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1. INTRODUCTION
When the receivers of GPS (USA), GLONASS (Russian)

or COMPASS (China, Bei Dou II) equipped with multiple
antennas are configured in the aircraft, they can give attitude
information as an auxiliary attitude sensor. The phase differences
between signals received by different antennas now constitute
the key measurement. Since carrier phase difference measurements
are ambiguous, because of the unknown number of carrier
signal cycles received, the estimated attitude is, in principle,
ambiguous as well. Therefore, the resolution of the signal
cycle ambiguity becomes a necessary task before determining
the attitude. However, due to the fact that the GLONASS
satellites transmit their signals at different frequencies, processing
the GPS/GLONASS carrier-phase measurement is much more
complicated than processing only GPS data. In processing
the GLONASS carrier-phase, one of the critical issues is that
the standard double-difference (DD) procedure cannot cancel
receiver clock terms in the DD carrier phase measurement
[1-3].

As one of the important ambiguity resolution on-the-
fly (OTF) approaches, the ambiguity function method (AFM)
uses only the fractional value of the instantaneous carrier
phase measurement, so the ambiguity function values are
insensitive to the whole cycle change of the carrier phase
or cycle slips [4-6]. In attitude determination, fixed-length
baseline is used to constrain the ambiguity resolution in
AFM process. Juang [5] studied the AFM formulas in double-
difference measurement to determine the attitude (azimuth)
and explored the competitive Hopfield neural network approach
to find the attitude, which might have costed more computation
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load. Xu, et al investigated a related search algorithm to
solve the GPS attitude determination based on double difference
AFM [6]. The AFGA that uses an especially tailored genetic
algorithm, overcomes restrictions due to computational overheads
incurred by existing AFM techniques [6]. For special real
time case, the genetic algorithm is complicated than some
AFM methods. Wang, et al. studied an improved method
using single-difference measurement of two antennas, which
is a combination of an analytical resolution and the AFM
[7]. The approach reduced the ambiguity, resolution time,
and directly obtained the attitude (azimuth and pitch/roll),
while some parameters (cable delay and clock bias, etc)
should be estimated previously [8].

In this study, an integrated algorithm based on attitude
analytical resolution and OTF ambiguity function method
is proposed. It computes the analytical solutions of dual
nonlinear coupled equations using observations and assumed
integer ambiguities of two satellites. Rather than in the
2-D search space, some discrete points are gained, among
which the maximum value is found. In addition, the GPS DD
measurements are used in the above AFM process. Mathematical
description of the proposed approach and practical strategies
for data processing are presented and tested using field
data sets collected on single- and double-baselines.

2. SINGLE  DIFFERENCE  MEASUREMENT
EQUATION
In Fig. 1,  A and B represent the location of two receiver

antennas. b is the baseline vector ( ,a b  are yaw and pitch/
roll angle), ( )b b cos sin cos cos sin= b a b a b . si is the
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line-of-sight (LOS) unit vector ( ,i iq j are the
azimuth and elevation angle of GPS satellite i),
 ( )S cos sin cos cos sini i i i i i= j q j q j .

In this study,  two receivers fed a common clock reference
to eliminate the clock bias. As the baseline length was
short, both ionospheric delay and tropospheric delay were
cancelled [7].  The single-difference carrier phase (SDCP)
measurement, which is the projection of baseline in the
direction of LOS, can be expressed as

( )i i i
b

sin sin cos cos cosé ùDf = j b + j b q - a - Dë ûl
i i
AB ABN    (1)

where l is carrier wavelength, i
ABND denotes the SDCP

integer ambiguity. Equation (1) is a transcendental function,
where ,a b and i

ABND  are unknown and i
ABND  is an integer

theoretically. Similarly, the observation equations with

sm satellites can be described and have 2sm +  unknown
parameters. If the satellites are kept tracking in the next
epochs, integer ambiguity will remain constant. Then the
real-time integer ambiguity and attitude angles, that change
with the movement of the carrier, can be evaluated after
many epochs.

For i
ABND known, Eqn (1) in the 3-D space can be

demonstrated by a circle on a sphere with centre at point
A |b| as the radius. The line between the circle centre and
satellite i is vertical to the circle plane. The distance
between the two centres of the circle and the sphere is

[ ]i i
AB ABNl fD + D . For i

ABND unknown, Eqn (1) describes a
series of parallel circles. The vertical distance between
the two neighboring circles is l . The projection of these
circles on the 2-D space can be demonstrated by a cluster
of closed curves which do not intersect each other, and
represent single-differenced integer ambiguities of other
satellites j and k. The circles of satellites j, k are not
concentric, and there are two intersections Q

1
 and Q

2
.

One of these should be the correct attitude angle, as
shown in Fig. 2. The third circle of satellite i consequentially
intersects the other two circles respectively. One of the
two intersections certainly superposes the correct attitude
angle. The correct attitude angle is P1. More closed
curves intersect any other closed curve at two intersections,
and one of the intersections should be P1[7].

  According to AFM approach by Counselman, et
al.[1], the fixed-baseline ambiguity function is defined
as

( ) {
sm i

i
i iAB

i 1s

b1 sin sinF , cos 2
cos cos cos( )m =

ì üï ïé ùj b +a b = p í ýê új b q - al ë ûï ïî þ
Df -å      (2)

When ,a b are the correct values, the function value

should theoretically have the value 1. Therefore, the solution
of the adaptive function at P1 is 1, while the values of
other intersections should be < 1. If the assumed integer
ambiguity is false, the value of the ambiguity function at
each intersection should be < 1. However, the final number
of intersections passed through extreme certification is
limited. If the integer ambiguities of any two satellites are
known, one of the two intersections related to two closed
curves is the correct attitude angle. In addition, for any
observed satellite, the range of the integer ambiguity can
be determined and all possible ambiguities can be listed.
If the listed number is n, there will be 2n intersections.
Finally within these, the correct attitude can be estimated
by AF approach. In contrast to the traditional all-area searching
methods, the proposed approach is converted to searching
among countable discrete points.

3. ATTITUDE SOLUTION FOR SINGLE
DIFFERENCE
The key issue of the problem is how to get the intersections

of two closed curves quickly. To do this, the following
equations are obtained from Eqn (1):

( ) ( )

( ) ( )

sin sin cos cos cos / b

sin sin cos cos cos / b

ì + - = D + Dï
í

+ - = D + Dïî

j b j b q a l f

j b j b q a l f

i i i i i i
AB AB

j j j j j j
AB AB

N

N   (3)

Note that ,i j
l l  represent the wavelength of satellite

i and satellite j, respectively, and these two satellites may
belong to different global positioning systems or the same
system, such as i for GPS and j for GLONASS or both for
GLONASS. However, the process of Eqn (3) complicated
and the final results are given as follows (for GPS i j

l l l= = ).

Figure 2. Intersect of three closed curves.

Figure 1.  Carrier phase difference measurement model between
two antennas.
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2arcsin[( 4 ) / 2]g g ha = ± - ± -                     (4)

2 2 2

2 2 2

2( )(1 ) 4 /[( ) 4 ]

(1 ) /[( ) 4 ]

g e d d f e d f

h d e d f

ì = - - - + - +
í

= - - +î
             (5)
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2 2 2

2 2 2

2

tan (1 ) /( )

tan (1 ) /( )

tan tan (1 ) /( )

i j i j

j i i j

i j i i i j

a S S S

b S S S
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j

j

j j

ì = - -
ï = - -í
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( ) / ( b sin )

( ) / ( b sin )

ì = D + Dï
í

= D + Dïî

l f j

l f j

i i i i
AB AB

j j j j
AB AB

S N

S N                             (8)

If a is known, b can be obtained easily. According to

the descriptions above, there will be two solutions
, ( 1,2)k k ka b = . It is easier to have the attitude angles

solved by Eqn (3) directly than searching the maximum in
the full 2-D space. Presume that there are l pairs of preliminary
solutions from n pairs of integer ambiguity candidates.
They are represented as ( )1 1,a b , ( )2 2,a b ,... ( ),l la b , among
which only one solution is correct which can be found via
AFM approach.

4. DOUBLE  DIFFERENCE  MEASUREMENT
EQUATION
For satellite i and j, the double difference measurement

can be expressed as

1
b s sé ùÑD = - - ÑDë ûgf

l

ij j i ijN                        (9)

According to Eqn (2), the double difference ambiguity
function is defined as

 ( )

( )

( )

( )

1

1

sin sin sin
b1

, cos 2 cos cos cos
1

cos cos cos

-

=

ì üé ù-
ï ïê úï ïê ú= ÑD - + -í ý- ê úï ï

ê ú- -ï ïë ûî þ
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a b p f b j q a
l

b j q a

s

j i

m
ij j j

js
i i

F
m      (10)

For three satellites , ,k i j , the azimuth and elevation

angles are ( , )k kj q  ( , ), ( , )i i j jj q j q  respectively.

(cos sin cos sin ,cos cos cos cos ,sin sin )

(cos sin cos sin ,cos cos cos cos ,sin sin )

i k i i k k i i k k i k

j k j j k k j j k k j k

q j q j q j q j q q

q j q j q j q j q q

ì - = - - -
í

- = - - -î

s s

s s (11)

Like SD, the DD equations are obtained from Eqn (5),

  

( )

( )
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                    (12)

Compared with Eqn (3), the yaw and pitch anglesa , b of
DD measurement equations can be obtained easily.

5. FIELD TEST
5.1 Hardware Architecture

GPS/GLONASS attitude sensor with a set of low-cost
components is constructed (Fig. 4). The hardware board can
be installed with multiple NovAtel GPS/GLONASS OEMV
cards. These OEM cards are used to track and capture the
constellation signals and output the original data (pseudo-
range, carrier phase and almanac), and then the data are
transmitted into PC-104 board. The integer ambiguity resolution
and attitude determination are executed in PC-104. Beside
some control functions, the PC-104 also offers the PVT
(position, velocity and time) function, the initialisation for
attitude determination, as well as attitude determination function.

Figure 4. Architecture of GPS/GLONASS attitude sensor.

Figure 3. Double difference ambiguity function of two
satellites.
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5.2  SD and DD Experiment
To verify the performance of the suggested algorithm,

the whole software structure includes six modules: serial
port communication, time and coordinate transformation,
navigation message processing, observation data processing,
attitude parameter calculation, and cycle integer ambiguity
resolution. Static and kinematic experiments were conducted,
and the initialisation results were analysed.

Keeping the two antennae steady based on the WDFT
high-precision rotary table with the baseline of 1m, we a
number of static experiments were carried out to validate
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the method proposed for longer times. Since the geometric
distribution of GPS satellites keeps changing, it is required
to detect the new integer ambiguity often.

For SD case, the average attitude angles are 44.16 °
in yaw, and 0.49 ° in pitch. The yaw and the pitch always
fluctuate around the average values, as shown in Fig. 5.
The standard deviations of yaw and pitch angles are
0.17 ° and 0.29 °, respectively.

For double difference case, the baseline length of two
antennae is 2.88 m and the mask angle of the whole test
is 10 °, as shown in Fig. 6 and Table 1. So it can be
concluded that the proposed algorithm is as accurate as
the traditional ones [4].

In dynamic test, integer searching time is about
10 ms while the traditional AFM approaches it is within
80 ms. Compared with the records of a high-precision IMU,

the difference between the two systems is < 0.18 ° without
the system error. This indicates the high accuracy and
reliability of the proposed algorithm on the fly.

5.3  Combined GPS and GLONASS Experiment
Although GPS and GLONASS are different global positioning

systems, the accuracy of the two systems is at the same
level and furthermore single differencing method eliminates
the system errors and bias largely. In addition, it is testified
that the GLONASS augment attributes to improve the accuracy
of the combined system. Previously when some obstructions
or electronic jamming for GPS are inescapable, the final GPS
signal could be lost, which means having to wait to re-
initialise and then try to measure again [9]. Using the additional
GLONASS signals could mean continuing to work in areas
where it was previously not possible.

In Figs 7 and 8, the standard deviation of yaw angle
for SD measurement of 6 GPS satellites is 0.1 ° (1s ), while
with 8 GPS+GLONASS satellites (GGs), the standard deviation
reaches 0.08 ° (1s ). In further investigations, the performance

Figure 5. Single-baseline SD attitude results of static
experiments.

Figure 7. Yaw angle comparison between 6 GPSs and 8 GGs.

Table 1. Results of double baseline experiments

Baseline Length 

(m) 

Epoch 

(1Hz) 

Mean 

(deg) 

RMS  

(deg) 

Yaw: 81.28 0.11 

Pitch: 0.80 0.29 
Master baseline = 2.88 

Slave baseline  = 2.84 
7000 

Roll: 0.67 0.27 

Figure 6. Double-baseline DD attitude results of static
experiments. Figure 8. Pitch angle comparison between 6 GPSs and 8 GGs.
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of carrier phase integer ambiguity resolution OTF resolution
was improved as well. In the case of  6 GPS satellites, only
30 per cent cases could realise the initialisation in one epoch.

After adding two GLONASS satellites, 80 per cent cases
above could realise the initialisation in one epoch [10].

6. CONCLUSIONS
An improved integer ambiguity function resolution using

analytical resolution for GPS/GLONASS attitude sensor is
presented. The proposed equations simplify the previous
measurement equations under the conditions of a common
reference clock for the receivers and the constraint of spherical
surface. The analytical solutions can be provided by an
algebraic method or direct computation method other than
least-squares search [11]. As a result, the computation time
for the candidate solutions reduced greatly. A number of
experiments demonstrate that this improved approach significantly
outperforms the traditional ones in terms of the computation
load. Compared with the traditional DD approach, the improved
one is faster than the traditional one on average, with equivalent
performance in reliability and accuracy.
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