
55

DRLDO: A Novel DRL based De-obfuscation System for Defence Against
Metamorphic Malware

Mohit Sewak*, Sanjay K. Sahay#, and Hemant Rathore#

*Security and Compliance Research, Microsoft, Hyderabad, India
#Department of Computer Science & Information, Goa Campus, BITS Pilani, Goa - 403 726, India

*E-mail: mohit.sewak@microsoft.com

ABSTRACT

In this paper, we propose a novel mechanism to normalise metamorphic and obfuscated malware down at the
opcode level and hence create an advanced metamorphic malware de-obfuscation and defence system. We name
this system as DRLDO, for deep reinforcement learning based de-obfuscator. With the inclusion of the DRLDO
as a sub-component, an existing intrusion detection system could be augmented with defensive capabilities against
‘zero-day’ attack from obfuscated and metamorphic variants of existing malware. This gains importance, not only
because there exists no system till date that use advance DRL to intelligently and automatically normalise obfuscation
down even to the opcode level, but also because the DRLDO system does not mandate any changes to the existing
IDS. The DRLDO system does not even mandate the IDS’ classifier to be retrained with any new dataset containing
obfuscated samples. Hence DRLDO could be easily retrofitted into any existing IDS deployment. We designed,
developed, and conducted experiments on the system to evaluate the same against multiple-simultaneous attacks
from obfuscations generated from malware samples from a standardised dataset that contain multiple generations
of malware. Experimental results prove that DRLDO was able to successfully make the otherwise undetectable
obfuscated variants of the malware detectable by an existing pre-trained malware classifier. The detection probability
was raised well above the cut-off mark to 0.6 for the classifier to detect the obfuscated malware unambiguously.
Further, the de-obfuscated variants generated by DRLDO achieved a very high correlation (of 0.99≈) with the
base malware. This observation validates that the DRLDO system is actually learning to de-obfuscate and not
exploiting a trivial trick.

Keywords: Adversarial artificial intelligence; Deep reinforcement learning; Metamorphic malware; De-
obfuscation

Defence Science Journal, Vol. 71, No. 1, January 2021, pp. 55-65, DOI : 10.14429/dsj.71.15780
© 2021, DESIDOC

1. INTRODUCTION
Metamorphism provides malware an effective mechanism

of evading an Intrusion Detection Systems (IDS). The
different metamorphic variants of a metamorphic malware
are functionally equivalent, but their internal structures or
source codes may differ. Code obfuscation methods like dead-
code insertion are widely used for developing metamorphic
malware1. The problem of de-obfuscation (/normalisation) at
the opcode level, when transformed into a markov decision
process (MDP), leads to a reinforcement learning (RL) task
that involves high cardinality action space. Most of the popular
RL or deep reinforcement learning (DRL)2 agent algorithms
like the Deep Q Networks (DQN)3, or even its enhanced
variants like the Double4 or Dueling Deep Q Networks5 could
not efficiently learn an optimal policy under such constraints6.
These systems also suffer from sample-inefficiency when
applied to complex MDP. Such MDP(s) requires sophisticated
DRL agents to effectively learn the policy and find effective
and sample-efficient solutions to the given MDP. Training such
DRL agents also requires sufficient data to ensure stable and
robust learning. In this paper, we present a novel method for

de-obfuscation of advanced metamorphic, oligomorphic, and
polymorphic malware using DRL. We designed and developed
a working system named DRLDO (deep reinforcement
learning based de-obfuscator). The objective of the DRLDO
system is to train DRL agents that can perform the task
of transforming/normalising/de-obfuscating the obfuscated
malware’s opcode sequence features. Doing so a DRLDO
based system could be fitted inside an IDS before the
malware-classification system. The DRLDO system would de-
obfuscated the incoming candidate file’s features sufficiently so
as the IDS’ classification-system could detect these otherwise
un-detectable feature-vectors correctly (as malicious) upon
de-obfuscation without mandating any re-training or re-
calibration of the IDS. Additionally, it is desirable that the
transformed feature-vectors as generated by the DRLDO are
similar (demonstrate high correlation between feature-vectors)
to that of the original malware’s to ensure that the DRLDO
system is also compatible with IDS incorporating multinomial-
classification-system and other advanced sub-systems that
requires to identify the specific strain of malware for further
processing. We conducted experiments with the developed
system to gauge its effectiveness against multiple-simultaneous
attacks from different obfuscated variants of malware extracted Received : 30 April 2020, Revised : 14 September 2020

Accepted : 06 October 2020, Online published : 01 February 2021

DEF. SCI. J., VOL. 71, NO. 1, JANuARy 2021

56

from a standardised malware dataset7. Experimental results
prove that the DRLDO system could normalise/ transform/
de-obfuscated the obfuscated malware’s feature-vectors such
that these malware could subsequently be correctly detected
by existing IDS (which had failed to detect the metamorphic
instance correctly) without mandating any re-training. Another
significant achievement of the DRLDO system is that the de-
obfuscations produced from it resulted in an opcode frequency
vector which were very similar to that of the original malware
variant’s opcode frequency vector. This observation adds
further credibility to the assertion that the DRLDO system is
actually trying to de-obfuscate the malware’s opcode frequency
vector (of any junk opcode/ instruction insertion) and not just
finding a trivial trick to ensure that IDS start detecting the
metamorphic instances as malicious.

2 RELATED WORK
Recently there has been a lot of interest to improve the

performance of IDS against unseen intrusions especially
in network traffic and botnet attack areas. Most of the
initial efforts in this regard were inspired by the generative
adversarial networks (GAN) as formed by the combination of
two different convolution neural networks (CNNs)8 where the
detection feedback from one network called the ‘Discriminator
CNN’ (denoted as ' ′) is used to train the other CNN
network called the ‘Generator CNN’ (denoted as ' ′). With
the initial inspiration being drawn from the GAN networks of
underlying CNN architecture, some aspects of network traffic
were converted into a similar CNN map on which a GAN
style methodology could be adopted to produce the necessary
‘generative’ perturbation by the ‘Generator CNN’ to create
samples that the ‘Discriminator’ CNN could not identify
correctly. This problem could be formulated as a min-max
contest between ' ′ and ' ′ , where, ' ′ is trying to maximise
the cross-entropy error of detection of samples produced by
' ′ using ' ′ and ' ′ is trying to minimise it attractively. This
could be defined mathematically as the optimisation function
in equation 1:

() () () ()()()min max log log 1p pE x x E z z+ −
 

   (1)

Since this is a differentiable equation, it could be optimised
to train and weight of the ' ′ and ' ′ networks that converges
gradually and then the samples from ' ′ are used for the
intended purpose. To create an undetectable malicious entity
(file or network traffic), the network ' ′ could be replaced by
the corresponding IDS’s classifier’s approximation function.
Such approximation function could be any Deep Learning
(DL) network. Most of these systems work to create generative
data distributions that supposedly mimic an undetectable
malicious entity (file or network traffic). While using such a
system to create malicious traffic/ botnet, the ' ′ network
could be replaced by the corresponding IDS’s classifier’s
associated trained DL network, to learn to create perturbations
in the distribution of existing (malicious) data and creating new
(malicious) data distributions that is unknown to the existing
IDS (' ′ network). Some prominent example of such approach
could be MalGAN9, IDSGAN10, and by usama11, et al..

There are some non-GAN approaches which are based on
differentiable objective functions, these are typically known as
’Gradient attack’ based approaches. An example of a similar
implementation is the fast gradient sign method (FGSM)12.
Additionally, there are some other non-differentiable objective
based methods in the area of reinforcement learning13,14 that
have been explored. These methods are designed with an
underlying assumption that the distribution of the new data
generated from the ' ′ network of these systems is significantly
different form the ones that the IDS (' ′ network) is trained
on. Thus, on retraining the IDS on the data coming from this
new distribution (in combination with their original training
data) can improve the overall IDS system’s response against
an actual new attack for which the real data does not exist.
But as pointed out in9 these methods, especially the ones based
on GANs make re-training of IDS ineffective, and others may
even make the IDS over-fit13 if trained on such generated data
thus reducing their effectiveness. Therefore, it is not sufficient
to just create a system that could generate malware samples
that the IDS could not detect and hope that using these samples
the IDS could be improved substantially in its ability to avert
attacks from unknown intrusion attacks especially those by
the complex obfuscations of existing malware. Also, it is not
optimal to retrain the IDS with hypothetical data distributions
generated with such perturbations, as this increases the risk of
decreasing the effectiveness of the IDS on the actual existing
malware detection. The above observation necessitates that
instead of modifying the training of the existing IDS which
is working well on the original/ un-obfuscated variants of
the malware, the obfuscated variants of the threats need to be
normalised to bring them close to the actual variant that the
IDS was earlier trained upon and hence could probably detect.

3. DRLDO PROCESS FLOW
The process flow for the design of the DRLDO system is

shown in Fig. 1. It has broadly 4 subsystems, namely:
•	 The obfuscated opcode repository and associated

obfuscation generation system like the ADRLMMG (the
detailed coverage of this system is out of scope of this
paper)

•	 A pre-trained opcode frequency feature-vector generator
and classification system (sub-components of existing
IDS)

•	 A custom malware de-obfuscation training reinforcement
learning environment and

•	 A DRL agent compatible with both the custom environment
and also the type of reinforcement learning problem at
hand (conceptually and mathematically).
In the Fig. 1 shown, the DRL agent interacts with the

environment to train against episodic tasks. These tasks
comprise of altering the presented opcode frequency vector.
The opcode frequency vector is altered to achieve a net
reduction of some of the selected opcode instructions, thus
mimicking actions opposite to that in popular obfuscation
techniques (i.e., of adding junk instructions). In each training
step of every training episode, the environment receives and
instruction from the DRL agent, and then transforms the
opcode frequency structure as per the received instruction.

SEWAK, et al.: DRLDO: A NOVEL DRL bASED DE-ObFuSCATION SySTEM FOR DEFENCE AGAINST METAMORPHIC MALWARE

57

The environment then uses the attached IDS to obtain the
probability of the thus transformed opcode frequency vector to
have come from a malicious file (maliciousP). A decent increment
in maliciousP from the initial state malicious detection probability
(i.e., 0.5maliciousP <) of opcode frequency to a level where the
classifier could subsequently detect the file instance as malicious
(i.e. 0.5maliciousP <). The DRL agents train over multiple such
training episodes to update and refine an action policy that
could be applied on any obfuscated malware strain to de-
obfuscate it. The trained DRL agent is used to create and store
opcode frequency vectors representing abstractions that could
be identified by existing detection systems as malware even
when they could not identify the obfuscated variants of these
malware in a situation typically posed under a zero-day attack.
So, this system essentially works to negate a zero-day attack
otherwise possible by using undetectable obfuscated instances
of different malware variants. Multiple such DRL agents could
be created and trained with varying degree of dissimilarity
from other DRL agents trained on the same environment and
subsequently producing probable de-obfuscation variants of the
same malware that are dissimilar from each other at different
levels. Such dissimilarities could range from the extremes of
changing the underlying algorithm of the complete agent to

just changing the random number seed of various instances
of the same DRL agent. Working at the opcode level the
process design is universal and could be implemented on
malware of all popular systems ranging from Android,
Windows, clients to Linux and Windows based servers.
In production, this system could be implemented on any
incoming file to these systems without having a prior
assumption of the benign/ malicious nature of the file or its
obfuscation status. Coupled with both the original opcode
frequency vector and the probable de-obfuscated opcode
frequency, either the existing classification system’s
detection potential could be enhanced, or more powerful
single stage or hierarchical detection system be made.

3.1 Training Data and IDS used
The obfuscated (metamorphic) opcode frequency

feature-vector of existing malware were produced by
the ADRLMMG system which is an Adversarial Deep
Reinforcement Learning based Metamorphic Malware
Generator. The ADRLMMG and the DRLDO systems
are isolated systems and they do not share weights and
are unaware of the other’s existence. The ADRLMMG
system creates obfuscations of existing identified malware
and stores the resultant opcode frequency vector of these
obfuscations as the training data for any downstream de-
obfuscation system like the DRLDO. The ADRLMMG
system also maintains a dictionary of the original malware’s
identity and its opcode frequency feature-vector in a separate
metadata for performance assessment of the downstream
de-obfuscation system. The ADRLMMG system aims
to mimics obfuscation techniques like junk instructions/
code insertion and also to preserves the functionality of the
original malware and hence it uses strictly opcode additive
action policy. Obfuscations of multiple malware and benign
files were produced. The obfuscations of the malware that

could not be identified by the existing IDS satisfactorily were
retained and the remaining discarded. The original opcode
frequency vector of each file was preserved for comparison
with that of the final obfuscated variant as produced by the
ADRLMMG and the resultant de-obfuscated version of each
of the obfuscated variant as produced by the DRLDO systems.
We choose the IDS system (including the pre-processing,
feature selection and transformation and the classification sub-
systems) as developed by15-17 to augment it with Zero-Day-
Defense18 capabilities against metamorphic malware attack
using the DRLDO system. The selected IDS had claimed
to provide the best performance (with a combination of the
highest accuracy accompanied with a very low false positive
rates) over a standardised malware data7 with mixed types and
generation of malware. For the obfuscated malware samples,
we used the same data on which the given IDS was trained
(and claimed the associated performance). Since the chosen
IDS is trained on the malware in this dataset and also claims
to have performed well detecting these malware, we can safely
assume all the malware in this dataset as ‘existing’ malware
that are ‘known’ to the chosen IDS. We use the ADRLMMG
system to produce multiple obfuscated variants of this data.
Multiple obfuscated variants of each ‘existing’ malware could

Figure 1. DRL based de-obfuscation system - process flow.

DEF. SCI. J., VOL. 71, NO. 1, JANuARy 2021

58

increase it or to decrease it, and second is the amount by which
the increment/ decrease should occur. In this approach we
have 2observationN × actions, the first N actions corresponding
to an increase in the specific opcode frequency by a constant

incrementC and the next N actions represent an act of decreasing
the corresponding opcode frequency by a fixed amount τ ;
where, incrementC , decrementC ∈ . In our implementation
we have kept incrementC = decrementC =1. Also, since from the
perspective of obfuscation, the easiest way of creating multiple
obfuscation often increases the opcode frequency by adding
junk code, instructions, indirect routing etc.22. Therefore, to
mimic this effect we allow the agent’s action only a net increase
in individual opcode frequency from their initial level (as in
original malware). An action with a net effect of decreasing an
individual opcode below its original level results in returning
the same state as before the action and a commensurate reward.
We keep additional action constraints for our agent to ensure
that its behaviour mimics the de-obfuscation action while
preserving the original functionality. Since obfuscation is
mostly created by techniques which generally increases the
opcode frequencies in the resulting file, therefore a good de-
obfuscation system should ideally reverse this effect. So, our
agent could only take actions resulting in a net reduction of
any specific opcode’s frequency from its original level in the
obfuscated file. Also, since a negative opcode frequency is not
possible, so the least it could be decreased is to zero.

4.3 The Formulation of ‘Reward’ Function
What the agent learns and how quickly it converges is

dependent upon the reward function (i.e., the reward/ penalty
criteria and magnitude) to a considerable degree. Our primary
objective is that the agent could alter the opcode frequency
enough to substantially enhance the IDS’s capability to detect
it as malicious.

Algorithm 1 Custom RL Environment Algorithm.
Require: RESET instructions from agent
Ensure: IDS, MalwareDateRepository is attached
index ← random [1, MalwareDataRepository N]
STATE ← IDSFeatureGenerator(index)
REWARD ← 0
IsCOMPLETE ← False
return ← (STATE, REWARD, IsCOMPLETE)
while () ()Turns MaxTurns IsComplete≤ ∧ ¬
do
RESPONSE ← Agent (ACTION)
NEW STATE ← STATE(ACTION)

maliciousP ← IDSDetector(NEWSTATE)
if malicious MalThresholdP P≥ then
REWARD ← REWARD + Probability VictoryR Reward+
IsCOMPLETE ← True
else
REWARD ← REWARD + Probability TurnR Penalty−
N ← n
end if
return ← (STATE, REWARD, IsCOMPLETE)
end while

be generated. Each obfuscated variant thus produced was
screened against the chosen IDS to ensure that it is incorrectly
identifying the obfuscations of malware as non-malicious
(0.5non maliciousP − <) before using these obfuscated samples in
our experiments with the DRLDO system and obtaining the
corresponding results.

3.2 Preserving existing IDS and File Functionality
The Fig. 2 shows the existing workflow of any IDS

system that could cater to both offline and online detection
requirements either in batch or in real-time mode. Additionally,
there are additional components marked that are required for
the enablement of the DRLDO system to augment existing IDS
with metamorphic malware detection capabilities. As could be
found in this process, the existing components like the existing
IDS setup, its related training workflows, the associated training
data etc. does not require any change. The IDS do not even
need to be retrained to accommodate any obfuscation data. The
only change that is required is just having file’s feature-vector
(as extracted by the IDS’s feature generator) transformed by
the DRLDO system before sending it to the IDS’s classifier
for detection. Besides this single change in the deployment
architecture, the entire deployment setup remains the same,
thus preserving the functionality and also the training, scoring
and the deployment setups of the existing IDS. Similarly, the
associated treatment and the functionality of the files passing
through the system is also preserved.

4 CUSTOM REINFORCEMENT LEARNING
ENVIRONMENT
The environment serves a major role in reinforcement

learning. As illustrated in algorithm 1 its role is to present a
current state to the agent to act upon, and then subsequently
give it an appropriate reward and the corresponding next state
to the agent. The current_state, action, reward, next_state
cycle continues until a terminal state is reached (for an episodic
task) or until a predestined number of steps are completed. On

reaching such scenario, the environment resets, itself and re-
instantiates any default state and other necessary variables.

4.1 The Structure of ‘State’
The state in our experiment is comprised of a vector of

whole numbers (op codeS W −∈) corresponding to each of the
unique opcode frequency for a given opcode in a file. We use
the same unique opcode set as used by Sewak et. al.16. We also
use the same IDS which had produced the best performance
and as used in their work. Their system claimed an accuracy of
99.21% with a False Positive Rate of 0.19% on the Malicia
dataset7 which is to our information the best performance
achieved on this standardised malware dataset till date. The
opcodes generated are also from the Malicia dataset. We
obfuscate the opcode frequency vector using another DRL
based Obfuscation system and score the resulting opcode
frequency vector as generated from this system with the earlier
described classification system. The obfuscated variants
that are detected by the detection system as benign with a
probability 0.5benignP > are used as training dataset for our
de-obfuscation system. This dataset along with the collected
obfuscated opcode frequency vector from the work resulted
in a set of 1612 unique opcodes. Correspondingly we have
a state comprising of 1612 dimension ‘Action’ Space with a
permissible range of [] 16120,10000 Z∈ .

4.2 The Design of ‘Action’
The reinforcement learning tasks (and hence the

environments/ agents) could be broadly classified based on
the type of action as discrete action and continuous action RL
tasks. The high computational complexity of the continuous
(and high cardinality) action space mandates use of specialised
class of agents powered by special mathematical theorems19

that could empower both the non-deep19 and deep learning
variants6,20,21 of reinforcement learning agents. For each of
the unique opcode in the state there are two decision/ action
criteria. First is the direction of change in each, namely, to

Figure 2: Preserving Functionality: DRLDO mandates no changes in the IDS not even re-training.

SEWAK, et al.: DRLDO: A NOVEL DRL bASED DE-ObFuSCATION SySTEM FOR DEFENCE AGAINST METAMORPHIC MALWARE

59

increase it or to decrease it, and second is the amount by which
the increment/ decrease should occur. In this approach we
have 2observationN × actions, the first N actions corresponding
to an increase in the specific opcode frequency by a constant

incrementC and the next N actions represent an act of decreasing
the corresponding opcode frequency by a fixed amount τ ;
where, incrementC , decrementC ∈ . In our implementation
we have kept incrementC = decrementC =1. Also, since from the
perspective of obfuscation, the easiest way of creating multiple
obfuscation often increases the opcode frequency by adding
junk code, instructions, indirect routing etc.22. Therefore, to
mimic this effect we allow the agent’s action only a net increase
in individual opcode frequency from their initial level (as in
original malware). An action with a net effect of decreasing an
individual opcode below its original level results in returning
the same state as before the action and a commensurate reward.
We keep additional action constraints for our agent to ensure
that its behaviour mimics the de-obfuscation action while
preserving the original functionality. Since obfuscation is
mostly created by techniques which generally increases the
opcode frequencies in the resulting file, therefore a good de-
obfuscation system should ideally reverse this effect. So, our
agent could only take actions resulting in a net reduction of
any specific opcode’s frequency from its original level in the
obfuscated file. Also, since a negative opcode frequency is not
possible, so the least it could be decreased is to zero.

4.3 The Formulation of ‘Reward’ Function
What the agent learns and how quickly it converges is

dependent upon the reward function (i.e., the reward/ penalty
criteria and magnitude) to a considerable degree. Our primary
objective is that the agent could alter the opcode frequency
enough to substantially enhance the IDS’s capability to detect
it as malicious.

Algorithm 1 Custom RL Environment Algorithm.
Require: RESET instructions from agent
Ensure: IDS, MalwareDateRepository is attached
index ← random [1, MalwareDataRepository N]
STATE ← IDSFeatureGenerator(index)
REWARD ← 0
IsCOMPLETE ← False
return ← (STATE, REWARD, IsCOMPLETE)
while () ()Turns MaxTurns IsComplete≤ ∧ ¬
do
RESPONSE ← Agent (ACTION)
NEW STATE ← STATE(ACTION)

maliciousP ← IDSDetector(NEWSTATE)
if malicious MalThresholdP P≥ then
REWARD ← REWARD + Probability VictoryR Reward+
IsCOMPLETE ← True
else
REWARD ← REWARD + Probability TurnR Penalty−
N ← n
end if
return ← (STATE, REWARD, IsCOMPLETE)
end while

Since the benign probability of the samples that
we selected are 0.5≥ (i.e. _ _ 0.5malicious min requiredP =), and
since the maximum possible malicious probability is 1.0
(i.e. _ max_ 1.0malicious attainableP =), we take a mid-point of these
two extremes (i.e. 0.75maliciousP =) as in equation 2 as the
preliminary target for the system. This could be stated as (given

1612opcode W∈ , and () ()P M P Mal|IDS=):

() ()

2
M Certain M Ambiguous

target

P P
P = =+

=

()1 1.0 0.5 0.75
2targetP = + =

{ }()file targetP opcode file maliciousfiles P⊆ >

or { }() 0.75P opcodefile maliciousfiles⊆ >

(2)

We penalise any resulting opcode frequency vector that
has predicted probability of malicious 0.75≤ and reward the
ones with probability of malicious 0.75≥ proportionally. So,
in each step the instantaneous reward given to the agent could
be stated as equation 3 (given):

 { }() maliciousP op codefile maliciousfiles P− ⊆ =

reward = 0.75maliciousP − (3)
But this reward mechanism has a drawback that it

encourages long trajectories resulting in positive rewards
instead of quickly reaching a very high benignP . Since the
‘discounting-factor’ (γ) is only in the agent’s control and not
in environment’s control, so the reward mechanism cannot
take the help of lowering the discounting-factor enough so that
quick high instantaneous rewards become more profitable than
lower cumulative discounted-rewards. So, to overcome this
effect, we have another (instantaneous) reward given by the
environment to the agent (in addition to the one stated above),
which is accrued when the agent to manage the alter the opcode
frequency enough such that the file is almost unambiguously
classified as malicious. This reward is high enough to easily
surpass even multiple cumulative (even discounting given γ
< 1) rewards and is similar to the malicious probability for
original malware variants as detected by the system. This
occurs when the benign thresholdP P≥ ; where, thresholdP is a high
threshold probability of malicious (say 0.99). Therefore, now
the reward can be given as a step function as Eqn (4) below.

0.75,

malicious malicious

threshold

goal o

P f P
rewar

therwise
d P

R

 −


= ≤



 (4)

where, goalR could either be a fixed constant or one dependent
upon the maximum steps allowed in the episode. An episode
starts with a reset of the environment. During the ‘reset’, the
environment fetches a random malware file’s opcode. The episode
ends when either the goal is achieved (malicious thresholdP P>) or the
maximum permissible steps for the episode is reached. Here
we set goalR = _ _ _ _ _Max Permissible Steps in an Episode
so that we could balance the requirements for setups with
large episodes. This allows for slow but steady convergence
of complex agents with too many trainable parameters. In
such setups the _ _max permissible step is adaptively set-in

DEF. SCI. J., VOL. 71, NO. 1, JANuARy 2021

60

relation with the goalR , such that it is always greater than any
cumulative reward over even a long episode.

5. DRL AGENT(S) USED
Given the constraints of the design of the reinforcement

learning as covered in section 4.2, we have a discrete action task
with a very high action space (and also state space) cardinality.
Some of the most popular DRL agents for discrete action
agents like the ‘Deep Q Networks’ (DQN)23,3, ‘Double DQN’
(DDQN)4, and the ‘Dueling DQN’ (DDQN)5. These algorithms
though could manage large state-space but perform poorly for
large/ continuous action space. Deterministic Policy Gradient19

based deep reinforcement learning approaches like the ‘Deep
Deterministic Policy Gradient’ (DDPG)6 claimed to be deliver
the best-in-class performance on large, even continuous
action-space based reinforcement learning tasks. The problem
with such approaches is that their line-search based policy
gradient update (as used during optimisation) either proves
too big for updates involving non-linear trajectory. This results
in the updates overshooting the target or slower convergence.
Since in the deep reinforcement paradigm non-linear gradients
are quite common so algorithms based upon line-search
based gradient update are not very robust and cannot provide
guarantees of near monotonic policy improvements. ‘Trust
Region Policy Optimisation’ (TRPO)20 algorithm which is
based on ‘trust-region’ based policy updates using ‘Minorise-
Maximisation’ (MM) (second order) gradient update, claims to
solve this problem and provide guarantee for near monotonic
general (stochastic) policy improvement even for non-linear
policies like that approximated by (deep) neural networks.
Additionally, TRPO uses a mechanism called ‘Importance
Sampling’ to compute the expectancy of the policy from
previous trajectories instead of only the current trajectory to
stabilise the policy gradient. This method has an underlying
assumption that the previous trajectory’s distribution (Q(x))
is not very different from the current trajectory’s distribution
(P(x)). The policy gradient for a Stochastic Policy Gradient24

method and associated algorithms like Actor Critic25 is given
as Eqn (5):

() () () ()logJ E r
θθ θ θ θτ∼π τ∇ = ∇ π τ τ   (5)

In equation 5, the trajectory τ over which the samples for
computing expectancy is gathered (to update the gradient ∇
of the policy-value-function J) is the same (current) trajectory
of the policy as used in the policy π (parameterised over θ).
But in the case of TRPO using importance sampling and the
past trajectory for sampling, this policy-value-function update
looks like Eqn (6) below:

() () ()'
1 ' 1

' ' '
' ' 1

logT

t

T

t t

tJ E r
θ

θ
θ θ θ θτ∼π τ == =

θ

 π
∇ = ∇ π

 
  π   
∑ ∑∏ (6)

To avoid too large changes in gradient, a penalty needs
to be added to equation 6 to make the optimisation more
monotonic. With this penalty combined with the use of the
advantage, the optimisation function is given as Eqn (7):

()
() () ()

| ˆˆmax . | , . |
|

t t
t t old t t

old t t

a s
E A KL s s

a s
θ

θ θθ
θ

 π
−β π π   π  

 (7)

The problem with the β based penalty as in equation 7 is
that it is difficult to choose a single value of β that aligns well
to different types of problems, or even for a single problem as
the learning progress. Therefore, to resolve this issue, TRPO
instead of using β based penalty, uses KL based constraints as
shown in Eqn (8), thus requiring a second order optimisation
solution.

()
()

| ˆˆmax
|

t t
t t

old t t

a s
E A

a s
θ

θ
θ

 π
 
π  

 (8)

Subject to: () ()ˆ . | , . |t old t tE KL s sθ θ π π ≤ δ   

In TRPO, the second order gradient update computation is
complicated and also very expensive, and hence for real size-
able tasks it is seldom use. The ‘proximal policy optimisation’
(PPO)21 algorithm instead of using a constrained form of
solution (as shown in Eqn (8)), clips the surrogate objective to
ensure that the updates are not unconstrained. This is as given
in Eqn (9).

() ()
() ()

| ˆ ˆˆ ˆ
|

t tCPI
t t t t t

old t t

a s
L E A E r A

a s
θ

θ

 π  θ = = θ   π  
 (9)

The original surrogate objective CPIL for TRPO as
discussed in equation 9. This in the ‘clipped’ form could be
reformulated as equation 10; where,  is a hyper-parameter.
The default value of  is set to 0.2.

()CLIPL θ =

() ()()()ˆ ˆˆ min , ,1 ,1t t t t tE r A clip r A θ θ − ∫ + ∫  (10)

Another suggested variant of the PPO algorithm is based
upon adaptive β penalty as given in equation 11. But in
various experiments, the clipped penalty form of equation 10
performed better than the adaptive penalty form of equation
11, and hence we use the clipped form in our system.

/ 2β 1.5targif d d≤ ÷

 β= 2β× 1.5targif d d≥ × (11)

where, () ()ˆ . | , . |t t old td E KL s sθ θ = π π   

The PPO algorithm works similar to TRPO and is much
easier to compute as it uses a linear variant of the gradient
update called the ‘Fisher Information matrix’ (FIM). In
equation 6, the trajectory is sampled from the policy as it
existed in previous time (t) as ()Q xθπ = . The expectancy
over such collected samples is used to update the policy at next
time step (()0 P xθπ =). When the ratio of expectancy over the
two trajectory distributions (() ()/P x Q x) vary significantly
as in the case of linear gradient update in PPO, the previously
stated assumption may not hold, leading to high variance in
policy updates. To avoid this there are two methods that the
PPO algorithm recommends. The first one uses a ‘Adaptive KL
Penalty’ and the second one use ‘Objective Clipping’. As per
the original PPO paper21, the ’Objective Clipping’ variant, with
the clipping factor 0.2= provided the best result. We use
similar mechanism in our experiment. In this mechanism if the

SEWAK, et al.: DRLDO: A NOVEL DRL bASED DE-ObFuSCATION SySTEM FOR DEFENCE AGAINST METAMORPHIC MALWARE

61

probability ratio between the two trajectory’s policies is not in
the range () ()1 , 1− +    the ‘estimated advantage’ is clipped.
We use the Proximal Policy Optimisation algorithm (PPO)21.
PPO is an improvement over Trust Region Policy Optimisation
algorithm (TRPO)20. The deep learning model that we use for
the PPO algorithms actor and critic network comprise of 2
hidden layers each, with each hidden layer having 64 neurons
and a ‘tanh’ activation function.

6. EXPERIMENTS AND RESULTS
We conducted over 2000 (episodic) experiments where

the PPO algorithm based Deep Reinforcement Learning
(DRL) agent would attempt to de-obfuscate a malicious file
and validate if the associated IDS could then detect the de-
obfuscated version of the obfuscated malicious file. Each such
experiment is constituted of an episode consisting of several
steps. In the first step the environment extracts a random new
obfuscation of any malicious file from the opcode frequency
vector feature repository (as generated by the ADRLMMG
system) and sends it to the agent to process it. The agent then
alters the frequency of one of the opcodes in each subsequent

step and the environment correspondingly rewards the agent as
per the mechanism described in section 4.3. For each episode,
we record the malicious probability that was finally reported
by the existing IDS on the de-obfuscated version of the opcode
frequency vector as generated by the agent in the final step
of every episode (each episode starts with a new obfuscated
feature-vector). We use the existing IDS as-is without altering
or retraining it. These probability maliciousP trends across episodes
are reported in the plot in Fig. 3. As shown in this figure, the
detected maliciousP (moving average) has crossed the critical point
of 0.5maliciousP > very early and has reached 0.6maliciousP > in
around 2000 episodes. In each step of every episode the agent
gets some instantaneous rewards. The rewards received earlier
in an episode could be discounted by a discounting factor to
give more importance to more recent awards. The total of all
instantaneous rewards or the discounted rewards indicates
how well the agent is learning to achieve its objectives as
converted into the rewards using the defined reward function
for the agent. As shown in Fig. 4, as the episodes progress
the agent is able to accrue higher total instantaneous rewards
and discounted rewards (left y-axis) indicating that the agent

Figure 3. Training Statistics - Malicious Probability detected by the IDS after De-obfuscation frequency vector across episodes.

Figure 4. Training statistics - Total instantaneous and discounted rewards accrued by agent across episodes.

DEF. SCI. J., VOL. 71, NO. 1, JANuARy 2021

62

is able to effectively learn the desired policy. Also, the last
instantaneous reward for most of the episodes (right y-axis)
is high indicating that the episodes are ending in successful
detection of the transformed opcode frequency features as
malicious by the IDS. The total rewards may just be a single
indicator of how well the agent is learning the mathematical
abstraction of the tasks formulated into a reward function.
Additionally, to ensure that the agent’s learning is aligned well
with the desired outcome that the IDS should be able to detect
the malicious file correctly after de-obfuscation, we present
the histogram of all the final maliciousP detection probability of
the de-obfuscated feature (opcode frequency) vector of the
obfuscated/ metamorphic malware file by the existing IDS
without re-training or modifying the IDS in Fig. 5. As shown

in this figure the mean malicious probability (1 n
maliciousP

n∑
) was

uplifted to 0.6≈ (where, []0.0,0.5initial
maliciousP ∈), indicating that the

IDS could now effectively detect the generated de-obfuscated
variants as malicious with high maliciousP probability.

7. DISCUSSION
As covered in section 6, the IDS can detect the obfuscated

malicious file after the resultant de-obfuscation by the DRLDO
agent as malicious, which helps probably in evading a ‘zero-
day attack’ by a metamorphic/ obfuscated variant of an
existing malware. But still, we are not sure whether the agent
is actually learning to de-obfuscate/normalise the obfuscated
variant of the malware or learning some nonreproducible tricks
or exploiting some trivial loopholes to help the IDS raise the

 maliciousP of some specific variant. To ascertain that the agent
is actually learning to de-obfuscate the metamorphism in the
malware we compute and record the correlation similarity
of the final output (de-obfuscated) feature-vector (opcode
frequency vector) as produced by the agent with the opcode
feature-vector of the obfuscated variant that the agent received
as an input. We also compute the correlation similarity of the
final output feature-vector with that of the original malware’s
corresponding feature-vector. Figures 6, and 7 shows the
histogram of the overall correlation similarities between the
feature-vector of the de-obfuscations produced by the agent

Figure 6. Training statistics - Histogram of similarity of the feature-vector of the de-obfuscations produced by the agent with the
obfuscated Variant feature-vector of the Malware as given as input to the agent.

Figure 5. Training statistics - maliciousP as detected by the IDS for the de-obfuscated version of the malware by the agent.

SEWAK, et al.: DRLDO: A NOVEL DRL bASED DE-ObFuSCATION SySTEM FOR DEFENCE AGAINST METAMORPHIC MALWARE

63

with the feature-vector of the original malware’s and between
feature-vector of the de-obfuscations produced by the agent
with that of its obfuscated variant’s feature-vector as submitted
to the agent respectively. We use Pearson product-moment
correlation coefficients between the opcode vectors to generate
these similarities. The correlation is taken from the correlation
matrix R, whose relationship with the co-variance matrix, C, is

as given as
*
ij

ij
ii jj

C
R

C C
= . Another interesting observation

is related to the resultant output’s opcode frequency vector’s
correlation similarity. We measure two types of correlations,
the first is the similarity between the de-obfuscated opcode
frequency vector as created by the DRLDO system and that
of the obfuscated opcode frequency vector as provided as
an input to the DRLDO system, and the second similarity
is measured between the de-obfuscated opcode frequency
vector as generated by the DRLDO system and that of the
opcode frequency vector of the original malware. The opcode
frequency of the original malware is not known to the DRLDO
system and we extract it from the metadata created by the
ADRLMMG system which produced these obfuscations. The
feature-vector of the de-obfuscated variants as produced by the
DRLDO system were quite similar to (0.99≥) their original
malware’s feature-vector and very dissimilar to (0.001≤)
their obfuscated variants as submitted to the DRLDO system.
This observation establishes that the desired enhancement
in the detection probability maliciousP of these feature-vectors
after processing them via the DRLDO system is actually due
to the probable de-obfuscation carried out by the DRLDO
system in which it removed some of the additional opcode/
instructions that were inserted in the original malware to
evade its detection by the IDS and the results are unlikely to
be because of any trivial and nonreproducible trick that the
agent might have unintentionally learnt. The insights from
these observations are very significant especially since we
never exposed the original malware strain’s opcode frequency
vector to the DRLDO system. Attaining such high similarity

with the original malware’s opcode frequency indicates that
the resultant de-obfuscations thus created by our system could
not only be now detected by most existing IDS as malicious,
but it could also be identified that the incoming malware is an
obfuscated variant of one of the existing malware variants that
the IDS has in its training repository. So, besides enhancing
binary IDS that could just detect whether a file is benign or
malicious the de-obfuscations created from our system is
also compatible with and would produce correct results with
a multinomial IDS that also detects the family of the malware
variants. Alternatively, in a binary IDS subsequently by using
the similarity between the outputs of the DRLDO system with
the stored feature-vectors of the existing malware variants in
the system’s repository the family of the obfuscated malware
could be identified thus enhancing the insights generated
from the detection system. The above observations on the
similarity with the original malware strain also indicates
that following de-obfuscation, the file size and opcode
frequency distribution does not change substantially. This
has other significant implications as this would also prevent
any malware prediction probability creep/ enhancement even
when subjected to any IDS which first segregates the files
into different categories based on either their file size26 or on
the outcomes of machine learning methods like clustering27

before scoring/ predicting them for their maliciousness, to
enhance their respective prediction/ detection effectiveness/
accuracy.

8. CONCLUSION
We designed and developed an advance Deep

Reinforcement Learning based system named DRLDO that
could learn how to de-obfuscate and normalise a metamorphic
(or otherwise obfuscated) malware. unlike some other
systems that could work only at the binary level and hence
the transformations from these are intractable and non-
functionality-preserving, the DRLDO is the first system that
could perform de-obfuscations at the opcode-sequence level.
Additionally, the DRLDO system offers unique advantages

Figure 7. Training statistics - Histogram of Similarity of the feature-vector of the de-obfuscations produced by the agent with the
feature-vector of the original Malware (that was not exposed to the agent).

DEF. SCI. J., VOL. 71, NO. 1, JANuARy 2021

64

as it does not mandate any change in the IDS’ classification-
system and does not even require a re-training of the classifier.
Thus, the DRLDO system could be easily retrofitted into an
existing IDS setup.

The experiments conducted with the DRLDO system,
and the corresponding results obtained, proves that PPO
algorithm based DRL agents, as used in the DRLDO system,
could be effectively trained using our custom developed RL
environment. The so trained DRL agents could effectively de-
obfuscate the (opcode-sequence) feature-vector of an incoming
obfuscated malware. The resulting transformed feature-vector
could be correctly detected by an existing IDS with a detection
probability of up to 0.6 for previously un-detectable obfuscated
intrusions. In the entire process no re-training, re-configuration
or re-calibration of the IDS is required.

Thus, the DRLDO system could effectively provide an
existing IDS the augmented capabilities of defense against
(even multiple-simultaneous) attack from metamorphic
variants of existing malware. Doing so, the DRLDO system
can enhance an IDS with unique defensive capabilities against
any probable ‘zero-day attack’ by a metamorphic attack from
obfuscated variants of an existing malware.

REFERENCES
1. Mirzazadeh, R.; Moattar, M.H. & Jahan, M.V. Metamorphic

malware detection using linear discriminant analysis
and graph similarity. In Proceedings of the International
Conference on Computer and Knowledge Engineering,
IEEE, 2015, pp. 61–66.

 doi:10.1109/ICCKE.2015.7365862
2. Sewak, M., Deep Reinforcement Learning: Frontiers of

Artificial Intelligence. Springer, 2019, pp. 128-143.
 doi: 10.1007/978-981-13-8285-7
3. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;

Antonoglou, I.; Wierstra, D. & Riedmiller, M., Playing
atari with deep reinforcement learning. https://arxiv.org/
abs/1312.5602, [Accessed on January 2020].

4. Van Hasselt, H.; Guez, A. & Silver, D., Deep reinforcement
learning with double q-learning. https://arxiv.org/
abs/1509.06461, [Accessed on January 2020].

5. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot,
M. & Freitas, N. Dueling network architectures for deep
reinforcement learning. In Proceedings of the International
conference on machine learning. 2016, pp. 1995–2003.

6. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, y.; Silver, D. & Wierstra, D., Continuous control
with deep reinforcement learning. https://arxiv.org/
abs/1509.02971, [Accessed on January 2020].

7. Nappa, A.; Rafique, M.Z. & Caballero, J. Driving in the
Cloud: An Analysis of Drive-by Download Operations
and Abuse Reporting. In Proceedings of the Conference
on Detection of Intrusions and Malware & Vulnerability
Assessment. 2013.

 doi:10.1007/9783-642-39235-1_1
8. Sewak, M.; Karim, M.R. & Pujari, P., Practical

Convolutional Neural Networks: Implement Advanced
Deep Learning Models using Python. Packt Publishing
Ltd, 2018, pp. 144-162.

9. Hu, W. & Tan, y., Generating adversarial malware
examples for black-box attacks based on gan. https://
arxiv.org/abs/1702.0598, [Accessed on January 2020].

10. Lin, Z.; Shi, y. & Xue, Z., IDSGAN: Generative adversarial
networks for attack generation against intrusion detection.
https://arxiv.org/abs/ 1809.02077, [Accessed on January
2020].

11. usama, M.; Asim, M.; Latif, S.; Qadir, J. et al. Generative
adversarial networks for launching and thwarting
adversarial attacks on network intrusion detection
systems. In Proceedings of the International Wireless
Communications & Mobile Computing Conference,
IEEE, 2019, pp. 78–83.

 doi:10.1109/IWCMC.2019.8766353.
12. Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M. &

McDaniel, P., Adversarial perturbations against deep
neural networks for malware classification. https://arxiv.
org/abs/1606.04435, [Accessed on January 2020].

13. Anderson, H.S.; Kharkar, A.; Filar, B.; Evans, D. & Roth,
P., Learning to evade static pe machine learning malware
models via reinforcement learning. https://arxiv.org/
abs/1801.08917, [Accessed on January 2020].

14. Wu, D.; Fang, b.; Wang, J.; Liu, Q. & Cui, X. Evading
machine learning botnet detection models via deep
reinforcement learning. In Proceedings of the IEEE
International Conference on Communications, IEEE,
2019, pp. 1–6.

 doi: 10.1109/ICC.2019.8761337
15. Sewak, M.; Sahay, S.K. & Rathore, H. An investigation

of a deep learning based malware detection system.
In Proceedings of the International Conference on
Availability, Reliability and Security, 2018, pp. 1–5.

16. Sewak, M.; Sahay, S.K. & Rathore, H. Comparison
of deep learning and the classical machine learning
algorithm for the malware detection. In Proceedings of
the IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, IEEE, 2018, pp. 293–
296.

 doi:10.1109/SNPD.2018.8441123
17. Rathore, H.; Agarwal, S.; Sahay, S.K. & Sewak, M.

Malware detection using machine learning and deep
learning. In Proceedings of the International Conference
on big Data Analytics, Springer, LNCS, 2018, pp. 402–
411.

 doi: 10.1007/978-3-030-047801_28
18. Sahay, S.K.; Sharma, A. & Rathore, H., Evolution of

malware and its detection techniques. In Proceedings
of the Information and Communication Technology for
Sustainable Development, Springer, 2020, pp. 139– 150.

 doi: 10.1007/978-98113-7166-0_14
19. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D. &

Riedmiller, M. Deterministic policy gradient algorithms.
In Proceedings of the International Conference on
International Conference on Machine Learning, 2014.

20. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M. & Abbeel,
P. Trust region policy optimization. In Proceedings of the
International Conference on International Conference on

SEWAK, et al.: DRLDO: A NOVEL DRL bASED DE-ObFuSCATION SySTEM FOR DEFENCE AGAINST METAMORPHIC MALWARE

65

Machine Learning, 2015.
21. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A. &

Klimov, O., Proximal policy optimization algorithms.
https://arxiv.org/abs/1707.06347, [Accessed on January
2020].

22. behera, C.K. & bhaskari, D.L., Different obfuscation
techniques for code protection. Procedia Computer
Science, 2015, pp. 757–763.

 doi: 10.1016/j.procs.2015.10.114
23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.;

Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G. et al., Human-level control
through deep reinforcement learning. Nature, 2015, pp.
529–533.

 doi: 10. 1038/nature14236
24. Sutton, R.S.; McAllester, D.; Singh, S. & Mansour, y.

Policy gradient methods for reinforcement learning with
function approximation. In Proceedings of the International
Conference on Neural Information Processing Systems,
1999, pp. 1057–1063.

25. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.;
Harley, T.; Silver, D. & Kavukcuoglu, K., Asynchronous
methods for deep reinforcement learning. https://arxiv.
org/abs/1602.01783, [Accessed on January 2020].

26. Sahay, S.K. & Sharma, A., Grouping the executables to
detect malwares with high accuracy. Procedia Computer
Science, 2016, pp. 667–674.

 doi: 10.1016/j.procs.2016. 02.115
27. Rathore, H.; Sahay, S.K.; Chaturvedi, P. & Sewak,

M. Android malicious application classification using
clustering. In Proceedings of the International Conference
on Intelligent Systems Design and Applications, Springer,
2018, pp. 659–667.

 doi: 10.1007/978-3-030-16660-164

CONTRIBUTORS

Mr Mohit Sewak received his MTech in Software Systems
from BITS Pilani and BE in Marine Engineering from Jadavpur
university in 2015 and 2003, respectively. Currently he is serving
as the Principal Data Scientist in the Security and Compliance
Research team of Microsoft, India R&D, and is also pursuing
part-time PhD at BITS Pilani. Mohit has more than 15 years of
experience in Research, Design and Development of Machine
Learning and Artificial Intelligence products in the industry.
His current research interests are security, compliance, and
artificial intelligence.
In the current study he conceptualised the idea, executed
experiments as per supervision, investigation, writing - original
draft, writing - review and editing.

Dr Sanjay K. Sahay presently working as Associate Professor
in the Department of Computer Science and Information
System in BITS, Pilani, K.K. Birla Goa campus. He is also a
Visiting Associate of IuCAA, Pune. His research interests are
Malware identification, Artificial Intelligence, Authentication,
Data Mining and Gravitational Waves. He also served as a
program committee member of various reputed conferences
and has been a reviewer for journals. He published more than
50 scientific articles and edited the SKM-209 proceeding,
published in Springer, Communications in Computer, and
Information Science.
In the current study he supervised/conceptualised the entire
paper and helped in formulating the methodology and reviewing/
writing the final draft.

Mr Hemant Rathore received his BE and ME in computer
science from RGTu, India and bITS Pilani, India in 2010
and 2013, respectively. Currently, he is pursuing PhD at birla
Institute of Technology and Science, Pilani, K. K. Birla Goa
Campus. He has three years of industrial experience at Symantec,
India. His current research interests are malware analysis and
detection, machine learning and network security. He is also
a student member of the IEEE and ACM.
In the current study he conceptualised the idea, methodology,
investigation, writing - original draft, writing - review and
editing.

