to protect critical parts of the mechanical or electronic 
systems from the corrosion that are used especially in naval 
operations, e.g. unmanned aerial vehicles (UaV) or air/surface 
radars, aircraft. Due to its superconductivity, graphene can be 
used in electric/electronic applications as computer processors, 
antennas, and solar cells55. On the other hand, quantum 
confinement and edge effects of graphene have been reported 
to cause photoluminescence (pl). Besides, by using quantum 
confinement effects, the fabrication size of quantum dots can 
be controlled to adjust the graphene bandgap and these dots 
have potential applications in a new generation of detection 
and microelectronics devices, biomedicine production56. Its 
superior electrical property with low noise makes graphene 
an excellent sensor candidate that can be used in military 
applications such as pressure and humidity sensors57.

The higher level of electrical conductivity and optical 
transmittance opens a path to graphene use in screens, liquid 
crystal displays, organic photovoltaic cells, and organic 
light-emitting diodes (OlEDs)58. Especially, shatter-resistant 
graphene-made screens and touch panels can be used in military 
applications in hard operating conditions. a very specific 
surface area with high conductivity is the desired characteristic 
to develop electrodes for novel energy storage and batteries. 
Graphene has a very high specific surface area of 2675 m2/g 
compared to metals59.

Graphene is a supercapacitor material with a specific 
surface area of 925 m2g-1, the pore size of mainly 3-15 nm, 
and a specific capacitance of 117 Fg−1 in H2SO4 electrolyte60. 
Therefore, graphene is used as an electrode material for 
lithium-ion batteries enhancing the anode’s conductivity in 
diverse phases of the charge-discharge cycle and capacity61 

of the battery up to 1500 mahg-1. Therefore, 
graphene increases battery storage capacity, 
which means longer battery life for handheld 
radios used by units in the operation field62. 
Graphene was used to produce infrared 
(IR) transparent windows that can be used 
in IR guided missiles. On the other hand, 
owing to higher than 85 % IR transmittance, 
graphene is used as an IR sensor/detector for 
IR cameras or missile detectors as shown in 
Fig. 5 with desired electromagnetic (EM) 
shielding properties63. 

3.2 Hexagonal boron Nitride 
The two-dimensional hexagonal lattice 

boron nitride (2D-hBN) has a similar 
structure as graphene and is named as white 
graphene which is an electrically insulating, 
chemically, and thermally stable ceramic 

material64. The bond length of B-N is 1.44 

A


 in hBN whereas the bond length of C-C 

is 1.45 A


 in graphene as shown in Fig. 665. 
Single-layer h-Bn can be synthesized on 
Pt and Cu foils via ambient/ low-pressure 
CVD by using a precursor-like borazine and 

ammonia-borane at 1000 °C or it can be produced from bulk 
crystalline h-BN exfoliation66. The typical XRD peaks at 2θ = 
26.3, 41.4, 43.5, 54.7, and 75.7 are identified as (002), (100), 
(101), (004), and (110) planes respectively of the hexagonal 
phase of BN (see Fig. 7(a))67. The FT-IR spectrum of hBn 

Figure 6. structure and bond lengths of hbN and graphene.

Figure 5. structure of the Ir seeker of the missile. 

Figure 4. (a) raman analysis of graphene on the steel surface showing monolayer (red 
dot and spectra) graphene and multilayer (blue dot and spectra) graphene, 
(b) friction force measurements of graphene overlayed topography image 
of graphene, (c) friction force profile extraction, (d) friction coefficients 
of extracted profiles.
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shows two typical peaks at 1380 cm-1 and 805 cm-1 described as 
B–N stretching vibration. In the XpS identification, B1s peak 
at a binding energy of 190.2 eV is assigned to B-N bonds of  
hBN68. 

The 2D hBn is characterized by Raman analysis with 
the determination of a typical sharp peak at 1360-1370 cm-1 
wavelength in Raman spectra as shown in Fig. 7(b)69 that arises 
from the E2g phonon70. 

when looking at the mechanical properties of the 2D hBn, 
the tensile strength of the 2D hBn is reported to be 120-165 
Gpa, and young’s modulus was found to be 0.8-1± 0.1 Tpa by 
AFM indentation measurements71. Due to this high mechanical 
strength and lower friction coefficient, it has been used as a 
solid lubricant in tribological systems72 or added into base oil 
as a nano additive in which it reduced wear approximately73 
50 %. The thermal conductivity of the few-layer 2D hBn 
nanosheet was measured to be 100-270 w/m.k, which is a good 
heat spreading material for novel electronic devices74. With 
these findings, it has been reported as a new material candidate 
against SiO2 used in transistors75. Although 2D hBN is an 
insulator material, it can be activated by graphene in fuel cells 
(see Fig. 7(c)) enhancing the cell performance up to 50%76. On 
the other hand, with the high band edge absorption coefficient, 
it can be utilized to develop UV photodetectors as 
shown in Fig. 7(d)77. 

3.3 Molybdenum Disulfide 
The other popular 2D material is molybdenum 

disulfide (MoS2) with unique electrical, 
physicochemical, biological, and mechanical 
properties78. It can be produced by exfoliation of 
geological MoS2 crystals, chemical vapor deposition 
(CVD), metalorganic chemical vapor deposition 
(MOCVD), and pulsed laser deposition (plD) and 
then transferred onto the desired sample79. MoS2 

consists of trigonal prismatic structure 
S-Mo-S bonds (see Fig. 8(a))80 with 
van der Waals interactions and typical 
Raman characterization show 2D MoS2 
peaks between 380-390 and 400-410cm-1 
at Raman spectra81.

2D MoS2 has been used to 
develop ultra-fast field-effect transistors 
(FETs), optical devices, and flexible 
electronic devices82. Besides, the hybrid 
heterostructure MoS2 combined with 
graphene showed a good ability to sense 
gases83. Thus, 2D MoS2 can be used to 
produce low-powered, high-performance 
gas sensors to detect and monitor 
explosive and chemical gases for land 
and marine units, especially, in chemical 
warfare84. The 2D MoS2 has been used 
to develop phototransistors (see Fig. 
8(b), flexible thin-film transistors, and 
electrodes for lithium-ion batteries85. For 
the tribologic applications, single and 
multilayer MoS2 nanosheets were added 

into a base oil and tested with a ball on the disk tribometer. 
It was reported that multilayered or two-dimensional MoS2 
nanosheets can be a commercial nano additive for the paraffin 
oil to improve friction and wear resistance properties86. 
Besides, 2D MoS2 was reported to be a good solid lubricant for 
relatively sliding mechanical components87.

3.4 MXene 2D Materials
2D transition metal carbides, nitrides or carbonitrides 

have been introduced as MXene with a chemical formula of 
1nM YnTx+ , where M is the transition metal (such as Sc, Ti, 

Zr, Hf, V, Nb, Ta, Cr, Mo, Mn ), y is the carbon or nitrogen, T 
is the functional groups such as =O or -OH (n=1-3). They are 
produced by extracting the Y element from three-dimensional 
(3D) MYT phases with acidic chemical reactions88. They 
have great potential to develop photothermal conversion, 
field-effect transistors, topological insulators, optoelectronic 
properties, sensors, and hydrogen evolution reactions89. 
Furthermore, they have better saturable absorption (SA is up 
to 50%) than other 2D materials such as graphene and MoS2 
(Sa is up to 20%), which is used to increase modulation depth 
for optical isolator applications in fiber‐based femtosecond 
lasers. Therefore, they can be used in weapon systems such 

Figure 7. (a) raman spectra of cbN, (b) raman spectra of hbN, (c) Graphene-hbN 
heterostructure fuel cell, and (d) UV-photodetector.

Figure 8. (a) structure of Mos2 and (b) schematic view of the fabricated 
multi-layer Mos2 phototransistor.
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as FlIR cameras, targeting pods, especially 
they could be a solution to overheating of 
the laser power supply of targeting pods that 
cause missiles to fall into ballistic guidance90. 
Moreover, recent studies have been reported 
higher effective young’s modulus of 330 ± 30 
GPa than 2D MoS2, GO, r-GO, however, lower 
than graphene and hBN. This high elasticity 
suggests protective coatings, membranes, and 
nanoresonators for military applications91.

3.5 Heterostructured 2D Materials
Graphene derived from exfoliation of the 

graphite is the flagship of the 2D materials 
researches and has also accelerated researches  
on heterostructure 2D materials which are  
carried out directly stacking individual monolayers of 2D 
materials such as WSe2, MoTe2, WS2-MoS2, WSe2-SnS2, 
hBN-graphene, MoS2-graphene. The combination of these 
2D materials forms heterostructures that enable excellent 
electron transfer. They also have specific properties that 
open new paths to novel researches for military applications 
including transistors, photodetectors, chemical, and biological 
sensors, and nanoelectromechanical systems. For example, 
the combination of graphene and black phosphorus provides 
rich novel light-substance interaction phenomena, like 
photothermoelectric, and various other optoelectronic effects 
which have the great potential to develop new IR detectors 
for military applications92. Development of the flexible gas 
sensor by using MoS2/graphene heterostructure material 
was reported by Cho93, et al. with this sensor, hazardous/
toxic gases can be detected and it has potential usage in 
chemical gas detection systems for military applications. 
Heterostructured 2D materials researches on developing 
energy storage systems have been significant in recent years 
to replace lithium-ion batteries with a new energy storage 
technology that has the ultimate fast charge capacity and 
long effective life94. Graphene-based Na+, K+, Mg2+, and Al3

+ 
electrodes are in the scope of this researches. Graphene-based 
silicene, borophene, phosphorene 2D heterostructures are 
new electrode candidates for future energy storage devices95. 
The development of new energy storage devices can lead 
to an upgrade in the diesel-electric submarine propulsion 
system. Thanks to 2D heterostructure wearable sensing 
systems, flexible/stretchable electronics devices and novel 
sensors (pressure, humidity, etc.) could be developed for 
military applications to be used in infantry units96. The Moire 
patterns (an involvement pattern produced by overlaying 
similarly structured monolayer materials, but slightly rotated 
in any direction) are formed by 2D mono-layer van der Waals 
stacking materials such as MoS2/MoSe2 as shown in Fig. 9. 
These materials with high electron mobility are reported to 
have great potential for the development of nanodevices97. 
Therefore, the production of vertical or lateral heterostructures 
from two-dimensional materials opens a gate to quantum-
engineered transistors which will be the alternative silicon 
technology for sensors, electronic devices, and computers98.

additionally, MXenes/graphene heterostructures have 
been explored for battery cathodes and their positive effects 
on capacity compared to functionalized MXenes have been 
reported99.

4. cONcLUsION
advanced materials are going to be key for the future of 

the state of the art device developments, where 2D materials 
have an important role in this development process. Sensors, 
MEMs, electronic devices that use diodes, chips, transistors; 
and energy storage systems such as batteries and fuel cells will 
be more effective by using 2D materials than conventional 
ones. with the large application field, 2D materials have many 
advanced technological benefits to the military for critical 
applications such as thermal batteries for missile systems. 
Advanced 2D material based sensors and detectors will give 
a significant opportunity to attain correct data that is needed 
for planning, optimization, and decision-making which are 
the main factors in the command and control process in the 
military operations. Development and commercialization of 
advanced 2D materials require models including materials 
and systems. In the material model, the nanostructure is the 
output of the application field. The system model includes 
requirements and environment as inputs where performance, 
costs, safety, reliability, and durability are the outputs. To 
achieve any product based on advanced 2D materials robust 
optimization between these models is needed. Therefore, 
interdisciplinary work must be conducted between the 
fundamental sciences, and respective engineering fields; i.e. 
mechanical, electrical, electronic, and industrial engineers in 
developing advanced 2D materials based systems for military 
applications. 
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