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ABSTRACT

In this paper, we propose a novel mechanism to normalise metamorphic and obfuscated malware down at the 
opcode level and hence create an advanced metamorphic malware de-obfuscation and defence system. We name 
this system as DRLDO, for deep reinforcement learning based de-obfuscator. With the inclusion of the DRLDO 
as a sub-component, an existing intrusion detection system could be augmented with defensive capabilities against 
‘zero-day’ attack from obfuscated and metamorphic variants of existing malware. This gains importance, not only 
because there exists no system till date that use advance DRL to intelligently and automatically normalise obfuscation 
down even to the opcode level, but also because the DRLDO system does not mandate any changes to the existing 
IDS. The DRLDO system does not even mandate the IDS’ classifier to be retrained with any new dataset containing 
obfuscated samples. Hence DRLDO could be easily retrofitted into any existing IDS deployment. We designed, 
developed, and conducted experiments on the system to evaluate the same against multiple-simultaneous attacks 
from obfuscations generated from malware samples from a standardised dataset that contain multiple generations 
of malware. Experimental results prove that DRLDO was able to successfully make the otherwise undetectable 
obfuscated variants of the malware detectable by an existing pre-trained malware classifier. The detection probability 
was raised well above the cut-off mark to 0.6 for the classifier to detect the obfuscated malware unambiguously. 
Further, the de-obfuscated variants generated by DRLDO achieved a very high correlation (of 0.99≈ ) with the 
base malware. This observation validates that the DRLDO system is actually learning to de-obfuscate and not 
exploiting a trivial trick.
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1. INTRODUCTION
Metamorphism provides malware an effective mechanism 

of evading an Intrusion Detection Systems (IDS). The 
different metamorphic variants of a metamorphic malware 
are functionally equivalent, but their internal structures or 
source codes may differ. Code obfuscation methods like dead-
code insertion are widely used for developing metamorphic 
malware1. The problem of de-obfuscation (/normalisation) at 
the opcode level, when transformed into a markov decision 
process (MDP), leads to a reinforcement learning (RL) task 
that involves high cardinality action space. Most of the popular 
RL or deep reinforcement learning (DRL)2 agent algorithms 
like the Deep Q Networks (DQN)3, or even its enhanced 
variants like the Double4 or Dueling Deep Q Networks5 could 
not efficiently learn an optimal policy under such constraints6. 
These systems also suffer from sample-inefficiency when 
applied to complex MDP. Such MDP(s) requires sophisticated 
DRL agents to effectively learn the policy and find effective 
and sample-efficient solutions to the given MDP. Training such 
DRL agents also requires sufficient data to ensure stable and 
robust learning. In this paper, we present a novel method for 

de-obfuscation of advanced metamorphic, oligomorphic, and 
polymorphic malware using DRL. We designed and developed 
a working system named DRLDO (deep reinforcement  
learning based de-obfuscator). The objective of the DRLDO 
system is to train DRL agents that can perform the task  
of transforming/normalising/de-obfuscating the obfuscated 
malware’s opcode sequence features. Doing so a DRLDO 
based system could be fitted inside an IDS before the 
malware-classification system. The DRLDO system would de-
obfuscated the incoming candidate file’s features sufficiently so 
as the IDS’ classification-system could detect these otherwise 
un-detectable feature-vectors correctly (as malicious) upon 
de-obfuscation without mandating any re-training or re-
calibration of the IDS. Additionally, it is desirable that the 
transformed feature-vectors as generated by the DRLDO are 
similar (demonstrate high correlation between feature-vectors) 
to that of the original malware’s to ensure that the DRLDO 
system is also compatible with IDS incorporating multinomial-
classification-system and other advanced sub-systems that 
requires to identify the specific strain of malware for further 
processing. We conducted experiments with the developed 
system to gauge its effectiveness against multiple-simultaneous 
attacks from different obfuscated variants of malware extracted Received : 30 April 2020, Revised : 14 September 2020 
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from a standardised malware dataset7. Experimental results 
prove that the DRLDO system could normalise/ transform/ 
de-obfuscated the obfuscated malware’s feature-vectors such 
that these malware could subsequently be correctly detected 
by existing IDS (which had failed to detect the metamorphic 
instance correctly) without mandating any re-training. Another 
significant achievement of the DRLDO system is that the de-
obfuscations produced from it resulted in an opcode frequency 
vector which were very similar to that of the original malware 
variant’s opcode frequency vector. This observation adds 
further credibility to the assertion that the DRLDO system is 
actually trying to de-obfuscate the malware’s opcode frequency 
vector (of any junk opcode/ instruction insertion) and not just 
finding a trivial trick to ensure that IDS start detecting the 
metamorphic instances as malicious. 

2 RELATED WORK
Recently there has been a lot of interest to improve the 

performance of IDS against unseen intrusions especially 
in network traffic and botnet attack areas. Most of the 
initial efforts in this regard were inspired by the generative 
adversarial networks (GAN) as formed by the combination of 
two different convolution neural networks (CNNs)8 where the 
detection feedback from one network called the ‘Discriminator 
CNN’ (denoted as ' ′ ) is used to train the other CNN 
network called the ‘Generator CNN’ (denoted as ' ′ ). With 
the initial inspiration being drawn from the GAN networks of 
underlying CNN architecture, some aspects of network traffic 
were converted into a similar CNN map on which a GAN 
style methodology could be adopted to produce the necessary 
‘generative’ perturbation by the ‘Generator CNN’ to create 
samples that the ‘Discriminator’ CNN could not identify 
correctly. This problem could be formulated as a min-max 
contest between ' ′  and ' ′ , where, ' ′  is trying to maximise 
the cross-entropy error of detection of samples produced by 
' ′  using ' ′  and ' ′  is trying to minimise it attractively. This 
could be defined mathematically as the optimisation function 
in equation 1: 

( ) ( ) ( ) ( )( )( )min max log log 1p pE x x E z z+ −
 

             (1) 

Since this is a differentiable equation, it could be optimised 
to train and weight of the ' ′  and ' ′  networks that converges 
gradually and then the samples from ' ′  are used for the 
intended purpose. To create an undetectable malicious entity 
(file or network traffic), the network ' ′  could be replaced by 
the corresponding IDS’s classifier’s approximation function. 
Such approximation function could be any Deep Learning 
(DL) network. Most of these systems work to create generative 
data distributions that supposedly mimic an undetectable 
malicious entity (file or network traffic). While using such a 
system to create malicious traffic/ botnet, the ' ′  network 
could be replaced by the corresponding IDS’s classifier’s 
associated trained DL network, to learn to create perturbations 
in the distribution of existing (malicious) data and creating new 
(malicious) data distributions that is unknown to the existing 
IDS (' ′  network). Some prominent example of such approach 
could be MalGAN9, IDSGAN10, and by usama11, et al.. 

There are some non-GAN approaches which are based on 
differentiable objective functions, these are typically known as 
’Gradient attack’ based approaches. An example of a similar 
implementation is the fast gradient sign method (FGSM)12. 
Additionally, there are some other non-differentiable objective 
based methods in the area of reinforcement learning13,14 that 
have been explored. These methods are designed with an 
underlying assumption that the distribution of the new data 
generated from the ' ′  network of these systems is significantly 
different form the ones that the IDS ( ' ′   network) is trained 
on. Thus, on retraining the IDS on the data coming from this 
new distribution (in combination with their original training 
data) can improve the overall IDS system’s response against 
an actual new attack for which the real data does not exist.  
But as pointed out in9 these methods, especially the ones based 
on GANs make re-training of IDS ineffective, and others may 
even make the IDS over-fit13 if trained on such generated data 
thus reducing their effectiveness. Therefore, it is not sufficient 
to just create a system that could generate malware samples 
that the IDS could not detect and hope that using these samples 
the IDS could be improved substantially in its ability to avert 
attacks from unknown intrusion attacks especially those by 
the complex obfuscations of existing malware. Also, it is not 
optimal to retrain the IDS with hypothetical data distributions 
generated with such perturbations, as this increases the risk of 
decreasing the effectiveness of the IDS on the actual existing 
malware detection. The above observation necessitates that 
instead of modifying the training of the existing IDS which 
is working well on the original/ un-obfuscated variants of 
the malware, the obfuscated variants of the threats need to be 
normalised to bring them close to the actual variant that the 
IDS was earlier trained upon and hence could probably detect.

3. DRLDO PROCESS FLOW
The process flow for the design of the DRLDO system is 

shown in Fig. 1. It has broadly 4 subsystems, namely:
•	 The obfuscated opcode repository and associated 

obfuscation generation system like the ADRLMMG (the 
detailed coverage of this system is out of scope of this 
paper)

•	 A pre-trained opcode frequency feature-vector generator 
and classification system (sub-components of existing 
IDS)

•	 A custom malware de-obfuscation training reinforcement 
learning environment and

•	 A DRL agent compatible with both the custom environment 
and also the type of reinforcement learning problem at 
hand (conceptually and mathematically).
In the Fig. 1 shown, the DRL agent interacts with the 

environment to train against episodic tasks. These tasks 
comprise of altering the presented opcode frequency vector. 
The opcode frequency vector is altered to achieve a net 
reduction of some of the selected opcode instructions, thus 
mimicking actions opposite to that in popular obfuscation 
techniques (i.e., of adding junk instructions). In each training 
step of every training episode, the environment receives and 
instruction from the DRL agent, and then transforms the 
opcode frequency structure as per the received instruction. 
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The environment then uses the attached IDS to obtain the 
probability of the thus transformed opcode frequency vector to 
have come from a malicious file ( maliciousP ). A decent increment 
in maliciousP  from the initial state malicious detection probability 
(i.e.,   0.5maliciousP < ) of opcode frequency to a level where the 
classifier could subsequently detect the file instance as malicious 
(i.e.   0.5maliciousP < ). The DRL agents train over multiple such 
training episodes to update and refine an action policy that 
could be applied on any obfuscated malware strain to de-
obfuscate it. The trained DRL agent is used to create and store 
opcode frequency vectors representing abstractions that could 
be identified by existing detection systems as malware even 
when they could not identify the obfuscated variants of these 
malware in a situation typically posed under a zero-day attack. 
So, this system essentially works to negate a zero-day attack 
otherwise possible by using undetectable obfuscated instances 
of different malware variants. Multiple such DRL agents could 
be created and trained with varying degree of dissimilarity 
from other DRL agents trained on the same environment and 
subsequently producing probable de-obfuscation variants of the 
same malware that are dissimilar from each other at different 
levels. Such dissimilarities could range from the extremes of 
changing the underlying algorithm of the complete agent to 

just changing the random number seed of various instances 
of the same DRL agent. Working at the opcode level the 
process design is universal and could be implemented on 
malware of all popular systems ranging from Android, 
Windows, clients to Linux and Windows based servers. 
In production, this system could be implemented on any 
incoming file to these systems without having a prior 
assumption of the benign/ malicious nature of the file or its 
obfuscation status. Coupled with both the original opcode 
frequency vector and the probable de-obfuscated opcode 
frequency, either the existing classification system’s 
detection potential could be enhanced, or more powerful 
single stage or hierarchical detection system be made.

3.1 Training Data and IDS used
The obfuscated (metamorphic) opcode frequency 

feature-vector of existing malware were produced by 
the ADRLMMG system which is an Adversarial Deep 
Reinforcement Learning based Metamorphic Malware 
Generator. The ADRLMMG and the DRLDO systems 
are isolated systems and they do not share weights and 
are unaware of the other’s existence. The ADRLMMG 
system creates obfuscations of existing identified malware 
and stores the resultant opcode frequency vector of these 
obfuscations as the training data for any downstream de-
obfuscation system like the DRLDO. The ADRLMMG 
system also maintains a dictionary of the original malware’s 
identity and its opcode frequency feature-vector in a separate 
metadata for performance assessment of the downstream 
de-obfuscation system. The ADRLMMG system aims 
to mimics obfuscation techniques like junk instructions/ 
code insertion and also to preserves the functionality of the 
original malware and hence it uses strictly opcode additive 
action policy. Obfuscations of multiple malware and benign 
files were produced. The obfuscations of the malware that 

could not be identified by the existing IDS satisfactorily were 
retained and the remaining discarded. The original opcode 
frequency vector of each file was preserved for comparison 
with that of the final obfuscated variant as produced by the 
ADRLMMG and the resultant de-obfuscated version of each 
of the obfuscated variant as produced by the DRLDO systems. 
We choose the IDS system (including the pre-processing, 
feature selection and transformation and the classification sub-
systems) as developed by15-17 to augment it with Zero-Day-
Defense18 capabilities against metamorphic malware attack 
using the DRLDO system. The selected IDS had claimed 
to provide the best performance (with a combination of the 
highest accuracy accompanied with a very low false positive 
rates) over a standardised malware data7 with mixed types and 
generation of malware. For the obfuscated malware samples, 
we used the same data on which the given IDS was trained 
(and claimed the associated performance). Since the chosen 
IDS is trained on the malware in this dataset and also claims 
to have performed well detecting these malware, we can safely 
assume all the malware in this dataset as ‘existing’ malware 
that are ‘known’ to the chosen IDS. We use the ADRLMMG 
system to produce multiple obfuscated variants of this data. 
Multiple obfuscated variants of each ‘existing’ malware could 

Figure 1. DRL based de-obfuscation system - process flow.
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increase it or to decrease it, and second is the amount by which 
the increment/ decrease should occur. In this approach we 
have 2observationN ×  actions, the first N actions corresponding 
to an increase in the specific opcode frequency by a constant 

incrementC  and the next N actions represent an act of decreasing 
the corresponding opcode frequency by a fixed amount τ ; 
where, incrementC , decrementC  ∈ . In our implementation 
we have kept incrementC  =  decrementC =1. Also, since from the 
perspective of obfuscation, the easiest way of creating multiple 
obfuscation often increases the opcode frequency by adding 
junk code, instructions, indirect routing etc.22. Therefore, to 
mimic this effect we allow the agent’s action only a net increase 
in individual opcode frequency from their initial level (as in 
original malware). An action with a net effect of decreasing an 
individual opcode below its original level results in returning 
the same state as before the action and a commensurate reward. 
We keep additional action constraints for our agent to ensure 
that its behaviour mimics the de-obfuscation action while 
preserving the original functionality. Since obfuscation is 
mostly created by techniques which generally increases the 
opcode frequencies in the resulting file, therefore a good de-
obfuscation system should ideally reverse this effect. So, our 
agent could only take actions resulting in a net reduction of 
any specific opcode’s frequency from its original level in the 
obfuscated file. Also, since a negative opcode frequency is not 
possible, so the least it could be decreased is to zero.

4.3 The Formulation of ‘Reward’ Function
What the agent learns and how quickly it converges is 

dependent upon the reward function (i.e., the reward/ penalty 
criteria and magnitude) to a considerable degree. Our primary 
objective is that the agent could alter the opcode frequency 
enough to substantially enhance the IDS’s capability to detect 
it as malicious.

Algorithm 1 Custom RL Environment Algorithm. 
Require: RESET instructions from agent
Ensure: IDS, MalwareDateRepository is attached
index ←  random [1, MalwareDataRepository N ] 
STATE ←  IDSFeatureGenerator(index)
REWARD ←  0
IsCOMPLETE ←  False 
return ←  (STATE, REWARD, IsCOMPLETE) 
while ( ) ( )Turns MaxTurns IsComplete≤ ∧ ¬  
do
RESPONSE ←  Agent (ACTION)
NEW STATE ←  STATE(ACTION)

maliciousP  ← IDSDetector(NEWSTATE) 
if malicious MalThresholdP P≥  then
REWARD ←  REWARD + Probability VictoryR Reward+
IsCOMPLETE ←  True
else
REWARD ←  REWARD + Probability TurnR Penalty−
N ←  n
end if 
return ←  (STATE, REWARD, IsCOMPLETE) 
end while

be generated. Each obfuscated variant thus produced was 
screened against the chosen IDS to ensure that it is incorrectly 
identifying the obfuscations of malware as non-malicious  
(   0.5non maliciousP − < ) before using these obfuscated samples in 
our experiments with the DRLDO system and obtaining the 
corresponding results.

3.2 Preserving existing IDS and File Functionality
The Fig. 2 shows the existing workflow of any IDS 

system that could cater to both offline and online detection 
requirements either in batch or in real-time mode. Additionally, 
there are additional components marked that are required for 
the enablement of the DRLDO system to augment existing IDS 
with metamorphic malware detection capabilities. As could be 
found in this process, the existing components like the existing 
IDS setup, its related training workflows, the associated training 
data etc. does not require any change. The IDS do not even 
need to be retrained to accommodate any obfuscation data. The 
only change that is required is just having file’s feature-vector 
(as extracted by the IDS’s feature generator) transformed by 
the DRLDO system before sending it to the IDS’s classifier 
for detection. Besides this single change in the deployment 
architecture, the entire deployment setup remains the same, 
thus preserving the functionality and also the training, scoring 
and the deployment setups of the existing IDS. Similarly, the 
associated treatment and the functionality of the files passing 
through the system is also preserved.

4 CUSTOM REINFORCEMENT LEARNING 
ENVIRONMENT
The environment serves a major role in reinforcement 

learning. As illustrated in algorithm 1 its role is to present a 
current state to the agent to act upon, and then subsequently 
give it an appropriate reward and the corresponding next state 
to the agent. The current_state, action, reward, next_state 
cycle continues until a terminal state is reached (for an episodic 
task) or until a predestined number of steps are completed. On 

reaching such scenario, the environment resets, itself and re-
instantiates any default state and other necessary variables.

4.1 The Structure of ‘State’
The state in our experiment is comprised of a vector of 

whole numbers ( op codeS W −∈ ) corresponding to each of the 
unique opcode frequency for a given opcode in a file. We use 
the same unique opcode set as used by Sewak et. al.16. We also 
use the same IDS which had produced the best performance 
and as used in their work. Their system claimed an accuracy of 
99.21%  with a False Positive Rate of 0.19%  on the Malicia 
dataset7 which is to our information the best performance 
achieved on this standardised malware dataset till date. The 
opcodes generated are also from the Malicia dataset. We 
obfuscate the opcode frequency vector using another DRL 
based Obfuscation system and score the resulting opcode 
frequency vector as generated from this system with the earlier 
described classification system. The obfuscated variants 
that are detected by the detection system as benign with a 
probability 0.5benignP >  are used as training dataset for our 
de-obfuscation system. This dataset along with the collected 
obfuscated opcode frequency vector from the work resulted 
in a set of 1612 unique opcodes. Correspondingly we have 
a state comprising of 1612 dimension ‘Action’ Space with a 
permissible range of [ ] 16120,10000 Z∈ .

4.2 The Design of ‘Action’
The reinforcement learning tasks (and hence the 

environments/ agents) could be broadly classified based on 
the type of action as discrete action and continuous action RL 
tasks. The high computational complexity of the continuous 
(and high cardinality) action space mandates use of specialised 
class of agents powered by special mathematical theorems19 

that could empower both the non-deep19 and deep learning 
variants6,20,21 of reinforcement learning agents. For each of 
the unique opcode in the state there are two decision/ action 
criteria. First is the direction of change in each, namely, to 

Figure 2: Preserving Functionality: DRLDO mandates no changes in the IDS not even re-training.
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increase it or to decrease it, and second is the amount by which 
the increment/ decrease should occur. In this approach we 
have 2observationN ×  actions, the first N actions corresponding 
to an increase in the specific opcode frequency by a constant 

incrementC  and the next N actions represent an act of decreasing 
the corresponding opcode frequency by a fixed amount τ ; 
where, incrementC , decrementC  ∈ . In our implementation 
we have kept incrementC  =  decrementC =1. Also, since from the 
perspective of obfuscation, the easiest way of creating multiple 
obfuscation often increases the opcode frequency by adding 
junk code, instructions, indirect routing etc.22. Therefore, to 
mimic this effect we allow the agent’s action only a net increase 
in individual opcode frequency from their initial level (as in 
original malware). An action with a net effect of decreasing an 
individual opcode below its original level results in returning 
the same state as before the action and a commensurate reward. 
We keep additional action constraints for our agent to ensure 
that its behaviour mimics the de-obfuscation action while 
preserving the original functionality. Since obfuscation is 
mostly created by techniques which generally increases the 
opcode frequencies in the resulting file, therefore a good de-
obfuscation system should ideally reverse this effect. So, our 
agent could only take actions resulting in a net reduction of 
any specific opcode’s frequency from its original level in the 
obfuscated file. Also, since a negative opcode frequency is not 
possible, so the least it could be decreased is to zero.

4.3 The Formulation of ‘Reward’ Function
What the agent learns and how quickly it converges is 

dependent upon the reward function (i.e., the reward/ penalty 
criteria and magnitude) to a considerable degree. Our primary 
objective is that the agent could alter the opcode frequency 
enough to substantially enhance the IDS’s capability to detect 
it as malicious.

Algorithm 1 Custom RL Environment Algorithm. 
Require: RESET instructions from agent
Ensure: IDS, MalwareDateRepository is attached
index ←  random [1, MalwareDataRepository N ] 
STATE ←  IDSFeatureGenerator(index)
REWARD ←  0
IsCOMPLETE ←  False 
return ←  (STATE, REWARD, IsCOMPLETE) 
while ( ) ( )Turns MaxTurns IsComplete≤ ∧ ¬  
do
RESPONSE ←  Agent (ACTION)
NEW STATE ←  STATE(ACTION)

maliciousP  ← IDSDetector(NEWSTATE) 
if malicious MalThresholdP P≥  then
REWARD ←  REWARD + Probability VictoryR Reward+
IsCOMPLETE ←  True
else
REWARD ←  REWARD + Probability TurnR Penalty−
N ←  n
end if 
return ←  (STATE, REWARD, IsCOMPLETE) 
end while

Since the benign probability of the samples that 
we selected are 0.5≥  (i.e. _ _ 0.5malicious min requiredP = ), and 
since the maximum possible malicious probability is 1.0  
(i.e. _ max_ 1.0malicious attainableP = ), we take a mid-point of these 
two extremes (i.e. 0.75maliciousP = ) as in equation 2 as the 
preliminary target for the system. This could be stated as (given 

1612opcode W∈ , and ( ) ( )P M P Mal|IDS= ):

( ) ( )

2
M Certain M Ambiguous

target

P P
P = =+

=

( )1 1.0 0.5 0.75
2targetP = + =

{ }( )file targetP opcode file maliciousfiles P⊆ >

or { }( ) 0.75P opcodefile maliciousfiles⊆ >
                 

(2) 

We penalise any resulting opcode frequency vector that 
has predicted probability of malicious 0.75≤   and reward the 
ones with probability of malicious 0.75≥  proportionally. So, 
in each step the instantaneous reward given to the agent could 
be stated as equation 3 (given):

 { }( ) maliciousP op codefile maliciousfiles P− ⊆ =

reward = 0.75maliciousP −                                        (3)
But this reward mechanism has a drawback that it 

encourages long trajectories resulting in positive rewards 
instead of quickly reaching a very high benignP . Since the 
‘discounting-factor’ ( γ ) is only in the agent’s control and not 
in environment’s control, so the reward mechanism cannot 
take the help of lowering the discounting-factor enough so that 
quick high instantaneous rewards become more profitable than 
lower cumulative discounted-rewards. So, to overcome this 
effect, we have another (instantaneous) reward given by the 
environment to the agent (in addition to the one stated above), 
which is accrued when the agent to manage the alter the opcode 
frequency enough such that the file is almost unambiguously 
classified as malicious. This reward is high enough to easily 
surpass even multiple cumulative (even discounting given γ
< 1) rewards and is similar to the malicious probability for 
original malware variants as detected by the system. This 
occurs when the benign thresholdP P≥ ; where, thresholdP is a high 
threshold probability of malicious (say 0.99). Therefore, now 
the reward can be given as a step function as Eqn (4) below.

0.75,  
 

malicious malicious

threshold

goal o

P f P
rewar

therwise
d P

R

 −


= ≤



                    (4)

where, goalR could either be a fixed constant or one dependent 
upon the maximum steps allowed in the episode. An episode 
starts with a reset of the environment. During the ‘reset’, the 
environment fetches a random malware file’s opcode. The episode 
ends when either the goal is achieved ( malicious thresholdP P> ) or the 
maximum permissible steps for the episode is reached. Here 
we set goalR = _ _ _ _ _Max Permissible Steps in an Episode  
so that we could balance the requirements for setups with 
large episodes. This allows for slow but steady convergence 
of complex agents with too many trainable parameters. In 
such setups the _ _max permissible step  is adaptively set-in 
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relation with the goalR , such that it is always greater than any 
cumulative reward over even a long episode.

5. DRL AGENT(S) USED
Given the constraints of the design of the reinforcement 

learning as covered in section 4.2, we have a discrete action task 
with a very high action space (and also state space) cardinality. 
Some of the most popular DRL agents for discrete action 
agents like the ‘Deep Q Networks’ (DQN)23,3, ‘Double DQN’ 
(DDQN)4, and the ‘Dueling DQN’ (DDQN)5. These algorithms 
though could manage large state-space but perform poorly for 
large/ continuous action space. Deterministic Policy Gradient19 

based deep reinforcement learning approaches like the ‘Deep 
Deterministic Policy Gradient’ (DDPG)6 claimed to be deliver 
the best-in-class performance on large, even continuous 
action-space based reinforcement learning tasks. The problem 
with such approaches is that their line-search based policy 
gradient update (as used during optimisation) either proves 
too big for updates involving non-linear trajectory. This results 
in the updates overshooting the target or slower convergence. 
Since in the deep reinforcement paradigm non-linear gradients 
are quite common so algorithms based upon line-search 
based gradient update are not very robust and cannot provide 
guarantees of near monotonic policy improvements. ‘Trust 
Region Policy Optimisation’ (TRPO)20 algorithm which is 
based on ‘trust-region’ based policy updates using ‘Minorise-
Maximisation’ (MM) (second order) gradient update, claims to 
solve this problem and provide guarantee for near monotonic 
general (stochastic) policy improvement even for non-linear 
policies like that approximated by (deep) neural networks. 
Additionally, TRPO uses a mechanism called ‘Importance 
Sampling’ to compute the expectancy of the policy from 
previous trajectories instead of only the current trajectory to 
stabilise the policy gradient. This method has an underlying 
assumption that the previous trajectory’s distribution (Q(x)) 
is not very different from the current trajectory’s distribution  
(P(x)). The policy gradient for a Stochastic Policy Gradient24 

method and associated algorithms like Actor Critic25 is given 
as Eqn (5):

( ) ( ) ( ) ( )logJ E r
θθ θ θ θτ∼π τ∇ = ∇ π τ τ                              (5) 

In equation 5, the trajectory τ  over which the samples for 
computing expectancy is gathered (to update the gradient ∇  
of the policy-value-function J) is the same (current) trajectory 
of the policy as used in the policy  π  (parameterised over θ ). 
But in the case of TRPO using importance sampling and the 
past trajectory for sampling, this policy-value-function update 
looks like Eqn (6) below:

( ) ( ) ( )'
1 ' 1

' ' '
' ' 1

logT

t

T

t t

tJ E r
θ

θ
θ θ θ θτ∼π τ == =

θ

 π
∇ = ∇ π

 
  π   
∑ ∑∏     (6)

To avoid too large changes in gradient, a penalty needs 
to be added to equation 6 to make the optimisation more 
monotonic. With this penalty combined with the use of the 
advantage, the optimisation function is given as Eqn (7):

( )
( ) ( ) ( )

| ˆˆmax . | , . |
|

t t
t t old t t

old t t

a s
E A KL s s

a s
θ

θ θθ
θ

 π
−β π π   π  

  (7)

The problem with the β  based penalty as in equation 7 is 
that it is difficult to choose a single value of β  that aligns well 
to different types of problems, or even for a single problem as 
the learning progress. Therefore, to resolve this issue, TRPO 
instead of using β  based penalty, uses KL based constraints as 
shown in Eqn (8), thus requiring a second order optimisation 
solution.

( )
( )

| ˆˆmax
|

t t
t t

old t t

a s
E A

a s
θ

θ
θ

 π
 
π  

                                              (8)

Subject to: ( ) ( )ˆ . | , . |t old t tE KL s sθ θ π π ≤ δ   

In TRPO, the second order gradient update computation is 
complicated and also very expensive, and hence for real size-
able tasks it is seldom use. The ‘proximal policy optimisation’ 
(PPO)21 algorithm instead of using a constrained form of 
solution (as shown in Eqn (8)), clips the surrogate objective to 
ensure that the updates are not unconstrained. This is as given 
in Eqn (9).

( ) ( )
( ) ( )

| ˆ ˆˆ ˆ
|

t tCPI
t t t t t

old t t

a s
L E A E r A

a s
θ

θ

 π  θ = = θ   π  
             (9)

The original surrogate objective CPIL  for TRPO as 
discussed in equation 9. This in the ‘clipped’ form could be 
reformulated as equation 10; where,   is a hyper-parameter. 
The default value of   is set to 0.2.

( )CLIPL θ =                                                                          

( ) ( )( )( )ˆ ˆˆ min , ,1 ,1t t t t tE r A clip r A θ θ − ∫ + ∫                 (10)

Another suggested variant of the PPO algorithm is based 
upon adaptive β  penalty as given in equation 11. But in 
various experiments, the clipped penalty form of equation 10 
performed better than the adaptive penalty form of equation 
11, and hence we use the clipped form in our system.

/ 2β   1.5targif d d≤ ÷

 β=    2β×   1.5targif d d≥ ×                                      (11)

where, ( ) ( )ˆ . | , . |t t old td E KL s sθ θ = π π   

The PPO algorithm works similar to TRPO and is much 
easier to compute as it uses a linear variant of the gradient 
update called the ‘Fisher Information matrix’ (FIM). In 
equation 6, the trajectory is sampled from the policy as it 
existed in previous time (t) as ( )Q xθπ = . The expectancy 
over such collected samples is used to update the policy at next 
time step ( ( )0 P xθπ = ). When the ratio of expectancy over the 
two trajectory distributions ( ( ) ( )/P x Q x ) vary significantly 
as in the case of linear gradient update in PPO, the previously 
stated assumption may not hold, leading to high variance in 
policy updates. To avoid this there are two methods that the 
PPO algorithm recommends. The first one uses a ‘Adaptive KL 
Penalty’ and the second one use ‘Objective Clipping’. As per 
the original PPO paper21, the ’Objective Clipping’ variant, with 
the clipping factor 0.2=  provided the best result. We use 
similar mechanism in our experiment. In this mechanism if the 
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probability ratio between the two trajectory’s policies is not in 
the range ( ) ( )1 , 1− +     the ‘estimated advantage’ is clipped. 
We use the Proximal Policy Optimisation algorithm (PPO)21. 
PPO is an improvement over Trust Region Policy Optimisation 
algorithm (TRPO)20. The deep learning model that we use for 
the PPO algorithms actor and critic network comprise of 2 
hidden layers each, with each hidden layer having 64 neurons 
and a ‘tanh’ activation function.

6. EXPERIMENTS AND RESULTS
We conducted over 2000 (episodic) experiments where 

the PPO algorithm based Deep Reinforcement Learning 
(DRL) agent would attempt to de-obfuscate a malicious file 
and validate if the associated IDS could then detect the de-
obfuscated version of the obfuscated malicious file. Each such 
experiment is constituted of an episode consisting of several 
steps. In the first step the environment extracts a random new 
obfuscation of any malicious file from the opcode frequency 
vector feature repository (as generated by the ADRLMMG 
system) and sends it to the agent to process it. The agent then 
alters the frequency of one of the opcodes in each subsequent 

step and the environment correspondingly rewards the agent as 
per the mechanism described in section 4.3. For each episode, 
we record the malicious probability that was finally reported 
by the existing IDS on the de-obfuscated version of the opcode 
frequency vector as generated by the agent in the final step 
of every episode (each episode starts with a new obfuscated 
feature-vector). We use the existing IDS as-is without altering 
or retraining it. These probability maliciousP  trends across episodes 
are reported in the plot in Fig. 3. As shown in this figure, the 
detected maliciousP  (moving average) has crossed the critical point 
of 0.5maliciousP >  very early and has reached 0.6maliciousP >  in 
around 2000 episodes. In each step of every episode the agent 
gets some instantaneous rewards. The rewards received earlier 
in an episode could be discounted by a discounting factor to 
give more importance to more recent awards. The total of all 
instantaneous rewards or the discounted rewards indicates 
how well the agent is learning to achieve its objectives as 
converted into the rewards using the defined reward function 
for the agent. As shown in Fig. 4, as the episodes progress 
the agent is able to accrue higher total instantaneous rewards 
and discounted rewards (left y-axis) indicating that the agent 

Figure 3. Training Statistics - Malicious Probability detected by the IDS after De-obfuscation frequency vector across episodes.

Figure 4. Training statistics - Total instantaneous and discounted rewards accrued by agent across episodes.
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is able to effectively learn the desired policy. Also, the last 
instantaneous reward for most of the episodes (right y-axis) 
is high indicating that the episodes are ending in successful 
detection of the transformed opcode frequency features as 
malicious by the IDS. The total rewards may just be a single 
indicator of how well the agent is learning the mathematical 
abstraction of the tasks formulated into a reward function. 
Additionally, to ensure that the agent’s learning is aligned well 
with the desired outcome that the IDS should be able to detect 
the malicious file correctly after de-obfuscation, we present 
the histogram of all the final maliciousP  detection probability of 
the de-obfuscated feature (opcode frequency) vector of the 
obfuscated/ metamorphic malware file by the existing IDS 
without re-training or modifying the IDS in Fig. 5. As shown 

in this figure the mean malicious probability ( 1 n
maliciousP

n∑
) was 

uplifted to 0.6≈  (where, [ ]0.0,0.5initial
maliciousP ∈ ), indicating that the 

IDS could now effectively detect the generated de-obfuscated 
variants as malicious with high  maliciousP probability.

7. DISCUSSION
As covered in section 6, the IDS can detect the obfuscated 

malicious file after the resultant de-obfuscation by the DRLDO 
agent as malicious, which helps probably in evading a ‘zero-
day attack’ by a metamorphic/ obfuscated variant of an 
existing malware. But still, we are not sure whether the agent 
is actually learning to de-obfuscate/normalise the obfuscated 
variant of the malware or learning some nonreproducible tricks 
or exploiting some trivial loopholes to help the IDS raise the 

 maliciousP of some specific variant. To ascertain that the agent 
is actually learning to de-obfuscate the metamorphism in the 
malware we compute and record the correlation similarity 
of the final output (de-obfuscated) feature-vector (opcode 
frequency vector) as produced by the agent with the opcode 
feature-vector of the obfuscated variant that the agent received 
as an input. We also compute the correlation similarity of the 
final output feature-vector with that of the original malware’s 
corresponding feature-vector. Figures 6, and 7 shows the 
histogram of the overall correlation similarities between the 
feature-vector of the de-obfuscations produced by the agent 

Figure 6. Training statistics - Histogram of similarity of the feature-vector of the de-obfuscations produced by the agent with the 
obfuscated Variant feature-vector of the Malware as given as input to the agent.

Figure 5. Training statistics -  maliciousP as detected by the IDS for the de-obfuscated version of the malware by the agent. 
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with the feature-vector of the original malware’s and between 
feature-vector of the de-obfuscations produced by the agent 
with that of its obfuscated variant’s feature-vector as submitted 
to the agent respectively. We use Pearson product-moment 
correlation coefficients between the opcode vectors to generate 
these similarities. The correlation is taken from the correlation 
matrix R, whose relationship with the co-variance matrix, C, is 

as given as 
*
ij

ij
ii jj

C
R

C C
= . Another interesting observation 

is related to the resultant output’s opcode frequency vector’s 
correlation similarity. We measure two types of correlations, 
the first is the similarity between the de-obfuscated opcode 
frequency vector as created by the DRLDO system and that 
of the obfuscated opcode frequency vector as provided as 
an input to the DRLDO system, and the second similarity 
is measured between the de-obfuscated opcode frequency 
vector as generated by the DRLDO system and that of the 
opcode frequency vector of the original malware. The opcode 
frequency of the original malware is not known to the DRLDO 
system and we extract it from the metadata created by the 
ADRLMMG system which produced these obfuscations. The 
feature-vector of the de-obfuscated variants as produced by the 
DRLDO system were quite similar to ( 0.99≥ ) their original 
malware’s feature-vector and very dissimilar to ( 0.001≤ ) 
their obfuscated variants as submitted to the DRLDO system. 
This observation establishes that the desired enhancement 
in the detection probability  maliciousP  of these feature-vectors 
after processing them via the DRLDO system is actually due 
to the probable de-obfuscation carried out by the DRLDO 
system in which it removed some of the additional opcode/ 
instructions that were inserted in the original malware to 
evade its detection by the IDS and the results are unlikely to 
be because of any trivial and nonreproducible trick that the 
agent might have unintentionally learnt. The insights from 
these observations are very significant especially since we 
never exposed the original malware strain’s opcode frequency 
vector to the DRLDO system. Attaining such high similarity 

with the original malware’s opcode frequency indicates that 
the resultant de-obfuscations thus created by our system could 
not only be now detected by most existing IDS as malicious, 
but it could also be identified that the incoming malware is an 
obfuscated variant of one of the existing malware variants that 
the IDS has in its training repository. So, besides enhancing 
binary IDS that could just detect whether a file is benign or 
malicious the de-obfuscations created from our system is 
also compatible with and would produce correct results with 
a multinomial IDS that also detects the family of the malware 
variants. Alternatively, in a binary IDS subsequently by using 
the similarity between the outputs of the DRLDO system with 
the stored feature-vectors of the existing malware variants in 
the system’s repository the family of the obfuscated malware 
could be identified thus enhancing the insights generated 
from the detection system. The above observations on the 
similarity with the original malware strain also indicates 
that following de-obfuscation, the file size and opcode 
frequency distribution does not change substantially. This 
has other significant implications as this would also prevent 
any malware prediction probability creep/ enhancement even 
when subjected to any IDS which first segregates the files 
into different categories based on either their file size26 or on 
the outcomes of machine learning methods like clustering27 

before scoring/ predicting them for their maliciousness, to 
enhance their respective prediction/ detection effectiveness/ 
accuracy.

8. CONCLUSION
We designed and developed an advance Deep 

Reinforcement Learning based system named DRLDO that 
could learn how to de-obfuscate and normalise a metamorphic 
(or otherwise obfuscated) malware. unlike some other 
systems that could work only at the binary level and hence 
the transformations from these are intractable and non-
functionality-preserving, the DRLDO is the first system that 
could perform de-obfuscations at the opcode-sequence level. 
Additionally, the DRLDO system offers unique advantages 

Figure 7. Training statistics - Histogram of Similarity of the feature-vector of the de-obfuscations produced by the agent with the 
feature-vector of the original Malware (that was not exposed to the agent).
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as it does not mandate any change in the IDS’ classification-
system and does not even require a re-training of the classifier. 
Thus, the DRLDO system could be easily retrofitted into an 
existing IDS setup. 

The experiments conducted with the DRLDO system, 
and the corresponding results obtained, proves that PPO 
algorithm based DRL agents, as used in the DRLDO system, 
could be effectively trained using our custom developed RL 
environment. The so trained DRL agents could effectively de-
obfuscate the (opcode-sequence) feature-vector of an incoming 
obfuscated malware. The resulting transformed feature-vector 
could be correctly detected by an existing IDS with a detection 
probability of up to 0.6 for previously un-detectable obfuscated 
intrusions. In the entire process no re-training, re-configuration 
or re-calibration of the IDS is required.

Thus, the DRLDO system could effectively provide an 
existing IDS the augmented capabilities of defense against 
(even multiple-simultaneous) attack from metamorphic 
variants of existing malware. Doing so, the DRLDO system 
can enhance an IDS with unique defensive capabilities against 
any probable ‘zero-day attack’ by a metamorphic attack from 
obfuscated variants of an existing malware.
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