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NOMENCLATURE
a

j
Gain parameter of activation function

d
i

Target output values of neural network

e
j
(l)=(d

j
(l)�y

j
(l)) Error

E = ½å[e
i
(l)]2 Sum of the square error

l Iterative step, epoch

O
i

Output value of neuron in outer layer

P= f(a,b,U) Input pressure to network

U Velocity of flow field

W Synaptic weights

y
j

Net output from hidden layer neuron

Greek Symbols

a Angle of attack

b Angle of side slip

f Roll angle

d Backpropagation error

e Machine epsilon

h Learning rate, 0.01 to 1

Subscript

k Input layer

j Hidden layer

i Output layer

1. INTRODUCTION
A neural network may be trained to classify patterns

in input data through feature extraction process. The training
of the network model is a learning process in which the
error is minimised to recognise the test pattern data as
in a curve-fitting problem. The complexity of the neural
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ABSTRACT
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and validate two models of three-layer neural networks  that can be used to calibrate a 5-hole pressure probe.
This paper addresses Occam�s Razor problem as it describes the adhoc training methodology applied to
improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with
jump connection are comparable to second decimal digit (~0.05) accuracy, hitherto unreported in literature.

Keywords:  Back  propagation, calibration,  curve-fitting,  error, inner  product, logistic  function, neuron, perceptron,
pressure probe, training network, synaptic weights

SHORT COMMUNICATION

network model is determined by the order of the polynomial
curve to be fitted. Experience has shown that optimal
network represented by third order polynomial gives better
systematic representation than highly complex models with
exact representation of data called Occam Razor1,2. In a
network, the neurons are arranged in the form of layers
and interlinked by synapses carrying weights either in a
feed-forward or feedback network. The nonlinear activation
function in a neuron induces heuristics to the learning
process through statistical processing of input. Any non-
polynomial (NP) function such as logistic sigmoid or hyperbolic
tangent, that is differentiable and bounded, may be used
as the activation function. A single neuron is limited to
performing pattern classification with only two classes.
A hidden layer with atleast two-neurons is required for
solving the classic XOR problem3. Further, a three-layer
network can generate arbitrarily complex boundaries such
as the U-shaped curves1  commonly occurring in many
engineering disciplines, as a bound on the generalisation
error. The intermediary hidden layer accomplishes this
task by classifying the input patterns into linearly separable
forms. Also, according to universal approximation theorem1

for nonlinear input-output mapping, a single hidden layer
is sufficient for multi-layer perceptron (MLP) to compute
a uniform e approximation to a given training set.

The foregoing discussion has important bearing on
the selection of number of network layers. In the light
of this context, a three-layer network architecture with
a single hidden layer of neurons is implemented and its
efficacy in training the neural network highly accurately
for calibrating 5-hole pressure probe4 with near linear
variation in input pressure data is illustrated. The multi-
hole probes have found wide application5-7, especially,
in aircraft air data system for measuring flow velocities
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at high angles of attack and each of them need to be
calibrated separately8.

2. BACKPROPAGATION  ALGORITHM
The flow chart of the (EBP_MLP) algorithm3,9 is presented

in Fig. 1. Typically, a neural network model consists of
input, hidden and output layers. In the l-th iteration of
a feedforward network, a neuron i driven by input signal
p produces an output y

i 
that differs from actual or desired

target output, d
i
 by a small amount, the error, e

i
(l) =

d
i
(l)�y

i
(l). This error signal is then back propagated through

the network from output to input layers of neurons as
a sequence of corrective adjustments to  the  synaptic
weights hDd j 

p
k   

in successive iterative steps. The cost
function, E(l) = ½ S[e

i
(l)]2, usually referred to as batch

error-correction or delta rule varies as a paraboloid with
weights, W

ij
 and W

jk
 in three dimensional space, and the

bottom of this bowl locates the steepest descent gradient
or global minimum of cost function. To increase the speed
of convergence, momentum factor, a , is multiplied by
the fraction of weight change, D W between successive
iterations, and then added as an additional term to weight
update equation in each iterative step. The momentum
correction ensures monotonic weight change. The
computational complexity of this algorithm is O(N) where
N is the number of weights and biases.

3. TRAINING  DATA
It is a known fact that the error backpropagation network

(BPN) generally gives good results for interpolation problems
but only approximate results for extrapolation or  structured
prediction of data. Therefore, in order to increase accuracy,

the training data should represent the entire input space
or population. The training pattern is usually identified
by pattern recognition techniques such as feature extraction
by means of histogram or scatter plot, by solving decision
boundary problems and through classification process.
The training vector should cover both the higher and lower
sides of the training data with minimum error output. For
example, the training data for the calibration of 5-hole
pressure probe here was fixed at roll angle of 2° to cover
both the lower side of target, 0° as well as higher side of
target of 4°, 6°, 8° and 10°.

3.1 Training Methodology
The most important concern here is the overfitting

of training data which may happen if the given target
values are not non-dimensionalised for the required sensitivity
to changes in weight, i.e., ¶ P/ ¶ W, ¶ f/ ¶ P, ¶ P/ ¶ a, and
¶ P/ ¶ U. The sigmoidal function varies from 0 to 1
asymptotically. For this reason, the output training data
is generally normalised to lie between 0.1 and 0.9. However,
for maximum sensitivity and to avoid over-fitting of data,
the output training values should preferably be normalised
to lie in the range 0.05 to 0.27 (Table 1).  Since  the  input
and the expected  output values of  training vector are
known apriori, supervised learning3,9 was carried out  by
adjusting weights and slope of the activation function
of neurons or gain parameter, a

j
. Scaling can be affected

through non-dimensionalisation of the input signal in
small ratio, say 1:2 to 1:10 and the output values by large
numbers, of the order of hundreds and even thousands
(1:1000). Also, fine tuning for the range of output values
can be affected by varying gain a

i
 of each neuron in the

hidden layer. This technique greatly simplifies the task
of weight adjustments and aid in smooth convergence
of output pattern without having to laboriously control
learning rate, momentum factor, and weights. Although,
the BPN algorithm stochiastically determines the true direction
of the global error minimum, sometimes it has the tendency
to approximate a local minimum for global, in which case
the error induced will be unusually high due to large
increase in cost function for a small change in synaptic
weights. This problem may be overcome by early stopping
or by executing fewer iterations with acceptable error in
solution.

Table 1. Linear and nonlinear regions of  logistic function

X e-X O
I
 =1/(1+e�X)

    -3.0 20.08 0.0474
    -2.0* 7.389* 0.1192*
    -1.0* 2.718* 0.2680*
    -0.5 1.648 0.3775
     0 1.0 0.5000
     0.5 0.606 0.6224
     1.0 0.367 0.7310
     2.0 0.135 0.8802
     3.0 0.0497 0.9525

    *Highly nonlinear values
Figure 1. Flow chart of error backpropagation multilayer

perceptron algorithm.
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Figure 2. 5-4-3 neural network architecture model.

4.  AIR DATA PROBE CALIBRATION
Flush air data system (FADS) of aircraft usually employs

omni-directional probes that may be calibrated using wind
tunnel test data as target. These are either 5-hole or 7-
hole probes that serve as pressure ports. Local flow angles
upto 75° have been measured accurately by using calibrated
probes in separated and recirculating flows. The pressure
measured at the port is related to the velocity and flow
angles by the functional relationship: (U, a, b) = f (p). The
unknown functional relationship f was ingenuously
implemented by training the neurons of the neural network.
The calibrated probe is then used to measure the flow
properties in an unknown flowfield.

4.1 Test cases
Two architecture models of 3-layer MLP neural networks

are trained and validated as under:
(i) 5-5-3 MLP network model10 comprising of 5 input  linear

neurons and a 3-output linear neurons layer
(ii) 5-4-3 MLP network model similar to previous one but

with additional jump connections as shown in Fig. 2.
The input and target (output) data used here for calibration

have been adapted from published work of Crowther and
Lamont4. The input training data to the EBP_MLP program
consists of a set of pressure values (P

1
-P

5
) as shown in

Table 2. Input (P) and target output (f,U,a) values for 5-4-3 network

    (*Adapted from Crowther and Lamont4, **Training Set)

Target : a = 5°, U=32 m/s Target: a=15°, U=32 m/s Target: a = 25°,U=32 m/s Data 
set 

Target f° 

P1    P2 P3 P4 P5 P1    P2 P3 P4 P5 P1    P2 P3 P4 P5 

1. 0 175 85 70 60 55 180 110 56 55 54 175 140 40 39 38 

2.** 2 175 85 70 70 65 178 115 70 60 55 175 141 45 40 22 

3. 4 169 83 78 65 60 177 110 80 60 49 174 141 55 44 14 

4. 6 170 80 85 65  60 178 105 85 60 36 172 140 65 50   7 

5. 8 166 80 90 65 60 175 102 98 59 35 170 137 73 57 - 5 

6. 10 161 80 100 60 50 175 100 102 50 20 169 136 82 58 -10 

Table 2. The initial weights used for batch training of 5-
4-3 network model are listed in Tables 3 and 4, and program
parameters are tabulated in Table 5. The ingenuity of the
model permits initial training weights, W

kj
 and W

ij
, for forward

path to remain the same for the entire a range as shown
in Table 3 and only the initial jump connection weights,
W

ik
 need be varied with as given in Table 4.

5. RESULTS AND DISCUSSIONS
The results from 5-4-3 model of neural network trained

by error back propagation using multi-layer perceptron
algorithm tabulated in Table 6 comprises of roll angle f ,
velocity U and angle of attack a. It is an optimum configuration
and can be considered as an improvement over 5-5-3 model
because of the greater accuracy of the results and the ease
of control over training target values through jump connection
weights W

ik
. The calibration accuracies of 5-hole probe

reported by Crowther and Lamont4; and Rediniotis and
Vijayagopal8 are between 0.3 and 0.8 units of exact target
values for the output flow parameters. Crowther and Lamont4

achieved same order of accuracies of 0.08 m/s and 0.09°
as that reported here but with the larger number of pressure
tappings and larger sensor network (22-11-3). In this paper,
accuracies correct to second decimal place, i.e., 0.001°�
0.04° and 0.07 m/s have been achieved with comparatively
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Table 4. Input-output layer W
ik  

initial weight matrix  for jump
connection

Table 3. Initial weights for input-hidden and hidden-output
layers of 5-4-3 neural network

Non-dimensionalisation of input pressure: P
k
 = (P

k
 /np) , np = 203.;

Scaling ratio for target output: Roll angle (f/nd
1
), velocity U/nd

2
, angle of attack, a/nd

3
;

nd
1
 = 62.1;   nd

2
 = 960;  nd

3
 = 601; f = 0°,2°,4°,6°,8°,10°; U = 32m/s;

a = 25°.

Learning rate parameters: Input-hidden layer, h= 0.001;  hidden-output layers, ho = 0.001;

input-output(jump) layers, h1= 0.091

Momentum parameters: Input-hidden layers,  a= 0.01; hidden-output layers, ao = 0.01;

input-output (jump) layers, a1= 1.0

Gain parameter for logistic function of hidden neurons: a
1
=0.5; a

2
=0.35; a

3
=1.39 ; a

4
 = 0.17; a

5
 = 0.993

Stoping criterion or convergence criterion Sc = 0.000082; number of iterations = 32500

Table 5. Scaling, learning, momentum and gain parameters used in EBP_MLP program for 5-4-3 network

Table 6. Trained results from EBP_MLP program for 5-4-3 neural network architecture

smaller size network architecture (5-4-3) and fewer tappings,
mainly due to improvised training method.

6. CONCLUDING REMARKS
A single hidden layer was employed to train the

3-layer neural networks models by error back propagation
algorithm. The nearly�linear wind tunnel data facilitated
the use of single non�linear (logistic function) neuron
hidden layer to calibrate a 5-hole probe. Accuracies correct
to second decimal digit in the target output of flow angles
and flow velocities were obtained for 5-4-3 model with
jump connection (feed forward network). This appears to
address the problem of  Occam�s razor  which hinges on

the principle that simpler model should be preferred to a
complex one. The improvised training method describes
threadbare, the procedure for rapid convergence and greater
flexibility in control over the target outputs.
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